Search results for: mine pollution
91 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin
Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng
Abstract:
The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin
Procedia PDF Downloads 7690 Sustainability and Smart Cities Planning in Contrast with City Humanity. Human Scale and City Soul (Neighbourhood Scale)
Authors: Ghadir Hummeid
Abstract:
Undoubtedly, our world is leading all the purposes and efforts to achieve sustainable development in life in all respects. Sustainability has been regarded as a solution to many challenges of our world today, materiality and immateriality. With the new consequences and challenges our world today, such as global climate change, the use of non-renewable resources, environmental pollution, the decreasing of urban health, the urban areas’ aging, the highly increasing migrations into urban areas linked to many consequences such as highly infrastructure density, social segregation. All of that required new forms of governance, new urban policies, and more efficient efforts and urban applications. Based on the fact that cities are the core of life and it is a fundamental life axis, their development can increase or decrease the life quality of their inhabitants. Architects and planners see themselves today in the need to create new approaches and new sustainable policies to develop urban areas to correspond with the physical and non-physical transformations that cities are nowadays experiencing. To enhance people's lives and provide for their needs in this present without compromising the needs and lives of future generations. The application of sustainability has become an inescapable part of the development and projections of cities' planning. Yet its definition has been indefinable due to the plurality and difference of its applications. As the conceptualizations of technology are arising and have dominated all life aspects today, from smart citizens and smart life rhythms to smart production and smart structures to smart frameworks, it has influenced the sustainability applications as well in the planning and urbanization of cities. The term "smart city" emerged from this influence as one of the possible key solutions to sustainability. The term “smart city” has various perspectives of applications and definitions in the literature and in urban applications. However, after the observation of smart city applications in current cities, this paper defined the smart city as an urban environment that is controlled by technologies yet lacks the physical architectural representation of this smartness as the current smart applications are mostly obscured from the public as they are applied now on a diminutive scale and highly integrated into the built environment. Regardless of the importance of these technologies in improving the quality of people's lives and in facing cities' challenges, it is important not to neglect their architectural and urban presentations will affect the shaping and development of city neighborhoods. By investigating the concept of smart cities and exploring its potential applications on a neighbourhood scale, this paper aims to shed light on understanding the challenges faced by cities and exploring innovative solutions such as smart city applications in urban mobility and how they affect the different aspects of communities. The paper aims to shape better articulations of smart neighborhoods’ morphologies on the social, architectural, functional, and material levels. To understand how to create more sustainable and liveable future approaches to developing urban environments inside cities. The findings of this paper will contribute to ongoing discussions and efforts in achieving sustainable urban development.Keywords: sustainability, urban development, smart city, resilience, sense of belonging
Procedia PDF Downloads 7989 Antimicrobial and Aroma Finishing of Organic Cotton Knits Using Vetiver Oil Microcapsules for Health Care Textiles
Authors: K. J. Sannapapamma, H. Malligawad Lokanath, Sakeena Naikwadi
Abstract:
Eco-friendly textiles are gaining importance among the consumers and textile manufacturers in the healthcare sector due to increased environmental pollution which leads to several health and environmental hazards. Hence, the research was designed to cultivate and develop the organic cotton knit, to prepare and characterize the Vetiver oil microcapsules for textile finishing and to access the wash durability of finished knits. The cotton SAHANA variety grown under organic production systems was processed and spun into 30 single yarn dyed with four natural colorants (Arecanut slurry, Eucalyptus leaves, Pomegranate rind and Indigo) and eco dyed yarn was further used for development of single jersy knitted fabric. Vetiveria zizanioides is an aromatic grass which is being traditionally used in medicine and perfumery. Vetiver essential oil was used for preparation of microcapsules by interfacial polymerization technique subjected to Gas Chromatography Mass Spectrometry (GCMS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analyzer (TGA) and Scanning Electron Microscope (SEM) for characterization of microcapsules. The knitted fabric was finished with vetiver oil microcapsules by exhaust and pad dry cure methods. The finished organic knit was assessed for laundering on antimicrobial efficiency and aroma intensity. GCMS spectral analysis showed that, diethyl phthalate (28%) was the major compound found in vetiver oil followed by isoaromadendrene epoxide (7.72%), beta-vetivenene (6.92%), solavetivone (5.58%), aromadenderene, azulene and khusimol. Bioassay explained that, the vetiver oil and diluted vetiver oil possessed greater zone of inhibition against S. aureus and E. coli than the coconut oil. FTRI spectra of vetiver oil and microcapsules possessed similar peaks viz., C-H, C=C & C꞊O stretching and additionally oil microcapsules possessed the peak of 3331.24 cm-1 at 91.14 transmittance was attributed to N-H stretches. TGA of oil microcapsules revealed that, there was a minimum weight loss (5.835%) recorded at 467.09°C compared to vetiver oil i.e., -3.026% at the temperature of 396.24°C. The shape of the microcapsules was regular and round, some were spherical in shape and few were rounded by small aggregates. Irrespective of methods of application, organic cotton knits finished with microcapsules by pad dry cure method showed maximum zone of inhibition compared to knits finished by exhaust method against S. aureus and E. coli. The antimicrobial activity of the finished samples was subjected to multiple washing which indicated that knits finished with pad dry cure method showed a zone of inhibition even after 20th wash and better aroma retention compared to knits finished with the exhaust method of application. Further, the group of respondents rated that the 5th washed samples had the greater aroma intensity in both the methods than the other samples. Thus, the vetiver microencapsulated organic cotton knits are free from hazardous chemicals and have multi-functional properties that can be suitable for medical and healthcare textiles.Keywords: exhaust and pad dry cure finishing, interfacial polymerization, organic cotton knits, vetiver oil microcapsules
Procedia PDF Downloads 28088 Comparative Evaluation of High Pure Mn3O4 Preparation Technique between the Conventional Process from Electrolytic Manganese and a Sustainable Approach Directly from Low-Grade Rhodochrosite
Authors: Fang Lian, Zefang Chenli, Laijun Ma, Lei Mao
Abstract:
Up to now, electrolytic process is a popular way to prepare Mn and MnO2 (EMD) with high purity. However, the conventional preparation process of manganese oxide such as Mn3O4 with high purity from electrolytic manganese metal is characterized by long production-cycle, high-pollution discharge and high energy consumption especially initially from low-grade rhodochrosite, the main resources for exploitation and applications in China. Moreover, Mn3O4 prepared from electrolytic manganese shows large particles, single morphology beyond the control and weak chemical activity. On the other hand, hydrometallurgical method combined with thermal decomposition, hydrothermal synthesis and sol-gel processes has been widely studied because of its high efficiency, low consumption and low cost. But the key problem in direct preparation of manganese oxide series from low-grade rhodochrosite is to remove completely the multiple impurities such as iron, silicon, calcium and magnesium. It is urgent to develop a sustainable approach to high pure manganese oxide series with character of short process, high efficiency, environmentally friendly and economical benefit. In our work, the preparation technique of high pure Mn3O4 directly from low-grade rhodochrosite ore (13.86%) was studied and improved intensively, including the effective leaching process and the short purifying process. Based on the same ion effect, the repeated leaching of rhodochrosite with sulfuric acid is proposed to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. Moreover, the repeated leaching process could make full use of sulfuric acid and lower the cost of the raw material. With the aid of theoretical calculation, Ba(OH)2 was chosen to adjust the pH value of manganese sulfate solution and BaF2 to remove Ca2+ and Mg2+ completely in the process of purifying. Herein, the recovery ratio of manganese and removal ratio of the impurity were evaluated via chemical titration and ICP analysis, respectively. Comparison between conventional preparation technique from electrolytic manganese and a sustainable approach directly from low-grade rhodochrosite have also been done herein. The results demonstrate that the extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. The heavy metal impurities has been decreased to less than 1ppm, and the content of calcium, magnesium and sodium has been decreased to less than 20ppm, which meet standards of high pure reagent for energy and electronic materials. In compare with conventional technique from electrolytic manganese, the power consumption has been reduced to ≤2000 kWh/t(product) in our short-process approach. Moreover, comprehensive recovery rate of manganese increases significantly, and the wastewater generated from our short-process approach contains low content of ammonia/ nitrogen about 500 mg/t(product) and no toxic emissions. Our study contributes to the sustainable application of low-grade manganese ore. Acknowledgements: The authors are grateful to the National Science and Technology Support Program of China (No.2015BAB01B02) for financial support to the work.Keywords: leaching, high purity, low-grade rhodochrosite, manganese oxide, purifying process, recovery ratio
Procedia PDF Downloads 24887 Green Human Resource Management: Delivering High Performance Human Resource Systems at Divine Word University Papua New Guinea
Authors: Zainab Olabisi Tairu
Abstract:
The human species is facing some of the most challenging issues encountered as civilization and development occurs. The most salient factors threatening all species globally are habitats loss and degradation, overexploitation, competition with unwanted invasive species, pollution, global climate and various individual lifestyles of indigenous species. In order to avoid or minimize the effect of our actions on the environment and to balance employee work life with their private life, Green Human Resource is important and must be practiced in every organization including Higher Learning Institutions. This study addressed Green HRM from an institutional perspective, University systems are involved in numerous and complex social, educational and extra-curricular activities. The University community must be challenged to rethink and re-construct their environmental policies and practices in order to contribute to sustainable development. Many institutions only look at sustainability from the technology improvement aspect and waste management. People are the principal actors for sustainability development at the institutional level. The aim of the study is to explore the concept of Green Human Resource Management at a case site. Divine Word University (DWU) an Institution of Higher Education that embraced the ‘Printing & Paper use Policy’, also commonly referred to as the ‘paperless policy’, the use of solar as an alternative source of energy, water conservation and improvement in internet technology (IT) with the aim of becoming a green institution in effort to help save the environment. This study used Participatory Action Research as the Overarching methodological framework and Egg of sustainability and Wellbeing as the theoretical perspective in analyzing the data, engaging Case study strategy and a mixed method design at DWU. Focus group interview were conducted with three departments at the University, semi-structure interviews with the senior managers, survey questionnaire administered to students and staff with a sample size of 176 participants, in addition, policy documents were also exploited as extra source of data. Waste management including e-waste appeared to be one of the main concerns at DWU. A vast majority of DWU staff and students expressed the need for their institution to do more on sustainability education. The findings revealed that members of the community are not fully integrated like the Egg of sustainability and wellbeing in order to achieve sustainable development goal. The concept of Green Human Resource Management in Universities lies with the idea that Universities must bear profound responsibilities to manage its stakeholders in an environmental friendly way. Human resource management can help local institutions to recognize the need for changes of lifestyle, production, consumption as well as the end product in order to combat or at least reduce human Induced which produce or aggravate it.Keywords: sustainability, environmental management, higher education institutions, green human resource management
Procedia PDF Downloads 24586 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation
Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent
Abstract:
Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene
Procedia PDF Downloads 20785 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate
Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori
Abstract:
Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission
Procedia PDF Downloads 7584 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers
Authors: Sujosh Nandi, Proshanta Guha
Abstract:
Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.Keywords: cross linking agent, guar gum, organic acids, potato starch
Procedia PDF Downloads 11483 Biological Monitoring: Vegetation Cover, Bird Assemblages, Rodents, Terrestrial and Aquatic Invertebrates from a Closed Landfill
Authors: A. Cittadino, P. Gantes, C. Coviella, M. Casset, A. Sanchez Caro
Abstract:
Three currently active landfills receive the waste from Buenos Aires city and the Great Buenos Aires suburbs. One of the first landfills to receive solid waste from this area was located in Villa Dominico, some 7 km south from Buenos Aires City. With an area of some 750 ha, including riparian habitats, divided into 14 cells, it received solid wastes from June 1979 through February 2004. In December 2010, a biological monitoring program was set up by CEAMSE and Universidad Nacional de Lujan, still operational to date. The aim of the monitoring program is to assess the state of several biological groups within the landfill and to follow their dynamics overtime in order to identify if any, early signs of damage the landfill activities might have over the biota present. Bird and rodent populations, aquatic and terrestrial invertebrates’ populations, cells vegetation coverage, and surrounding areas vegetation coverage and main composition are followed by quarterly samplings. Bird species richness and abundance were estimated by observation over walk transects on each environment. A total of 74 different species of birds were identified. Species richness and diversity were high for both riparian surrounding areas and within the landfill. Several grassland -typical of the 'Pampa'- bird species were found within the landfill, as well as some migratory and endangered bird species. Sherman and Tomahawk traps are set overnight for small mammal sampling. Rodent populations are just above detection limits, and the few specimens captured belong mainly to species common to rural areas, instead of city-dwelling species. The two marsupial species present in the region were captured on occasions. Aquatic macroinvertebrates were sampled on a watercourse upstream and downstream the outlet of the landfill’s wastewater treatment plant and are used to follow water quality using biological indices. Water quality ranged between weak and severe pollution; benthic invertebrates sampled before and after the landfill, show no significant differences in water quality using the IBMWP index. Insect biota from yellow sticky cards and pitfall traps showed over 90 different morphospecies, with Shannon diversity index running from 1.9 to 3.9, strongly affected by the season. An easy-to-perform non-expert demandant method was used to assess vegetation coverage. Two scales of determination are utilized: field observation (1 m resolution), and Google Earth images (that allow for a better than 5 m resolution). Over the eight year period of the study, vegetation coverage over the landfill cells run from a low 83% to 100% on different cells, with an average between 95 to 99% for the entire landfill depending on seasonality. Surrounding area vegetation showed almost 100% coverage during the entire period, with an average density from 2 to 6 species per sq meter and no signs of leachate damaged vegetation.Keywords: biological indicators, biota monitoring, landfill species diversity, waste management
Procedia PDF Downloads 13982 C-Coordinated Chitosan Metal Complexes: Design, Synthesis and Antifungal Properties
Authors: Weixiang Liu, Yukun Qin, Song Liu, Pengcheng Li
Abstract:
Plant diseases can cause the death of crops with great economic losses. Particularly, those diseases are usually caused by pathogenic fungi. Metal fungicides are a type of pesticide that has advantages of a low-cost, broad antimicrobial spectrum and strong sterilization effect. However, the frequent and wide application of traditional metal fungicides has caused serious problems such as environmental pollution, the outbreak of mites and phytotoxicity. Therefore, it is critically necessary to discover new organic metal fungicides alternatives that have a low metal content, low toxicity, and little influence on mites. Chitosan, the second most abundant natural polysaccharide next to cellulose, was proved to have broad-spectrum antifungal activity against a variety of fungi. However, the use of chitosan was limited due to its poor solubility and weaker antifungal activity compared with commercial fungicide. Therefore, in order to improve the water solubility and antifungal activity, many researchers grafted the active groups onto chitosan. The present work was to combine free metal ions with chitosan, to prepare more potent antifungal chitosan derivatives, thus, based on condensation reaction, chitosan derivative bearing amino pyridine group was prepared and subsequently followed by coordination with cupric ions, zinc ions and nickel ions to synthesize chitosan metal complexes. The calculations by density functional theory (DFT) show that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and all of them are coordinated by the carbon atom in the p-π conjugate group and the oxygen atoms in the acetate ion. The antifungal properties of chitosan metal complexes against Phytophthora capsici (P. capsici), Gibberella zeae (G. zeae), Fusarium oxysporum (F. oxysporum) and Botrytis cinerea (B. cinerea) were also assayed. In addition, a plant toxicity experiment was carried out. The experiments indicated that the derivatives have significantly enhanced antifungal activity after metal ions complexation compared with the original chitosan. It was shown that 0.20 mg/mL of O-CSPX-Cu can 100% inhibit the growth of P. capsici and 0.20 mg/mL of O-CSPX-Ni can 87.5% inhibit the growth of B. cinerea. In general, their activities are better than the positive control oligosaccharides. The combination of the pyridine formyl groups seems to favor biological activity. Additionally, the ligand fashion was precisely analyzed, and the results revealed that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and the carbon atoms of the p-π conjugate group and the oxygen atoms of acetate ion are involved in the coordination of metal ions. The phytotoxicity assay of O-CSPX-M was also conducted, unlike the traditional metal fungicides, the metal complexes were not significantly toxic to the leaves of wheat. O-CSPX-Zn can even increase chlorophyll content in wheat leaves at 0.40 mg/mL. This is mainly because chitosan itself promotes plant growth and counteracts the phytotoxicity of metal ions. The chitosan derivative described here may lend themselves to future applicative studies in crop protection.Keywords: coordination, chitosan, metal complex, antifungal properties
Procedia PDF Downloads 31681 Furnishing Ancillary Alternatives for High Speed Corridors and Pedestrian Crossing: Elevated Cycle Track, an Expedient to Urban Space Prototype in New Delhi
Authors: Suneet Jagdev, Hrishabh Amrodia, Siddharth Menon, Abhishek Singh, Mansi Shivhare
Abstract:
Delhi, the National Capital, has undergone a surge in development rate, consequently engendering an unprecedented increase in population. Over the years the city has transformed into a car-centric infrastructure with high-speed corridors, flyovers and fast lanes. A considerable section of the population is hankering to rehabilitate to the good old cycling days, in order to contribute towards a green environment as well as to maintain their physical well-being. Furthermore, an extant section of Delhi’s population relies on cycles as their primary means of commuting in the city. Delhi has the highest number of cyclists and second highest number of pedestrians in the country. However, the tumultuous problems of unregulated traffic, inadequate space on roads, adverse weather conditions stifle them to opt for cycling. Lately, the city has been facing a conglomeration of problems such as haphazard traffic movement, clogged roads, congestion, pollution, accidents, safety issues, etc. In 1957, Delhi’s cyclists accounted for 36 per cent of trips which dropped down to a mere 4 per cent in 2008. The declining rate is due to unsafe roads and lack of proper cycle lanes. Now as the 10 percent of the city has cycle tracks. There is also a lack of public recreational activities in the city. These conundrums incite the need of a covered elevated cycling bridge track to facilitate the safe and smooth cycle commutation in the city which would also serve the purpose of an alternate urban public space over the cycle bridge reducing the cost as well as the space requirement for the same, developing a user–friendly transportation and public interaction system for urban areas in the city. Based on the archival research methodologies, the following research draws information and extracts records from the data accounts of the Delhi Metro Rail Corporation Ltd. as well as the Centre for Science and Environment, India. This research will predominantly focus on developing a prototype design for high speed elevated bicycle lanes based on different road typologies, which can be replicated with minor variations in similar situations, all across the major cities of our country including the proposed smart cities. Furthermore, how these cycling lanes could be utilized for the place making process accommodating cycle parking and renting spaces, public recreational spaces, food courts as well as convenient shopping facilities with appropriate optimization. How to preserve and increase the share of smooth and safe cycling commute cycling for the routine transportation of the urban community of the polluted capital which has been on a steady decline over the past few decades.Keywords: bicycle track, prototype, road safety, urban spaces
Procedia PDF Downloads 15980 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method
Authors: Jiahui You, Kyung Jae Lee
Abstract:
Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.Keywords: reactive-transport , Shale, Kerogen, precipitation
Procedia PDF Downloads 16379 Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate
Authors: Syfur Rahman, Mohammad J. Khattak
Abstract:
Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures.Keywords: roller compacted concrete, geopolymer concrete, recycled concrete aggregate, concrete pavement, fly ash
Procedia PDF Downloads 13778 The Temporal Pattern of Bumble Bees in Plant Visiting
Authors: Zahra Shakoori, Farid Salmanpour
Abstract:
Pollination services are a vital service for the ecosystem to maintain environmental stability. The decline of pollinators can disrupt the ecological balance by affecting components of biodiversity. Bumble bees are crucial pollinators, playing a vital role in maintaining plant diversity. This study investigated the temporal patterns of their visitation to flowers in Kiasar National Park, Iran. Observations were conducted in Jun 2024, totaling 442 person-minutes of observation. Five species of bumble bees were identified. The study revealed that they consistently visited an average of 12-15 flowers per minute, regardless of species. The findings highlight the importance of protecting natural habitats, where their populations are thriving in the absence of human-induced stressors. This study was conducted in Kiasar National Park, located in the southeast of Mazandaran, northern Iran. The surveyed area, at an altitude of 1800-2200 meters, includes both forest and pasture. Bumble bee surveys were carried out on sunny days from June 2024, starting at dawn and ending at sunset. To avoid double-counting, we systematically searched for foraging habitats on low-sloping ridges with high mud density, frequently moving between patches. We recorded bumble bee visits to flowers and plant species per minute using direct observation, a stopwatch, and a pre-prepared form. We used statistical analysis of variance (ANOVA) with a confidence level of 95% to examine potential differences in foraging rates across different bumble bee species, flowers, plant bases, and plant species visited. Bumble bee identification relied on morphological indicators. A total of 442 person-minutes of bumble bee observations were recorded. Five species of bumble bees (Bombus fragrans, Bombus haematurus, Bombus lucorum, Bombus melanurus, Bombus terrestris) were identified during the study. The results of this study showed that the visits of bumble bees to flower sources were not different from each other. In general, bumble bees visit an average of 12-15 flowers every 60 seconds. In addition, at the same time they visit between 3-5 plant bases. Finally, they visit an average of 1 to 3 plant species per minute. While many taxa contribute to pollination, insects—especially bees—are crucial for maintaining plant diversity and ecosystem functions. As plant diversity increases, the stopping rate of pollinating insects rises, which reduces their foraging activity. Bumble bees, therefore, stop more frequently in natural areas than in agricultural fields due to higher plant diversity. Our findings emphasize the need to protect natural habitats like Kiasar National Park, where bumble bees thrive without human-induced stressors like pesticides, livestock grazing, and pollution. With bumble bee populations declining globally, further research is essential to understand their behavior in different environments and develop effective conservation strategies to protect them.Keywords: bumble bees, pollination, pollinator, plant diversity, Iran
Procedia PDF Downloads 2877 The Role of Two Macrophyte Species in Mineral Nutrient Cycling in Human-Impacted Water Reservoirs
Authors: Ludmila Polechonska, Agnieszka Klink
Abstract:
The biogeochemical studies of macrophytes shed light on elements bioavailability, transfer through the food webs and their possible effects on the biota, and provide a basis for their practical application in aquatic monitoring and remediation. Measuring the accumulation of elements in plants can provide time-integrated information about the presence of chemicals in aquatic ecosystems. The aim of the study was to determine and compare the contents of micro- and macroelements in two cosmopolitan macrophytes, submerged Ceratophyllum demersum (hornworth) and free-floating Hydrocharis morsus-ranae (European frog-bit), in order to assess their bioaccumulation potential, elements stock accumulated in each plant and their role in nutrients cycling in small water reservoirs. Sampling sites were designated in 25 oxbow lakes in urban areas in Lower Silesia (SW Poland). In each sampling site, fresh whole plants of C. demersum and H. morsus-ranae were collected from squares of 1x1 meters each where the species coexisted. European frog-bit was separated into leaves, stems and roots. For biomass measurement all plants growing on 1 square meter were collected, dried and weighed. At the same time, water samples were collected from each reservoir and their pH and EC were determined. Water samples were filtered and acidified and plant samples were digested in concentrated nitric acid. Next, the content of Ca, Cu, Fe, K, Mg, Mn, Ni and Zn was determined using atomic absorption method (AAS). Statistical analysis showed that C. demersum and organs of H. morsus-ranae differed significantly in respect of metals content (Kruskal-Wallis Anova, p<0.05). Contents of Cu, Mn, Ni and Zn were higher in hornwort, while European frog-bit contained more Ca, Fe, K, Mg. Bioaccumulation Factors (BCF=content in plant/concentration in water) showed similar pattern of metal bioaccumulation – microelements were more intensively accumulated by hornwort and macroelements by frog-bit. Based on BCF values both species may be positively evaluated as good accumulators of Cu, Fe, Mn, Ni and Zn. However, the distribution of metals in H. morsus-ranae was uneven – the majority of studied elements were retained in roots, which may indicate to existence of physiological barriers developed for dealing with toxicity. Some percent of Ca and K was actively transported to stems, but to leaves Mg only. Although the biomass of C. demersum was two times greater than biomass of H. morsus-ranae, the element off-take was greater only for Cu, Mn, Ni and Zn. Nevertheless, it can be stated that despite a relatively small biomass, compared to other macrophytes, both species may have an influence on the removal of trace elements from aquatic ecosystems and, as they serve as food for some animals, also on the incorporation of toxic elements into food chains. There was a significant positive correlation between content of Mn and Fe in water and roots of H. morus-ranae (R=0.51 and R=0.60, respectively) as well as between Cu concentration in water and in C. demersum (R=0.41) (Spearman rank correlation, p<0.05). High bioaccumulation rates and correlation between plants and water elements concentrations point to their possible use as passive biomonitors of aquatic pollution.Keywords: aquatic plants, bioaccumulation, biomonitoring, macroelements, phytoremediation, trace metals
Procedia PDF Downloads 18976 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment
Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji
Abstract:
Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems
Procedia PDF Downloads 9475 Influence of Protein Malnutrition and Different Stressful Conditions on Aluminum-Induced Neurotoxicity in Rats: Focus on the Possible Protection Using Epigallocatechin-3-Gallate
Authors: Azza A. Ali, Asmaa Abdelaty, Mona G. Khalil, Mona M. Kamal, Karema Abu-Elfotuh
Abstract:
Background: Aluminium (Al) is known as a neurotoxin environmental pollutant that can cause certain diseases as Dementia, Alzheimer's disease, and Parkinsonism. It is widely used in antacid drugs as well as in food additives and toothpaste. Stresses have been linked to cognitive impairment; Social isolation (SI) may exacerbate memory deficits while protein malnutrition (PM) increases oxidative damage in cortex, hippocampus and cerebellum. The risk of cognitive decline may be lower by maintaining social connections. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has antioxidant, anti-inflammatory and anti-atherogenic effects as well as health-promoting effects in CNS. Objective: To study the influence of different stressful conditions as social isolation, electric shock (EC) and inadequate Nutritional condition as PM on neurotoxicity induced by Al in rats as well as to investigate the possible protective effect of EGCG in these stressful and PM conditions. Methods: Rats were divided into two major groups; protected group which was daily treated during three weeks of the experiment by EGCG (10 mg/kg, IP) or non-treated. Protected and non-protected groups included five subgroups as following: One normal control received saline and four Al toxicity groups injected daily for three weeks by ALCl3 (70 mg/kg, IP). One of them served as Al toxicity model, two groups subjected to different stresses either by isolation as mild stressful condition (SI-associated Al toxicity model) or by electric shock as high stressful condition (EC- associated Al toxicity model). The last was maintained on 10% casein diet (PM -associated Al toxicity model). Isolated rats were housed individually in cages covered with black plastic. Biochemical changes in the brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups. Histopathological changes in different brain regions were also evaluated. Results: Rats exposed to Al for three weeks showed brain neurotoxicity and neuronal degenerations. Both mild (SI) and high (EC) stressful conditions as well as inadequate nutrition (PM) enhanced Al-induced neurotoxicity and brain neuronal degenerations; the enhancement induced by stresses especially in its higher conditions (ES) was more pronounced than that of inadequate nutritional conditions (PM) as indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β together with the significant decrease in SOD, TAC, BDNF. On the other hand, EGCG showed more pronounced protection against hazards of Al in both stressful conditions (SI and EC) rather than in PM .The protective effects of EGCG were indicated by the significant decrease in Aβ, ACHE, MDA, TNF-α, IL-1β together with the increase in SOD, TAC, BDNF and confirmed by brain histopathological examinations. Conclusion: Neurotoxicity and brain neuronal degenerations induced by Al were more severe with stresses than with PM. EGCG can protect against Al-induced brain neuronal degenerations in all conditions. Consequently, administration of EGCG together with socialization as well as adequate protein nutrition is advised especially on excessive Al-exposure to avoid the severity of its neuronal toxicity.Keywords: environmental pollution, aluminum, social isolation, protein malnutrition, neuronal degeneration, epigallocatechin-3-gallate, rats
Procedia PDF Downloads 39074 Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume
Authors: Ramez F. Saad, Ahmad Kobaissi, Bernard Amiaud, Julien Ruelle, Emile Benizri
Abstract:
Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services.Keywords: plant association, legumes, hyperaccumulating plants, ultramafic soil physicochemical properties
Procedia PDF Downloads 16673 Effects of Temperature and Mechanical Abrasion on Microplastics
Authors: N. Singh, G. K. Darbha
Abstract:
Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering
Procedia PDF Downloads 17072 Assessing Sustainability of Bike Sharing Projects Using Envision™ Rating System
Authors: Tamar Trop
Abstract:
Bike sharing systems can be important elements of smart cities as they have the potential for impact on multiple levels. These systems can add a significant alternative to other modes of mass transit in cities that are continuously looking for measures to become more livable and maintain their attractiveness for citizens, businesses and tourism. Bike-sharing began in Europe in 1965, and a viable format emerged in the mid-2000s thanks to the introduction of information technology. The rate of growth in bike-sharing schemes and fleets has been very rapid since 2008 and has probably outstripped growth in every other form of urban transport. Today, public bike-sharing systems are available on five continents, including over 700 cities, operating more than 800,000 bicycles at approximately 40,000 docking stations. Since modern bike sharing systems have become prevalent only in the last decade, the existing literature analyzing these systems and their sustainability is relatively new. The purpose of the presented study is to assess the sustainability of these newly emerging transportation systems, by using the Envision™ rating system as a methodological framework and the Israeli 'Tel -O-Fun' – bike sharing project as a case study. The assessment was conducted by project team members. Envision™ is a new guidance and rating system used to assess and improve the sustainability of all types and sizes of infrastructure projects. This tool provides a holistic framework for evaluating and rating the community, environmental, and economic benefits of infrastructure projects over the course of their life cycle. This evaluation method has 60 sustainability criteria divided into five categories: Quality of life, leadership, resource allocation, natural world, and climate and risk. 'Tel -O-Fun' project was launched in Tel Aviv-Yafo on 2011 and today provides about 1,800 bikes for rent, at 180 rental stations across the city. The system is based on a complex computer terminal that is located in the docking stations. The highest-rated sustainable features that the project scored include: (a) Improving quality of life by: offering a low cost and efficient form of public transit, improving community mobility and access, enabling the flexibility of travel within a multimodal transportation system, saving commuters time and money, enhancing public health and reducing air and noise pollution; (b) improving resource allocation by: offering inexpensive and flexible last-mile connectivity, reducing space, materials and energy consumption, reducing wear and tear on public roads, and maximizing the utility of existing infrastructure, and (c) reducing of greenhouse gas emissions from transportation. Overall, 'Tel -O-Fun' project was highly scored as an environmentally sustainable and socially equitable infrastructure. The use of this practical framework for evaluation also yielded various interesting insights on the shortcoming of the system and the characteristics of good solutions. This can contribute to the improvement of the project and may assist planners and operators of bike sharing systems to develop a sustainable, efficient and reliable transportation infrastructure within smart cities.Keywords: bike sharing, Envision™, sustainability rating system, sustainable infrastructure
Procedia PDF Downloads 34071 Creating an Impact through Environmental Law and Policy with a Focus on Environmental Science Restoration with Social Impacts
Authors: Lauren Beth Birney
Abstract:
BOP-CCERS is a consortium of scientists, K-16 New York City students, faculty, academicians, teachers, stakeholders, STEM Industry professionals, CBO’s, NPO’s, citizen scientists, and local businesses working in partnership to restore New York Harbor’s oyster populations while at the same time providing clean water in New York Harbor. BOP-CCERS gives students an opportunity to learn hands-on about environmental stewardship as well as environmental law and policy by giving students real responsibility. The purpose of this REU will allow for the BOP CCERS Project to further broaden its parameters into the focus of environmental law and policy where further change can be affected. Creating opportunities for undergraduates to work collaboratively with graduate students in law and policy and envision themselves in STEM careers in the field of law continues to be of importance in this project. More importantly, creating opportunities for underrepresented students to pursue careers in STEM Education has been a goal of the project over the last ten years. By raising the level of student interest in community-based citizen science integrated into environmental law and policy, a more diversified workforce will be fostered through the momentum of this dynamic program. The continuing climate crisis facing our planet calls for 21st-century skill development that includes learning and innovation skills derived from critical thinking, which will help REU students address the issues of climate change facing our planet. The demand for a climate-friendly workforce will continue to be met through this community-based citizen science effort. Environmental laws and policies play a crucial role in protecting humans, animals, resources, and habitats. Without these laws, there would be no regulations concerning pollution or contamination of our waterways. Environmental law serves as a mechanism to protect the land, air, water, and soil of our planet. To protect the environment, it is crucial that future policymakers and legal experts both understand and value the importance of environmental protection. The Environmental Law and Policy REU provides students with the opportunity to learn, through hands-on work, the skills, and knowledge needed to help foster a legal workforce centered around environmental protection while participating alongside the BOP CCERS researchers in order to gain research experience. Broadening this area to law and policy will further increase these opportunities and permit students to ultimately affect and influence larger-scale change on a global level while further diversifying the STEM workforce. Students’ findings will be shared at the annual STEM Institute at Pace University in August 2022. Basic research methodologies include qualitative and quantitative analysis performed by the research team. Early findings indicate that providing students with an opportunity to experience, explore and participate in environmental science programs such as these enhances their interests in pursuing STEM careers in Law and Policy, with the focus being on providing opportunities for underserved, marginalized, and underrepresented populations.Keywords: environmental restoration science, citizen science, environmental law and policy, STEM education
Procedia PDF Downloads 10270 Research on the Effect of Coal Ash Slag Structure Evolution on Its Flow Behavior During Co-gasification of Coal and Indirect Coal Liquefaction Residue
Authors: Linmin Zhang
Abstract:
Entrained-flow gasification technology is considered the most promising gasification technology because of its clean and efficient utilization characteristics. The stable fluidity of slag at high temperatures is the key to affecting the long-period operation of the gasifier. The diversity and differences of coal ash-slag systems make it difficult to meet the requirements for stable slagging in entrained-flow gasifiers. Therefore, coal blending or adding fluxes has been used in industry for a long time to improve the flow behavior of coal ash. As a by-product of the indirect coal liquefaction process, indirect coal liquefaction residue (ICLR) is a kind of industrial solid waste that is usually disposed of by stacking or landfilling. However, this disposal method will not only occupy land resources but also cause serious pollution to soil and water bodies by leachate containing toxic and harmful metals. As a carbon-containing matrix, ICLR is not only a kind of waste but also a kind of energy substance. Utilizing existing industrial gasifiers to blend combustion ICLR can not only transform industrial solid waste into fuel but also save coal resources. Moreover, the ICLR usually contains a unique ash chemical composition different from coal, which will affect the slagging performance of the gasifier. Therefore, exploring the effect of the ash addition in ICLR on the coal ash flow behavior can not only improve the slagging performance and gasification efficiency of entrained-flow gasifier by using the unique ash chemical composition of ICLR but also provide some theoretical support for the large-scale consumption of industrial solid waste. Combining molecular dynamics simulation with Raman spectroscopy experiment, the effect of ICLR addition on slag structure and fluidity was explained, and the relationship between the evolution law of slag short/medium range microstructure and macroscopic flow behavior was discussed. The research found that the high silicon and aluminum content in coal ash led to the formation of complex [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron structures at high temperature, and the [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron were connected by oxygen atoms to form a multi-membered ring structure with high polymerization degree. Due to the action of the multi-membered ring structure, the internal friction in the slag increased, and the viscosity value was higher on the macro-level. As a network-modified ion, Fe2+ could replace Si4+ and Al3+ in the multi-membered ring structure and combine with O2-, which will destroy the bridge oxygen (BO) structure and transform more complex tri cluster oxygen (TO) and bridge oxygen (BO) into simple non-bridge oxygen (NBO) structure. As a result, a large number of multi-membered rings with high polymerization degrees were depolymerized into low-membered rings with low polymerization degrees. The evolution of oxygen types and ring structures in slag reduced the structure complexity and polymerization degree of coal ash slag, resulting in a decrease in the viscosity of coal ash slag.Keywords: ash slag, coal gasification, fluidity, industrial solid waste, slag structure
Procedia PDF Downloads 2969 Sustainability in Space: Implementation of Circular Economy and Material Efficiency Strategies in Space Missions
Authors: Hamda M. Al-Ali
Abstract:
The ultimate aim of space exploration has been centralized around the possibility of life on other planets in the solar system. This aim is driven by the detrimental effects that climate change could potentially have on human survival on Earth in the future. This drives humans to search for feasible solutions to increase environmental and economical sustainability on Earth and to evaluate and explore the ability of human survival on other planets such as Mars. To do that, frequent space missions are required to meet the ambitious human goals. This means that reliable and affordable access to space is required, which could be largely achieved through the use of reusable spacecrafts. Therefore, materials and resources must be used wisely to meet the increasing demand. Space missions are currently extremely expensive to operate. However, reusing materials hence spacecrafts, can potentially reduce overall mission costs as well as the negative impact on both space and Earth environments. This is because reusing materials leads to less waste generated per mission, and therefore fewer landfill sites are required. Reusing materials reduces resource consumption, material production, and the need for processing new and replacement spacecraft and launch vehicle parts. Consequently, this will ease and facilitate human access to outer space as it will reduce the demand for scarce resources, which will boost material efficiency in the space industry. Material efficiency expresses the extent to which resources are consumed in the production cycle and how the waste produced by the industrial process is minimized. The strategies proposed in this paper to boost material efficiency in the space sector are the introduction of key performance indicators that are able to measure material efficiency as well as the introduction of clearly defined policies and legislation that can be easily implemented within the general practices in the space industry. Another strategy to improve material efficiency is by amplifying energy and resource efficiency through reusing materials. The circularity of various spacecraft materials such as Kevlar, steel, and aluminum alloys could be maximized through reusing them directly or after galvanizing them with another layer of material to act as a protective coat. This research paper has an aim to investigate and discuss how to improve material efficiency in space missions considering circular economy concepts so that space and Earth become more economically and environmentally sustainable. The circular economy is a transition from a make-use-waste linear model to a closed-loop socio-economic model, which is regenerative and restorative in nature. The implementation of a circular economy will reduce waste and pollution through maximizing material efficiency, ensuring that businesses can thrive and sustain. Further research into the extent to which reusable launch vehicles reduce space mission costs have been discussed, along with the environmental and economic implications it could have on the space sector and the environment. This has been examined through research and in-depth literature review of published reports, books, scientific articles, and journals. Keywords such as material efficiency, circular economy, reusable launch vehicles and spacecraft materials were used to search for relevant literature.Keywords: circular economy, key performance indicator, material efficiency, reusable launch vehicles, spacecraft materials
Procedia PDF Downloads 12568 Integrated Planning, Designing, Development and Management of Eco-Friendly Human Settlements for Sustainable Development of Environment, Economic, Peace and Society of All Economies
Authors: Indra Bahadur Chand
Abstract:
This paper will focus on the need for development and application of global protocols and policy in planning, designing, development, and management of systems of eco-towns and eco-villages so that sustainable development will be assured from the perspective of environmental, economical, peace, and harmonized social dynamics. This perspective is essential for the development of civilized and eco-friendly human settlements in the town and rural areas of the nation that will be a milestone for developing a happy and sustainable lifestyle of rural and urban communities of the nation. The urban population of most of the town of developing economies has been tremendously increasing, whereas rural people have been tremendously migrating for the past three decades. Consequently, the urban lifestyle in most towns has stressed in terms of environmental pollution, water crisis, congested traffic, energy crisis, food crisis, and unemployment. Eco-towns and villages should be developed where lifestyle of all residents is sustainable and happy. Built up environment of settlement should reduce and minimize the problems of non ecological CO2 emissions, unbalanced utilization of natural resources, environmental degradation, natural calamities, ecological imbalance, energy crisis, water scarcity, waste management, food crisis, unemployment, deterioration of cultural heritage, social, the ratio among the public and private land ownership, ratio of land covered with vegetation and area of settlement, the ratio of people in the vehicles and foot, the ratio of people employed outside of town and village, ratio of resources recycling of waste materials, water consumption level, the ratio of people and vehicles, ratio of the length of the road network and area of town/villages, a ratio of renewable energy consumption with total energy, a ratio of religious/recreational area out of the total built-up area, the ratio of annual suicide case out of total people, a ratio of annual injured and death out of total people from a traffic accident, a ratio of production of agro foods within town out of total food consumption will be used to assist in designing and monitoring of each eco-towns and villages. An eco-town and villages should be planned and developed to offer sustainable infrastructure and utilities that maintain CO2 level in individual homes and settlements, home energy use, transport, food and consumer goods, water supply, waste management, conservation of historical heritages, healthy neighborhood, conservation of natural landscape, conserving bio-diversity and developing green infrastructures. Eco-towns and villages should be developed on the basis of master planning and architecture that affect and define the settlement and its form. Master planning and engineering should focus in delivering the sustainability criteria of eco towns and eco village. This will involve working with specific landscape and natural resources of locality.Keywords: eco-town, ecological habitation, master plan, sustainable development
Procedia PDF Downloads 17967 Transforming Challenges of Urban and Peri-Urban Agriculture into Opportunities for Urban Food Security in India
Authors: G. Kiran Kumar, K. Padmaja
Abstract:
The rise of urban and peri-urban agriculture (UPA) is an important urban phenomenon that needs to be well understood before we pronounce a verdict whether it is beneficial or not. The challenge of supply of safe and nutritious food is faced by urban inhabitants. The definition of urban and peri-urban varies from city to city depending on the local policies framed with a view to bring regulated urban habitations as part of governance. Expansion of cities and the blurring of boundaries between urban and rural areas make it difficult to define peri-urban agriculture. The problem is further exacerbated by the fact that definition adopted in one region may not fit in the other. On the other hand the proportion of urban population is on the rise vis-à-vis rural. The rise of UPA does not promise that the food requirements of cities can be entirely met from this practice, since availability of enormous amounts of spaces on rooftops and vacant plots is impossible for raising crops. However, UPA reduces impact of price volatility, particularly for vegetables, which relatively have a longer shelf life. UPA improves access to fresh, nutritious and safe food for the urban poor. UPA provides employment to food handlers and traders in the supply chain. UPA can pose environmental and health risks from inappropriate agricultural practices; increased competition for land, water and energy; alter the ecological landscape and make it vulnerable to increased pollution. The present work is based on case studies in peri-urban agriculture in Hyderabad, India and relies on secondary data. This paper tries to analyze the need for more intensive production technologies without affecting the environment. An optimal solution in terms of urban-rural linkages has to be devised. There is a need to develop a spatial vision and integrate UPA in urban planning in a harmonious manner. Zoning of peri-urban areas for agriculture, milk and poultry production is an essential step to preserve the traditional nurturing character of these areas. Urban local bodies in conjunction with Departments of Agriculture and Horticulture can provide uplift to existing UPA models, without which the UPA can develop into a haphazard phenomenon and add to the increasing list of urban challenges. Land to be diverted for peri-urban agriculture may render the concept of urban and peri-urban forestry ineffective. This paper suggests that UPA may be practiced for high value vegetables which can be cultivated under protected conditions and are better resilient to climate change. UPA can provide models for climate resilient agriculture in urban areas which can be replicated in rural areas. Production of organic farm produce is another option for promote UPA owing to the proximity to informed consumers and access to markets within close range. Waste lands in peri-urban areas can be allotted to unemployed rural youth with the support of Urban Local Bodies (ULBs) and used for UPA. This can serve the purposes of putting wastelands to food production, enhancing employment opportunities and enhancing access to fresh produce for urban consumers.Keywords: environment, food security, urban and peri-urban agriculture, zoning
Procedia PDF Downloads 31866 European Electromagnetic Compatibility Directive Applied to Astronomical Observatories
Authors: Oibar Martinez, Clara Oliver
Abstract:
The Cherenkov Telescope Array Project (CTA) aims to build two different observatories of Cherenkov Telescopes, located in Cerro del Paranal, Chile, and La Palma, Spain. These facilities are used in this paper as a case study to investigate how to apply standard Directives on Electromagnetic Compatibility to astronomical observatories. Cherenkov Telescopes are able to provide valuable information from both Galactic and Extragalactic sources by measuring Cherenkov radiation, which is produced by particles which travel faster than light in the atmosphere. The construction requirements demand compliance with the European Electromagnetic Compatibility Directive. The largest telescopes of these observatories, called Large Scale Telescopes (LSTs), are high precision instruments with advanced photomultipliers able to detect the faint sub-nanosecond blue light pulses produced by Cherenkov Radiation. They have a 23-meter parabolic reflective surface. This surface focuses the radiation on a camera composed of an array of high-speed photosensors which are highly sensitive to the radio spectrum pollution. The camera has a field of view of about 4.5 degrees and has been designed for maximum compactness and lowest weight, cost and power consumption. Each pixel incorporates a photo-sensor able to discriminate single photons and the corresponding readout electronics. The first LST is already commissioned and intends to be operated as a service to Scientific Community. Because of this, it must comply with a series of reliability and functional requirements and must have a Conformité Européen (CE) marking. This demands compliance with Directive 2014/30/EU on electromagnetic compatibility. The main difficulty of accomplishing this goal resides on the fact that Conformité Européen marking setups and procedures were implemented for industrial products, whereas no clear protocols have been defined for scientific installations. In this paper, we aim to give an answer to the question on how the directive should be applied to our installation to guarantee the fulfillment of all the requirements and the proper functioning of the telescope itself. Experts in Optics and Electromagnetism were both needed to make these kinds of decisions and match tests which were designed to be made over the equipment of limited dimensions on large scientific plants. An analysis of the elements and configurations most likely to be affected by external interferences and those that are most likely to cause the maximum disturbances was also performed. Obtaining the Conformité Européen mark requires knowing what the harmonized standards are and how the elaboration of the specific requirement is defined. For this type of large installations, one needs to adapt and develop the tests to be carried out. In addition, throughout this process, certification entities and notified bodies play a key role in preparing and agreeing the required technical documentation. We have focused our attention mostly on the technical aspects of each point. We believe that this contribution will be of interest for other scientists involved in applying industrial quality assurance standards to large scientific plant.Keywords: CE marking, electromagnetic compatibility, european directive, scientific installations
Procedia PDF Downloads 11065 Early Biological Effects in Schoolchildren Living in an Area of Salento (Italy) with High Incidence of Chronic Respiratory Diseases: The IMP.AIR. Study
Authors: Alessandra Panico, Francesco Bagordo, Tiziana Grassi, Adele Idolo, Marcello Guido, Francesca Serio, Mattia De Giorgi, Antonella De Donno
Abstract:
In the Province of Lecce (Southeastern Italy) an area with unusual high incidence of chronic respiratory diseases, including lung cancer, was recently identified. The causes of this health emergency are still not entirely clear. In order to determine the risk profile of children living in five municipalities included in this area an epidemiological-molecular study was performed in the years 2014-2016: the IMP.AIR. (Impact of air quality on health of residents in the Municipalities of Sternatia, Galatina, Cutrofiano, Sogliano Cavour and Soleto) study. 122 children aged 6-8 years attending primary school in the study area were enrolled to evaluate the frequency of micronuclei (MNs) in their buccal exfoliated cells. The samples were collected in May 2015 by rubbing the oral mucosa with a soft bristle disposable toothbrush. At the same time, a validated questionnaire was administered to parents to obtain information about health, lifestyle and eating habits of the children. In addition, information on airborne pollutants, routinely detected by the Regional Environmental Agency (ARPA Puglia) in the study area, was acquired. A multivariate analysis was performed to detect any significant association between frequency of MNs (dependent variable) and behavioral factors (independent variables). The presence of MNs was highlighted in the buccal exfoliated cells of about 42% of recruited children with a mean frequency of 0.49 MN/1000 cells, greater than in other areas of Salento. The survey on individual characteristics and lifestyles showed that one in three children was overweight and that most of them had unhealthy eating habits with frequent consumption of foods considered ‘risky’. Moreover many parents (40% of fathers and 12% of mothers) were smokers and about 20% of them admitted to smoking in the house where the children lived. Information regarding atmospheric contaminants was poor. Of the few substances routinely detected by the only one monitoring station located in the study area (PM2.5, SO2, NO2, CO, O3) only ozone showed high concentrations exceeding the limits set by the legislation for 67 times in the year 2015. The study showed that the level of early biological effect markers in children was not negligible. This critical condition could be related to some individual factors and lifestyles such as overweight, unhealthy eating habits and exposure to passive smoking. At present, no relationship with airborne pollutants can be established due to the lack of information on many substances. Therefore, it would be advisable to modify incorrect behaviors and to intensify the monitoring of airborne pollutants (e.g. including detection of PM10, heavy metals, aromatic polycyclic hydrocarbons, benzene) given the epidemiology of chronic respiratory diseases registered in this area.Keywords: chronic respiratory diseases, environmental pollution, lifestyle, micronuclei
Procedia PDF Downloads 20164 Portable Environmental Parameter Monitor Based on STM32
Authors: Liang Zhao, Chongquan Zhong
Abstract:
Introduction: According to statistics, people spend 80% to 90% of time indoor, so indoor air quality, either at home or in the office, greatly impacts the quality of life, health and work efficiency. Therefore, indoor air quality is very important to human activities. With the acceleration of urbanization, people are spending more time in indoor activity. The time in indoor environment, the living space, and the frequency interior decoration are all increasingly increased. However, housing decoration materials contain formaldehyde and other harmful substances, causing environmental and air quality problems, which have brought serious damage to countless families and attracted growing attention. According to World Health Organization statistics, the indoor environments in more than 30% of buildings in China are polluted by poisonous and harmful gases. Indoor pollution has caused various health problems, and these widespread public health problems can lead to respiratory diseases. Long-term inhalation of low-concentration formaldehyde would cause persistent headache, insomnia, weakness, palpitation, weight loss and vomiting, which are serious impacts on human health and safety. On the other hand, as for offices, some surveys show that good indoor air quality helps to enthuse the staff and improve the work efficiency by 2%-16%. Therefore, people need to further understand the living and working environments. There is a need for easy-to-use indoor environment monitoring instruments, with which users only have to power up and monitor the environmental parameters. The corresponding real-time data can be displayed on the screen for analysis. Environment monitoring should have the sensitive signal alarm function and send alarm when harmful gases such as formaldehyde, CO, SO2, are excessive to human body. System design: According to the monitoring requirements of various gases, temperature and humidity, we designed a portable, light, real-time and accurate monitor for various environmental parameters, including temperature, humidity, formaldehyde, methane, and CO. This monitor will generate an alarm signal when a target is beyond the standard. It can conveniently measure a variety of harmful gases and provide the alarm function. It also has the advantages of small volume, convenience to carry and use. It has a real-time display function, outputting the parameters on the LCD screen, and a real-time alarm function. Conclusions: This study is focused on the research and development of a portable parameter monitoring instrument for indoor environment. On the platform of an STM32 development board, the monitored data are collected through an external sensor. The STM32 platform is for data acquisition and processing procedures, and successfully monitors the real-time temperature, humidity, formaldehyde, CO, methane and other environmental parameters. Real-time data are displayed on the LCD screen. The system is stable and can be used in different indoor places such as family, hospital, and office. Meanwhile, the system adopts the idea of modular design and is superior in transplanting. The scheme is slightly modified and can be used similarly as the function of a monitoring system. This monitor has very high research and application values.Keywords: indoor air quality, gas concentration detection, embedded system, sensor
Procedia PDF Downloads 25563 Understanding the Origins of Pesticides Metabolites in Natural Waters through the Land Use, Hydroclimatic Conditions and Water Quality
Authors: Alexis Grandcoin, Stephanie Piel, Estelle Baures
Abstract:
Brittany (France) is an agricultural region, where emerging pollutants are highly at risk to reach water bodies. Among them, pesticides metabolites are frequently detected in surface waters. The Vilaine watershed (11 000 km²) is of great interest, as a large drinking water treatment plant (100 000 m³/day) is located at the extreme downstream of it. This study aims to provide an evaluation of the pesticides metabolites pollution in the Vilaine watershed, and an understanding of their availability, in order to protect the water resource. Hydroclimatic conditions, land use, and water quality parameters controlling metabolites availability are emphasized. Later this knowledge will be used to understand the favoring conditions resulting in metabolites export towards surface water. 19 sampling points have been strategically chosen along the 220 km of the Vilaine river and its 3 main influents. Furthermore, the intakes of two drinking water plants have been sampled, one is located at the extreme downstream of the Vilaine river and the other is the riparian groundwater under the Vilaine river. 5 sampling campaigns with various hydroclimatic conditions have been carried out. Water quality parameters and hydroclimatic conditions have been measured. 15 environmentally relevant pesticides and metabolites have been analyzed. Also, these compounds are recalcitrant to classic water treatment that is why they have been selected. An evaluation of the watershed contamination has been done in 2016-2017. First observations showed that aminomethylphosphonic acid (AMPA) and metolachlor ethanesulfonic acid (MESA) are the most detected compounds in surface waters samples with 100 % and 98 % frequency of detection respectively. They are the main pollutants of the watershed regardless of the hydroclimatic conditions. AMPA concentration in the river strongly increases downstream of Rennes agglomeration (220k inhabitants) and reaches a maximum of 2.3 µg/l in low waters conditions. Groundwater contains mainly MESA, Diuron and metazachlor ESA at concentrations close to limits of quantification (LOQ) (0.02 µg/L). Metolachlor, metazachlor and alachlor due to their fast degradation in soils were found in small amounts (LOQ – 0.2 µg/L). Conversely glyphosate was regularly found during warm and sunny periods up to 0.6 µg/L. Soil uses (agricultural cultures types, urban areas, forests, wastewater treatment plants implementation), water quality parameters, and hydroclimatic conditions have been correlated to pesticides and metabolites concentration in waters. Statistical treatments showed that chloroacetamides metabolites and AMPA behave differently regardless of the hydroclimatic conditions. Chloroacetamides are correlated to each other, to agricultural areas and to typical agricultural tracers as nitrates. They are present in waters the whole year, especially during rainy periods, suggesting important stocks in soils. Also Chloroacetamides are negatively correlated with AMPA, the different forms of phosphorus, and organic matter. AMPA is ubiquitous but strongly correlated with urban areas despite the recent French regulation, restricting glyphosate to agricultural and private uses. This work helps to predict and understand metabolites present in the water resource used to craft drinking water. As the studied metabolites are difficult to remove, this project will be completed by a water treatment part.Keywords: agricultural watershed, AMPA, metolachlor-ESA, water resource
Procedia PDF Downloads 15862 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation
Authors: A. K. Tekile, I. L. Kim, J. Y. Lee
Abstract:
Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.Keywords: stagnant, ultrasonic irradiation, water flow, water quality
Procedia PDF Downloads 193