Search results for: network structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11963

Search results for: network structure

9953 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing

Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako

Abstract:

Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.

Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration

Procedia PDF Downloads 275
9952 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 512
9951 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 465
9950 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 95
9949 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 299
9948 Parametric Study of the Structures: Influence of the Shells

Authors: Serikma Mourad, Mezidi Amar

Abstract:

The conception (design) of an earthquake-resistant structure is a complex problem seen the necessity of meeting the requirements of security been imperative by the regulations, and of economy been imperative by the increasing costs of the structures. The resistance of a building in the horizontal actions (shares) is mainly ensured by a mixed brace system; for a concrete building, this system is constituted by frame or shells; or both at the same time. After the earthquake of Boumerdes (May 23; 2003) in Algeria, the studies made by experts, ended in modifications of the Algerian Earthquake-resistant Regulation (AER 99). One of these modifications was to widen the use of shells for the brace system. This modification has create a conflict on the quantities, the positions and the type of the shells at adopt. In the present project, we suggest seeing the effect of the variation of the dimensions, the localization and the conditions of rigidity in extremities of shells. The study will be led on a building (F+5) implanted in zone of seismicity average. To do it, we shall proceed to a classic dynamic study of a structure by using 4 alternatives for shells by varying the lengths and number in order to compare the cost of the structure for 4 dispositions of the shells with a technical-economic study of the brace system by the use of different dispositions of shells and to estimate the quantities of necessary materials (concrete and steel).

Keywords: reinforced concrete, mixed brace system, dynamic analysis, beams, shells

Procedia PDF Downloads 325
9947 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 87
9946 Stoner Impurity Model in Nickel Hydride

Authors: Andrea Leon, J. M. Florez, P. Vargas

Abstract:

The effect of hydrogen adsorption on the magnetic properties of fcc Ni has been calculated using the linear-muffin-tin-orbital formalism and using the local-density approximation for the exchange y correlation. The calculations for the ground state show that the sequential addition of hydrogen atoms is found to monotonically reduce the total magnetic moment of the Ni fcc structure, as a result of changes in the exchange-splitting parameter and in the Fermi energy. In order to physically explain the effect of magnetization reduction as the Hydrogen concentration increases, we propose a Stoner impurity model to describe the influence of H impurity on the magnetic properties of Nickel.

Keywords: electronic structure, magnetic properties, Nickel hydride, stoner model

Procedia PDF Downloads 459
9945 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj

Authors: Marziyeh Khavari

Abstract:

In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.

Keywords: climate change, neural network, hazelnut, global warming

Procedia PDF Downloads 132
9944 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework

Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.

Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles

Procedia PDF Downloads 15
9943 The Board Structure of Public and Private Sector Companies and Its Impact on Firm Performance: A Study of Fortune 500 Indian Companies from 2006 to 2015

Authors: Gayathri P. Nair

Abstract:

The focus of this study is to identify whether the board structure has any significant impact on the firm performance and finding out any evidence of being listed in the Fortune 500 list compiled and published by the American business magazine, Fortune and published globally by Time Inc., as the world’s wealthiest companies. The list has been released based on the ranking obtained for the total revenues for the respective fiscal year which has ended on or before March 31st. The study has been conducted on the Indian companies that were listed in the Fortune 500 list for the past 10 years. This study employs a logical regression between the variables, firm performance and board composition as mentioned in the clause 49 of companies act 1956 and 2013. For getting the firm performance, ROA has selected as the key performance metric, as it focuses the management attention on the assets required to run the business. The highlight of the study is that the tools had been applied between public and private sector firms so that, it reveals whether the board composition is helping out to maintain the position in the list. In addition, the findings reveal that apart from independent directors, all other variables have significant impact on firm performance.

Keywords: board structure, Fortune 500 company, firm performance, India

Procedia PDF Downloads 236
9942 A Contrastive Analysis on Hausa and Yoruba Adjectival Phrases

Authors: Abubakar Maikudi

Abstract:

Contrastive analysis is the method of analyzing the structure of any two languages with a view to determining the possible differential aspects of their systems irrespective of their genetic affinity or level of development. Contrastive analysis of two languages becomes useful when it is adequately describing the sound structure and grammatical structure of two languages, with comparative statements giving emphasis to the compatible items in the two systems. This research work uses comparative analysis theory to analyze adjective and adjectival phrases in Hausa and Yorùbá languages. The Hausa language belongs to the Chadic family of the Afro-Asiatic phylum, while the Yorùbá language belongs to the Benue-Congo family of the Niger-Congo phylum. The findings of the research clearly demonstrated that there are significant similarities in the adjectival phrase constructions of the two languages, i.e., nominal (Head) and post-nominal (Post-Head) use of the adjective, predicative function of an adjective, use of the reduplicative adjective, use of the comparative and superlative adjective, etc. However, there are dissimilarities in the adjectival phrase of the two languages in gender/number agreement and pre-nominal (Post-Head) use of adjectives.

Keywords: genetic affinity, contrastive analysis, phylum, pre-head, post-head

Procedia PDF Downloads 231
9941 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning

Authors: Sumitra Nuanmeesri

Abstract:

The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.

Keywords: blended learning, new media, infrastructure and computer network, tele-education, online learning

Procedia PDF Downloads 402
9940 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network

Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry

Abstract:

The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.

Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network

Procedia PDF Downloads 293
9939 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy

Procedia PDF Downloads 528
9938 Application of Electrical Resistivity Tomography to Image the Subsurface Structure of a Sinkhole, a Case Study in Southwestern Missouri

Authors: Shishay T. Kidanu

Abstract:

The study area is located in Southwestern Missouri and is mainly underlain by Mississippian Age limestone which is highly susceptible to karst processes. The area is known for the presence of various karst features like caves, springs and more importantly Sinkholes. Sinkholes are one of the most common karst features and the primary hazard in karst areas. Investigating the subsurface structure and development mechanism of existing sinkholes enables to understand their long-term impact and chance of reactivation and also helps to provide effective mitigation measures. In this study ERT (Electrical Resistivity Tomography), MASW (Multichannel Analysis of Surface Waves) and borehole control data have been used to image the subsurface structure and investigate the development mechanism of a sinkhole in Southwestern Missouri. The study shows that the main process responsible for the development of the sinkhole is the downward piping of fine grained soils. Furthermore, the study reveals that the sinkhole developed along a north-south oriented vertical joint set characterized by a vertical zone of water seepage and associated fine grained soil piping into preexisting fractures.

Keywords: ERT, Karst, MASW, sinkhole

Procedia PDF Downloads 213
9937 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: aggregate proportions, artificial neural network, concrete grade, concrete mix design

Procedia PDF Downloads 389
9936 Risk Factors’ Analysis on Shanghai Carbon Trading

Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu

Abstract:

First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.

Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model

Procedia PDF Downloads 391
9935 Population and Age Structure of the Goby Stigmatogobius pleurostigma in the Mekong Delta, Vietnam

Authors: Quang M. Dinh

Abstract:

Stigmatogobius pleurostigma is a commercial fish being caught increasingly in the Mekong Delta. Although it plays an important role for food supply, little is known about this species including morphology, distribution and growth pattern. Meanwhile, its population and age structure is unknown. The present study was conducted in the Mekong Delta to provide new data on population parameters of this goby species. The von Bertalanffy growth parameters were L∞= 8.6 cm, K = 0.83 yr⁻¹, and t0 = -0.07 yr⁻¹ basing on length frequency data analysis of 601 individuals. The fish total length at first capture was 3.8 cm; and fishing, natural and total mortalities of the fish population were 2.31 yr⁻¹, 1.17 yr⁻¹, and 3.48 yr⁻¹ respectively. The maximum fish yield (Eₘₐₓ), economic yield (E₀.₁) and yield of 50% reduction of exploitation (E₅₀) rates were 0.704, 0.555 and 0.335 based on the relative yield-per-recruit and biomass-per-recruit analyses. The fish longevity was 3.61 yr, and growth performance was 1.79. Three fish age groups were recorded in this study (0+, 1+ and 2+). The species is a potential aquaculture candidate because of its high growth parameter. This goby stock was overexploited in the Mekong Delta as its exploitation rate (E=0.34) was higher than E₅₀ (0.335). The mesh size of gillnets should be increased and avoid catching fish in June, recruitment time, for future sustainable fishery management.

Keywords: Stigmatogobius pleurostigma, age, population structure, Vietnam

Procedia PDF Downloads 203
9934 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting

Authors: Nader Khalafian, Mohsen Ghaderi

Abstract:

Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.

Keywords: reverse faulting, surface deformation, numerical, neural network

Procedia PDF Downloads 421
9933 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP

Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost

Abstract:

The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.

Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)

Procedia PDF Downloads 426
9932 Operator Optimization Based on Hardware Architecture Alignment Requirements

Authors: Qingqing Gai, Junxing Shen, Yu Luo

Abstract:

Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.

Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator

Procedia PDF Downloads 104
9931 Single Protoplast of Murraya paniculata L. Jack Regenerated Into Plantlets

Authors: Hasan Basri Jumin, Danil Endriand Basri

Abstract:

Isolated protoplast from embryogenic callus of orange Jessamine (Murraya paniculata L. (Jack) cultured and maintained under growth chamber at the temperature +25oC. The parameter observed are the plating efficiency, the number of spherical embryos, heard-shaped embryos-like structure, shoot formation, and plantlets obtained. Treatment was arranged with 0.0, 0.001, 0.01, 0.1 or 1.0 mg 1-1 Naphthalene acetic acid (NAA), and 0, 300, 500 mg 1/l malt extract (ME) and 0.M sorbitol in the medium with 2.5 % sucrose. Interaction between 0.001 mg/l NAA and 500 mg/l was observed the higher percentage of planting efficiency. For embryo development from callus, the media was added to 0.0 mg/l, 0.001 mg/l, 0.01 ,mg/l, 0.1 mg/l, 1.0 mg/l NAA, and 1.0 %, 2.0 %, 3.0 %, 4.0 % sucrose. Media supplemented with 0.01mg/l NAA, and 1.0% sucrose was found to be a suitable medium for the development of spherical somatic embryos. A combination of 0.1 mg/ indole acetic acid (IAA) and 0.1 mg/l zeatin constituted the spherical somatic embryo became heart-shaped embryos-like structure. A combination between GA3 0.1 mg 1/l GA3 and 0.1 mg 1-1 zeatin is looking high, growing the heart-shaped embryos-like structure to form a shoot. Cells were developed into spherical embryos and grew into heart-shaped embryos, and then spherical somatic embryos developed into shoot formation. Sequence from single protoplast to plantlets was obtained by using a low concentration of plant growth regulator and sucrose; This recovery of single protoplast to be completed plantlets is a new technology in plant cell culture, and this could be used in genetic engineering in citrus.

Keywords: heart-shaped-embryos-like-structure, Muraya-paniculata, plant-growth-regulator, spherical- somatic-embryo, single protoplast, glucose

Procedia PDF Downloads 110
9930 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 227
9929 Fault Ride Through Management in Renewable Power Park

Authors: Mohd Zamri Che Wanik

Abstract:

This paper presents the management of the Fault Ride Through event within a Solar Farm during a grid fault. The modeling and simulation of a photovoltaic (PV) with battery energy storage connected to the power network will be described. The modeling approach and the study analysis performed are described. The model and operation scenarios are simulated using a digital simulator for different scenarios. The dynamic response of the system when subjected to sudden self-clearance temporary fault is presented. The capability of the PV system and battery storage riding through the power system fault and, at the same time, supporting the local grid by injecting fault current is demonstrated. For each case, the different control methods to achieve the objective of supporting the grid according to grid code requirements are presented and explained. The inverter modeling approach is presented and described.

Keywords: faut ride through, solar farm, grid code, power network

Procedia PDF Downloads 51
9928 Complex Network Analysis of Seismicity and Applications to Short-Term Earthquake Forecasting

Authors: Kahlil Fredrick Cui, Marissa Pastor

Abstract:

Earthquakes are complex phenomena, exhibiting complex correlations in space, time, and magnitude. Recently, the concept of complex networks has been used to shed light on the statistical and dynamical characteristics of regional seismicity. In this work, we study the relationships and interactions of seismic regions in Chile, Japan, and the Philippines through weighted and directed complex network analysis. Geographical areas are digitized into cells of fixed dimensions which in turn become the nodes of the network when an earthquake has occurred therein. Nodes are linked if a correlation exists between them as determined and measured by a correlation metric. The networks are found to be scale-free, exhibiting power-law behavior in the distributions of their different centrality measures: the in- and out-degree and the in- and out-strength. The evidence is also found of preferential interaction between seismically active regions through their degree-degree correlations suggesting that seismicity is dictated by the activity of a few active regions. The importance of a seismic region to the overall seismicity is measured using a generalized centrality metric taken to be an indicator of its activity or passivity. The spatial distribution of earthquake activity indicates the areas where strong earthquakes have occurred in the past while the passivity distribution points toward the likely locations an earthquake would occur whenever another one happens elsewhere. Finally, we propose a method that would project the location of the next possible earthquake using the generalized centralities coupled with correlations calculated between the latest earthquakes and a geographical point in the future.

Keywords: complex networks, correlations, earthquake, hazard assessment

Procedia PDF Downloads 212
9927 GIS Based Public Transport Accessibility of Lahore using PTALs Model

Authors: Naveed Chughtai, Salman Atif, Azhar Ali Taj, Murtaza Asghar Bukhari

Abstract:

Accessible transport systems play a crucial role in infrastructure management and ease of access to destinations. Thus, the necessity of knowledge of service coverage and service deprived areas is a prerequisite for devising policies. Integration of PTALs model with GIS network analysis models (Service Area Analysis, Closest Facility Analysis) facilitates the analysis of deprived areas. In this research, models presented determine the accessibility. The empirical evidence suggests that current bus network system caters only 18.5% of whole population. Using network analysis results as inputs for PTALs, it is seen that excellent accessibility indexed bands cover a limited areas, while 78.8% of area is totally deprived of any service. To cater the unserved catchment, new route alignments are proposed while keeping in focus the Socio-economic characteristics, land-use type and net population density of the deprived area. Change in accessibility with proposed routes show a 10% increment in service delivery and enhancement in terms of served population is up to 20.4%. PTALs result shows a decrement of 60 Km2 in unserved band. The result of this study can be used for planning, transport infrastructure management, allocation of new route alignments in combination with future land-use development and for adequate spatial distribution of service access points.

Keywords: GIS, public transport accessibility, PTALs, accessibility index, service area analysis, closest facility analysis

Procedia PDF Downloads 438
9926 Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran

Authors: Francisco Borja de Lara, Ali Ravanbakhsh, Robert F. Wimmer-Schweingruber, Lars Seimetz, Fermín Navarro

Abstract:

The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results.

Keywords: Chang’E4, Chinese national space administration, lunar lander neutron dosimetry, nastran-patran, structural analysis

Procedia PDF Downloads 529
9925 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 102
9924 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend

Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar

Abstract:

Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.

Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend

Procedia PDF Downloads 202