Search results for: image processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5836

Search results for: image processing

3826 The Image of Saddam Hussein and Collective Memory: The Semiotics of Ba'ath Regime's Mural in Iraq (1980-2003)

Authors: Maryam Pirdehghan

Abstract:

During the Ba'ath Party's rule in Iraq, propaganda was utilized to justify and to promote Saddam Hussein's image in the collective memory as the greatest Arab leader. Consequently, urban walls were routinely covered with images of Saddam. Relying on these images, the regime aimed to provide a basis for evoking meanings in the public opinion, which would supposedly strengthen Saddam’s power and reconstruct facts to legitimize his political ideology. Nonetheless, Saddam was not always portrayed with common and explicit elements but in certain periods of his rule, the paintings depicted him in an unusual context, where various historical and contemporary elements were combined in a narrative background. Therefore, an understanding of the implied socio-political references of these elements is required to fully elucidate the impact of these images on forming the memory and collective unconscious of the Iraqi people. To obtain such understanding, one needs to address the following questions: a) How Saddam Hussein is portrayed in mural during his rule? b) What of elements and mythical-historical narratives are found in the paintings? c) Which Saddam's political views were subject to the collective memory through mural? Employing visual semiotics, this study reveals that during Saddam Hussein's regime, the paintings were initially simple portraits but gradually transformed into narrative images, characterized by a complex network of historical, mythical and religious elements. These elements demonstrate the transformation of a secular-nationalist politician into a Muslim ruler who tried to instill three major policies in domestic and international relations i.e. the arabization of Iraq, as well as the propagation of pan-arabism ideology (first period), the implementation of anti-Israel policy (second period) and the implementation of anti-American-British policy (last period).

Keywords: Ba'ath Party, Saddam Hussein, mural, Iraq, propaganda, collective memory

Procedia PDF Downloads 326
3825 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models

Authors: Ainouna Bouziane

Abstract:

The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.

Keywords: electron tomography, supported catalysts, nanometrology, error assessment

Procedia PDF Downloads 88
3824 Duration of Isolated Vowels in Infants with Cochlear Implants

Authors: Paris Binos

Abstract:

The present work investigates developmental aspects of the duration of isolated vowels in infants with normal hearing compared to those who received cochlear implants (CIs) before two years of age. Infants with normal hearing produced shorter vowel duration since this find related with more mature production abilities. First isolated vowels are transparent during the protophonic stage as evidence of an increased motor and linguistic control. Vowel duration is a crucial factor for the transition of prelexical speech to normal adult speech. Despite current knowledge of data for infants with normal hearing more research is needed to unravel productions skills in early implanted children. Thus, isolated vowel productions by two congenitally hearing-impaired Greek infants (implantation ages 1:4-1:11; post-implant ages 0:6-1:3) were recorded and sampled for six months after implantation with a Nucleus-24. The results compared with the productions of three normal hearing infants (chronological ages 0:8-1:1). Vegetative data and vocalizations masked by external noise or sounds were excluded. Participants had no other disabilities and had unknown deafness etiology. Prior to implantation the infants had an average unaided hearing loss of 95-110 dB HL while the post-implantation PTA decreased to 10-38 dB HL. The current research offers a methodology for the processing of the prelinguistic productions based on a combination of acoustical and auditory analyses. Based on the current methodological framework, duration measured through spectrograms based on wideband analysis, from the voicing onset to the end of the vowel. The end marked by two co-occurring events: 1) The onset of aperiodicity with a rapid change in amplitude in the waveform and 2) a loss in formant’s energy. Cut-off levels of significance were set at 0.05 for all tests. Bonferroni post hoc tests indicated that difference was significant between the mean duration of vowels of infants wearing CIs and their normal hearing peers. Thus, the mean vowel duration of CIs measured longer compared to the normal hearing peers (0.000). The current longitudinal findings contribute to the existing data for the performance of children wearing CIs at a very young age and enrich also the data of the Greek language. The above described weakness for CI’s performance is a challenge for future work in speech processing and CI’s processing strategies.

Keywords: cochlear implant, duration, spectrogram, vowel

Procedia PDF Downloads 261
3823 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops

Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann

Abstract:

The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.

Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule

Procedia PDF Downloads 150
3822 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves

Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar

Abstract:

Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.

Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly

Procedia PDF Downloads 252
3821 Effect of Air Temperatures (°C) and Slice Thickness (mm) on Drying Characteristics and Some Quality Properties of Omani Banana

Authors: Atheer Al-Maqbali, Mohammed Al-Rizeiqi, Pankaj Pathare

Abstract:

There is an ever-increased demand for the consumption of banana products in Oman and elsewhere in the region due to the nutritional value and the decent taste of the product. There are approximately 3,751 acres of land designated for banana cultivation in the Sultanate of Oman, which produces approximately 18,447 tons of banana product. The fresh banana product is extremely perishable, resulting in a significant post-harvest economic loss. Since the product has high sensory acceptability, the drying method is a common method for processing fresh banana products. This study aims to use the drying technology in the production of dried bananas to preserve the largest amount of natural color and delicious taste for the consumer. The study also aimed to assess the shelf stability of both water activity (aw) and color (L*, a*, b*) for fresh and finished dried bananas by using a Conventional Air Drying System. Water activity aw, color characteristic L a b, and product’s hardness were analyzed for 3mm, 5mm, and7 mm thickness at different temperaturesoC. All data were analyzed statistically using STATA 13.0, and α ≤ 0.05 was considered for the significance level. The study is useful to banana farmers to improve cultivation, food processors to optimize producer’s output and policy makers in the optimization of banana processing and post-harvest management of the products.

Keywords: banana, drying, oman, quality, thickness, hardness, color

Procedia PDF Downloads 92
3820 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 153
3819 Emotions Triggered by Children’s Literature Images

Authors: Ana Maria Reis d'Azevedo Breda, Catarina Maria Neto da Cruz

Abstract:

The role of images/illustrations in communicating meanings and triggering emotions assumes an increasingly relevant role in contemporary texts, regardless of the age group for which they are intended or the nature of the texts that host them. It is no coincidence that children's books are full of illustrations and that the image/text ratio decreases as the age group grows. The vast majority of children's books can be considered multimodal texts containing text and images/illustrations interacting with each other to provide the young reader with a broader and more creative understanding of the book's narrative. This interaction is very diverse, ranging from images/illustrations that are not essential for understanding the storytelling to those that contribute significantly to the meaning of the story. Usually, these books are also read by adults, namely by parents, educators, and teachers who act as mediators between the book and the children, explaining aspects that are or seem to be too complex for the child's context. It should be noted that there are books labeled as children's books that are clearly intended for both children and adults. In this work, following a qualitative and interpretative methodology based on written productions, participant observation, and field notes, we will describe the perceptions of future teachers of the 1st cycle of basic education, attending a master's degree at a Portuguese university, about the role of the image in literary and non-literary texts, namely in mathematical texts, and how these can constitute precious resources for emotional regulation and for the design of creative didactic situations. The analysis of the collected data allowed us to obtain evidence regarding the evolution of the participants' perception regarding the crucial role of images in children's literature, not only as an emotional regulator for young readers but also as a creative source for the design of meaningful didactical situations, crossing other scientific areas, other than the mother tongue, namely mathematics.

Keywords: children’s literature, emotions, multimodal texts, soft skills

Procedia PDF Downloads 94
3818 Women Education in Islam, Christianity, and Judaism

Authors: Nuzhat Fatima

Abstract:

This is very misleading conception that Islam is the religion of terrorists or terrorism. It is also another misconception that women are not given due important in Islamic. And women are forced to use veil. But if we closely look at the other two religions they also have the same commandments about the veil. Then comes education, women are given the equal right of education in Islam. But there are certain people creating the bad image of Islam and not giving permission to their females to get education. This paper will present the brief description of education and status of women in all three religions.

Keywords: Islam, women, education, christianity, Judaism

Procedia PDF Downloads 576
3817 Visual Template Detection and Compositional Automatic Regular Expression Generation for Business Invoice Extraction

Authors: Anthony Proschka, Deepak Mishra, Merlyn Ramanan, Zurab Baratashvili

Abstract:

Small and medium-sized businesses receive over 160 billion invoices every year. Since these documents exhibit many subtle differences in layout and text, extracting structured fields such as sender name, amount, and VAT rate from them automatically is an open research question. In this paper, existing work in template-based document extraction is extended, and a system is devised that is able to reliably extract all required fields for up to 70% of all documents in the data set, more than any other previously reported method. The approaches are described for 1) detecting through visual features which template a given document belongs to, 2) automatically generating extraction rules for a given new template by composing regular expressions from multiple components, and 3) computing confidence scores that indicate the accuracy of the automatic extractions. The system can generate templates with as little as one training sample and only requires the ground truth field values instead of detailed annotations such as bounding boxes that are hard to obtain. The system is deployed and used inside a commercial accounting software.

Keywords: data mining, information retrieval, business, feature extraction, layout, business data processing, document handling, end-user trained information extraction, document archiving, scanned business documents, automated document processing, F1-measure, commercial accounting software

Procedia PDF Downloads 130
3816 Research on Localized Operations of Multinational Companies in China

Authors: Zheng Ruoyuan

Abstract:

With the rapid development of economic globalization and increasingly fierce international competition, multinational companies have carried out investment strategy shifts and innovations, and actively promoted localization strategies. Localization strategies have become the main trend in the development of multinational companies. Large-scale entry of multinational companies China has a history of more than 20 years. With the sustained and steady growth of China's economy and the optimization of the investment environment, multinational companies' investment in China has expanded rapidly, which has also had an important impact on the Chinese economy: promoting employment, foreign exchange reserves, and improving the system. etc., has brought a lot of high-tech and advanced management experience; but it has also brought challenges and survival pressure to China's local enterprises. In recent years, multinational companies have gradually regarded China as an important part of their global strategies and began to invest in China. Actively promote localization strategies, including production, marketing, scientific research and development, etc. Many multinational companies have achieved good results in localized operations in China. Not only have their benefits continued to improve, but they have also established a good corporate image and brand in China. image, which has greatly improved their competitiveness in the international market. However, there are also some multinational companies that have difficulties in localized operations in China. This article will closely follow the background of economic globalization and comprehensively use the theory of multinational companies and strategic management theory and business management theory, using data and facts as the entry point, combined with typical cases of representative significance for analysis, to conduct a systematic study of the localized operations of multinational companies in China. At the same time, for each specific link of the operation of multinational companies, we provide multinational enterprises with some inspirations and references.

Keywords: localization, business management, multinational, marketing

Procedia PDF Downloads 49
3815 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 217
3814 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 187
3813 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star

Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu

Abstract:

The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).

Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership

Procedia PDF Downloads 239
3812 Integrating Critical Stylistics and Visual Grammar: A Multimodal Stylistic Approach to the Analysis of Non-Literary Texts

Authors: Shatha Khuzaee

Abstract:

The study develops multimodal stylistic approach to analyse a number of BBC online news articles reporting some key events from the so called ‘Arab Uprisings’. Critical stylistics (CS) and visual grammar (VG) provide insightful arguments to the ways ideology is projected through different verbal and visual modes, yet they are mode specific because they examine how each mode projects its meaning separately and do not attempt to clarify what happens intersemiotically when the two modes co-occur. Therefore, it is the task undertaken in this research to propose multimodal stylistic approach that addresses the issue of ideology construction when the two modes co-occur. Informed by functional grammar and social semiotics, the analysis attempts to integrate three linguistic models developed in critical stylistics, namely, transitivity choices, prioritizing and hypothesizing along with their visual equivalents adopted from visual grammar to investigate the way ideology is constructed, in multimodal text, when text/image participate and interrelate in the process of meaning making on the textual level of analysis. The analysis provides comprehensive theoretical and analytical elaborations on the different points of integration between CS linguistic models and VG equivalents which operate on the textual level of analysis to better account for ideology construction in news as non-literary multimodal texts. It is argued that the analysis well thought out a plan that would remark the first step towards the integration between the well-established linguistic models of critical stylistics and that of visual analysis to analyse multimodal texts on the textual level. Both approaches are compatible to produce multimodal stylistic approach because they intend to analyse text and image depending on whatever textual evidence is available. This supports the analysis maintain the rigor and replicability needed for a stylistic analysis like the one undertaken in this study.

Keywords: multimodality, stylistics, visual grammar, social semiotics, functional grammar

Procedia PDF Downloads 221
3811 Experimental Quantification of the Intra-Tow Resin Storage Evolution during RTM Injection

Authors: Mathieu Imbert, Sebastien Comas-Cardona, Emmanuelle Abisset-Chavanne, David Prono

Abstract:

Short cycle time Resin Transfer Molding (RTM) applications appear to be of great interest for the mass production of automotive or aeronautical lightweight structural parts. During the RTM process, the two components of a resin are mixed on-line and injected into the cavity of a mold where a fibrous preform has been placed. Injection and polymerization occur simultaneously in the preform inducing evolutions of temperature, degree of cure and viscosity that furthermore affect flow and curing. In order to adjust the processing conditions to reduce the cycle time, it is, therefore, essential to understand and quantify the physical mechanisms occurring in the part during injection. In a previous study, a dual-scale simulation tool has been developed to help determining the optimum injection parameters. This tool allows tracking finely the repartition of the resin and the evolution of its properties during reactive injections with on-line mixing. Tows and channels of the fibrous material are considered separately to deal with the consequences of the dual-scale morphology of the continuous fiber textiles. The simulation tool reproduces the unsaturated area at the flow front, generated by the tow/channel difference of permeability. Resin “storage” in the tows after saturation is also taken into account as it may significantly affect the repartition and evolution of the temperature, degree of cure and viscosity in the part during reactive injections. The aim of the current study is, thanks to experiments, to understand and quantify the “storage” evolution in the tows to adjust and validate the numerical tool. The presented study is based on four experimental repeats conducted on three different types of textiles: a unidirectional Non Crimp Fabric (NCF), a triaxial NCF and a satin weave. Model fluids, dyes and image analysis, are used to study quantitatively, the resin flow in the saturated area of the samples. Also, textiles characteristics affecting the resin “storage” evolution in the tows are analyzed. Finally, fully coupled on-line mixing reactive injections are conducted to validate the numerical model.

Keywords: experimental, on-line mixing, high-speed RTM process, dual-scale flow

Procedia PDF Downloads 165
3810 Quantitative, Preservative Methodology for Review of Interview Transcripts Using Natural Language Processing

Authors: Rowan P. Martnishn

Abstract:

During the execution of a National Endowment of the Arts grant, approximately 55 interviews were collected from professionals across various fields. These interviews were used to create deliverables – historical connections for creations that began as art and evolved entirely into computing technology. With dozens of hours’ worth of transcripts to be analyzed by qualitative coders, a quantitative methodology was created to sift through the documents. The initial step was to both clean and format all the data. First, a basic spelling and grammar check was applied, as well as a Python script for normalized formatting which used an open-source grammatical formatter to make the data as coherent as possible. 10 documents were randomly selected to manually review, where words often incorrectly translated during the transcription were recorded and replaced throughout all other documents. Then, to remove all banter and side comments, the transcripts were spliced into paragraphs (separated by change in speaker) and all paragraphs with less than 300 characters were removed. Secondly, a keyword extractor, a form of natural language processing where significant words in a document are selected, was run on each paragraph for all interviews. Every proper noun was put into a data structure corresponding to that respective interview. From there, a Bidirectional and Auto-Regressive Transformer (B.A.R.T.) summary model was then applied to each paragraph that included any of the proper nouns selected from the interview. At this stage the information to review had been sent from about 60 hours’ worth of data to 20. The data was further processed through light, manual observation – any summaries which proved to fit the criteria of the proposed deliverable were selected, as well their locations within the document. This narrowed that data down to about 5 hours’ worth of processing. The qualitative researchers were then able to find 8 more connections in addition to our previous 4, exceeding our minimum quota of 3 to satisfy the grant. Major findings of the study and subsequent curation of this methodology raised a conceptual finding crucial to working with qualitative data of this magnitude. In the use of artificial intelligence there is a general trade off in a model between breadth of knowledge and specificity. If the model has too much knowledge, the user risks leaving out important data (too general). If the tool is too specific, it has not seen enough data to be useful. Thus, this methodology proposes a solution to this tradeoff. The data is never altered outside of grammatical and spelling checks. Instead, the important information is marked, creating an indicator of where the significant data is without compromising the purity of it. Secondly, the data is chunked into smaller paragraphs, giving specificity, and then cross-referenced with the keywords (allowing generalization over the whole document). This way, no data is harmed, and qualitative experts can go over the raw data instead of using highly manipulated results. Given the success in deliverable creation as well as the circumvention of this tradeoff, this methodology should stand as a model for synthesizing qualitative data while maintaining its original form.

Keywords: B.A.R.T.model, keyword extractor, natural language processing, qualitative coding

Procedia PDF Downloads 29
3809 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis

Procedia PDF Downloads 241
3808 Music Reading Expertise Facilitates Implicit Statistical Learning of Sentence Structures in a Novel Language: Evidence from Eye Movement Behavior

Authors: Sara T. K. Li, Belinda H. J. Chung, Jeffery C. N. Yip, Janet H. Hsiao

Abstract:

Music notation and text reading both involve statistical learning of music or linguistic structures. However, it remains unclear how music reading expertise influences text reading behavior. The present study examined this issue through an eye-tracking study. Chinese-English bilingual musicians and non-musicians read English sentences, Chinese sentences, musical phrases, and sentences in Tibetan, a language novel to the participants, with their eye movement recorded. Each set of stimuli consisted of two conditions in terms of structural regularity: syntactically correct and syntactically incorrect musical phrases/sentences. They then completed a sentence comprehension (for syntactically correct sentences) or a musical segment/word recognition task afterwards to test their comprehension/recognition abilities. The results showed that in reading musical phrases, as compared with non-musicians, musicians had a higher accuracy in the recognition task, and had shorter reading time, fewer fixations, and shorter fixation duration when reading syntactically correct (i.e., in diatonic key) than incorrect (i.e., in non-diatonic key/atonal) musical phrases. This result reflects their expertise in music reading. Interestingly, in reading Tibetan sentences, which was novel to both participant groups, while non-musicians did not show any behavior differences between reading syntactically correct or incorrect Tibetan sentences, musicians showed a shorter reading time and had marginally fewer fixations when reading syntactically correct sentences than syntactically incorrect ones. However, none of the musicians reported discovering any structural regularities in the Tibetan stimuli after the experiment when being asked explicitly, suggesting that they may have implicitly acquired the structural regularities in Tibetan sentences. This group difference was not observed when they read English or Chinese sentences. This result suggests that music reading expertise facilities reading texts in a novel language (i.e., Tibetan), but not in languages that the readers are already familiar with (i.e., English and Chinese). This phenomenon may be due to the similarities between reading music notations and reading texts in a novel language, as in both cases the stimuli follow particular statistical structures but do not involve semantic or lexical processing. Thus, musicians may transfer their statistical learning skills stemmed from music notation reading experience to implicitly discover structures of sentences in a novel language. This speculation is consistent with a recent finding showing that music reading expertise modulates the processing of English nonwords (i.e., words that do not follow morphological or orthographic rules) but not pseudo- or real words. These results suggest that the modulation of music reading expertise on language processing depends on the similarities in the cognitive processes involved. It also has important implications for the benefits of music education on language and cognitive development.

Keywords: eye movement behavior, eye-tracking, music reading expertise, sentence reading, structural regularity, visual processing

Procedia PDF Downloads 380
3807 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization

Procedia PDF Downloads 175
3806 Faceless Women: The Blurred Image of Women in Film on and Off-Screen

Authors: Ana Sofia Torres Pereira

Abstract:

Till this day, women have been underrepresented and stereotyped both in TV and Cinema Screens all around the World. While women have been gaining a different status and finding their own voice in the work place and in society, what we see on-screen is still something different, something gender biased, something that does not show the multifaceted identities a woman might have. But why is this so? Why are we stuck on this shallow vision of women on-screen? According to several cinema industry studies, most film screenwriters in Hollywood are men. Women actually represent a very low percentage of screenwriters. So why is this relevant? Could the underrepresentation of women screenwriters in Hollywood be affecting the way women are written, and as a result, are depicted in film? Films are about stories, about people, and if these stories are continuously told through a man’s gaze, is that helping in the creation of a gender imbalance towards women? On the other hand, one of the reasons given for the low percentage of women screenwriters is: women are said to be better at writing specific genres, like dramas and comedies, and not as good writing thrillers and action films, so, as women seem to be limited in the genres they can write, they are undervalued and underrepresented as screenwriters. It seems the gender bias and stereotype isn’t saved exclusively for women on-screen, but also off-screen and behind the screen. So film appears to be a men’s world, on and off-screen, and since men seem to write the majority of scripts, it might be no wonder that women have been written in a specific way and depicted in a specific way on-screen. Also, since films are a mass communication medium, maybe this over-sexualization and stereotyping on-screen is indoctrinating our society into believing this bias is alive and well, and thus targeting women off-screen as well (ergo, screenwriters). What about at the very begging of film? In the Silent Movies and Early Talkies era, women dominated the screenwriting industry. They wrote every genre, and the majority of scripts were written by women, not men. So what about then? How were women depicted in films then? Did women screenwriters, in an era that was still very harsh on women, use their stories and their power to break stereotypes and show women in a different light, or did they carry on with the stereotype, did they continue it and standardize it? This papers aims to understand how important it is to have more working women screenwriters in order to break stereotypes regarding the image of women on and off-screen. How much can a screenwriter (male or female) influence our gaze on women (on and off-screen)?

Keywords: cinema, gender bias, stereotype, women on-screen, women screenwriters

Procedia PDF Downloads 348
3805 Measuring Fluctuating Asymmetry in Human Faces Using High-Density 3D Surface Scans

Authors: O. Ekrami, P. Claes, S. Van Dongen

Abstract:

Fluctuating asymmetry (FA) has been studied for many years as an indicator of developmental stability or ‘genetic quality’ based on the assumption that perfect symmetry is ideally the expected outcome for a bilateral organism. Further studies have also investigated the possible link between FA and attractiveness or levels of masculinity or femininity. These hypotheses have been mostly examined using 2D images, and the structure of interest is usually presented using a limited number of landmarks. Such methods have the downside of simplifying and reducing the dimensionality of the structure, which will in return increase the error of the analysis. In an attempt to reach more conclusive and accurate results, in this study we have used high-resolution 3D scans of human faces and have developed an algorithm to measure and localize FA, taking a spatially-dense approach. A symmetric spatially dense anthropometric mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to examine the precision of our mapping step. The protocol’s accuracy in measurement and localizing FA is assessed using simulated faces with known amounts of asymmetry added to them. The results of validation of our approach show that the algorithm is perfectly capable of locating and measuring FA in 3D simulated faces. With the use of such algorithm, the additional captured information on asymmetry can be used to improve the studies of FA as an indicator of fitness or attractiveness. This algorithm can especially be of great benefit in studies of high number of subjects due to its automated and time-efficient nature. Additionally, taking a spatially dense approach provides us with information about the locality of FA, which is impossible to obtain using conventional methods. It also enables us to analyze the asymmetry of a morphological structures in a multivariate manner; This can be achieved by using methods such as Principal Components Analysis (PCA) or Factor Analysis, which can be a step towards understanding the underlying processes of asymmetry. This method can also be used in combination with genome wide association studies to help unravel the genetic bases of FA. To conclude, we introduced an algorithm to study and analyze asymmetry in human faces, with the possibility of extending the application to other morphological structures, in an automated, accurate and multi-variate framework.

Keywords: developmental stability, fluctuating asymmetry, morphometrics, 3D image processing

Procedia PDF Downloads 140
3804 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform

Procedia PDF Downloads 150
3803 Modernization of Garri-Frying Technologies with Respect to Women Anthromophic Quality in Nigeria

Authors: Adegbite Bashiru Adeniyi, Olaniyi Akeem Olawale, Ayobamidele Sinatu Juliet

Abstract:

The study was carried out in the 6 South Western states of Nigeria to analyze socio-economic characteristic of garri processors and their anthropometric qualities with respect to modern technologies used in garri processing. About 20 respondents were randomly selected from each of the 6 workstations purposively considered for the study due to their daily processing activities already attracted high patronage of customers. These include Oguntolu village (Ogun State), Igoba-Akure (Ondo State), Imo-Ilesa (Osun State), Odo Oba-Ileri (Oyo State), Irasa village (Ekiti State) and Epe in Lagos state. Interview schedule was conducted for 120 respondents to elicit information. Data were analyzed using descriptive statistical tools. It was observed from the findings that respondents were in their most productive age range (36-45 years) except Ogun state where majority (45%) were relatively older than 45 years. A fewer processors were much younger than 26 years old. It furthers revealed that not less than 55% have body weight greater than 50.0 kilogram, also not less than 70% were taller than 1.5 meter. So also, the hand length and hand thickness of the majority were long and bulky which are considered suitable for operating some modern and improved technologies in garri-frying process. This information could be used by various technological developers to enhance production of modern equipment and tools for a greater efficiency.

Keywords: agro-business, anthromorphic, modernization, proficiency

Procedia PDF Downloads 512
3802 Instant Location Detection of Objects Moving at High Speed in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data off the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as 'signaling parameters' (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of C-OTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as a rule. This report contains describing the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.

Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems

Procedia PDF Downloads 470
3801 Drivers of Farmers' Contract Compliance Behaviour: Evidence from a Case Study of Dangote Tomato Processing Plant in Northern Nigeria.

Authors: Umar Shehu Umar

Abstract:

Contract farming is a viable strategy agribusinesses rely on to strengthen vertical coordination. However, low contract compliance remains a significant setback to agribusinesses' contract performance. The present study aims to understand what drives smallholder farmers’ contract compliance behaviour. Qualitative information was collected through Focus Group Discussions to enrich the design of the survey questionnaire administered on a sample of 300 randomly selected farmers contracted by the Dangote Tomato Processing Plant (DTPP) in four regions of northern Nigeria. Novel transaction level data of tomato sales covering one season were collected in addition to socio-economic information of the sampled farmers. Binary logistic model results revealed that open fresh market tomato prices and payment delays negatively affect farmers' compliance behaviour while quantity harvested, education level and input provision correlated positively with compliance. The study suggests that contract compliance will increase if contracting firms devise a reliable and timely payment plan (e.g., digital payment), continue input and service provisions (e.g., improved seeds, extension services) and incentives (e.g., loyalty rewards, bonuses) in the contract.

Keywords: contract farming, compliance, farmers and processors., smallholder

Procedia PDF Downloads 56
3800 Tracking and Classifying Client Interactions with Personal Coaches

Authors: Kartik Thakore, Anna-Roza Tamas, Adam Cole

Abstract:

The world health organization (WHO) reports that by 2030 more than 23.7 million deaths annually will be caused by Cardiovascular Diseases (CVDs); with a 2008 economic impact of $3.76 T. Metabolic syndrome is a disorder of multiple metabolic risk factors strongly indicated in the development of cardiovascular diseases. Guided lifestyle intervention driven by live coaching has been shown to have a positive impact on metabolic risk factors. Individuals’ path to improved (decreased) metabolic risk factors are driven by personal motivation and personalized messages delivered by coaches and augmented by technology. Using interactions captured between 400 individuals and 3 coaches over a program period of 500 days, a preliminary model was designed. A novel real time event tracking system was created to track and classify clients based on their genetic profile, baseline questionnaires and usage of a mobile application with live coaching sessions. Classification of clients and coaches was done using a support vector machines application build on Apache Spark, Stanford Natural Language Processing Library (SNLPL) and decision-modeling.

Keywords: guided lifestyle intervention, metabolic risk factors, personal coaching, support vector machines application, Apache Spark, natural language processing

Procedia PDF Downloads 433
3799 Evaluation of Different Cowpea Genotypes Using Grain Yield and Canning Quality Traits

Authors: Magdeline Pakeng Mohlala, R. L. Molatudi, M. A. Mofokeng

Abstract:

Cowpea (Vigna unguiculata (L.) Walp) is an important annual leguminous crop in semi-arid and tropics. Most of cowpea grain production in South Africa is mainly used for domestic consumption, as seed planting and little or none gets to be used in industrial processing; thus, there is a need to expand the utilization of cowpea through industrial processing. Agronomic traits contribute to the understanding of the association between yield and its component traits to facilitate effective selection for yield improvement. The aim of this study was to evaluate cowpea genotypes using grain yield and canning quality traits. The field experiment was conducted in two locations in Limpopo Province, namely Syferkuil Agricultural Experimental farm and Ga-Molepo village during 2017/2018 growing season and canning took place at ARC-Grain Crops Potchefstroom. The experiment comprised of 100 cowpea genotypes laid out in a Randomized Complete Block Designs (RCBD). The grain yield, yield components, and canning quality traits were analysed using Genstat software. About 62 genotypes were suitable for canning, 38 were not due to their seed coat texture, and water uptake was less than 80% resulting in too soft (mushy) seeds. Grain yield for RV115, 99k-494-6, ITOOK1263, RV111, RV353 and 53 other genotypes recorded high positive association with number of branches, pods per plant, and number of seeds per pod, unshelled weight and shelled weight for Syferkuil than at Ga-Molepo are therefore recommended for canning quality.

Keywords: agronomic traits, canning quality, genotypes, yield

Procedia PDF Downloads 152
3798 Multimodal Analysis of News Magazines' Front-Page Portrayals of the US, Germany, China, and Russia

Authors: Alena Radina

Abstract:

On the global stage, national image is shaped by historical memory of wars and alliances, government ideology and particularly media stereotypes which represent countries in positive or negative ways. News magazine covers are a key site for national representation. The object of analysis in this paper is the portrayals of the US, Germany, China, and Russia in the front pages and cover stories of “Time”, “Der Spiegel”, “Beijing Review”, and “Expert”. Political comedy helps people learn about current affairs even if politics is not their area of interest, and thus satire indirectly sets the public agenda. Coupled with satirical messages, cover images and the linguistic messages embedded in the covers become persuasive visual and verbal factors, known to drive about 80% of magazine sales. Preliminary analysis identified satirical elements in magazine covers, which are known to influence and frame understandings and attract younger audiences. Multimodal and transnational comparative framing analyses lay the groundwork to investigate why journalists, editors and designers deploy certain frames rather than others. This research investigates to what degree frames used in covers correlate with frames within the cover stories and what these framings can tell us about media professionals’ representations of their own and other nations. The study sample includes 32 covers consisting of two covers representing each of the four chosen countries from the four magazines. The sampling framework considers two time periods to compare countries’ representation with two different presidents, and between men and women when present. The countries selected for analysis represent each category of the international news flows model: the core nations are the US and Germany; China is a semi-peripheral country; and Russia is peripheral. Examining textual and visual design elements on the covers and images in the cover stories reveals not only what editors believe visually attracts the reader’s attention to the magazine but also how the magazines frame and construct national images and national leaders. The cover is the most powerful editorial and design page in a magazine because images incorporate less intrusive framing tools. Thus, covers require less cognitive effort of audiences who may therefore be more likely to accept the visual frame without question. Analysis of design and linguistic elements in magazine covers helps to understand how media outlets shape their audience’s perceptions and how magazines frame global issues. While previous multimodal research of covers has focused mostly on lifestyle magazines or newspapers, this paper examines the power of current affairs magazines’ covers to shape audience perception of national image.

Keywords: framing analysis, magazine covers, multimodality, national image, satire

Procedia PDF Downloads 102
3797 The Mapping of Pastoral Area as a Basis of Ecological for Beef Cattle in Pinrang Regency, South Sulawesi, Indonesia

Authors: Jasmal A. Syamsu, Muhammad Yusuf, Hikmah M. Ali, Mawardi A. Asja, Zulkharnaim

Abstract:

This study was conducted and aimed in identifying and mapping the pasture as an ecological base of beef cattle. A survey was carried out during a period of April to June 2016, in Suppa, Mattirobulu, the district of Pinrang, South Sulawesi province. The mapping process of grazing area was conducted in several stages; inputting and tracking of data points into Google Earth Pro (version 7.1.4.1529), affirmation and confirmation of tracking line visualized by satellite with a variety of records at the point, a certain point and tracking input data into ArcMap Application (ArcGIS version 10.1), data processing DEM/SRTM (S04E119) with respect to the location of the grazing areas, creation of a contour map (a distance of 5 m) and mapping tilt (slope) of land and land cover map-making. Analysis of land cover, particularly the state of the vegetation was done through the identification procedure NDVI (Normalized Differences Vegetation Index). This procedure was performed by making use of the Landsat-8. The results showed that the topography of the grazing areas of hills and some sloping surfaces and flat with elevation vary from 74 to 145 above sea level (asl), while the requirements for growing superior grass and legume is an altitude of up to 143-159 asl. Slope varied between 0 - > 40% and was dominated by a slope of 0-15%, according to the slope/topography pasture maximum of 15%. The range of NDVI values for pasture image analysis results was between 0.1 and 0.27. Characteristics of vegetation cover of pasture land in the category of vegetation density were low, 70% of the land was the land for cattle grazing, while the remaining approximately 30% was a grove and forest included plant water where the place for shelter of the cattle during the heat and drinking water supply. There are seven types of graminae and 5 types of legume that was dominant in the region. Proportionally, graminae class dominated up 75.6% and legume crops up to 22.1% and the remaining 2.3% was another plant trees that grow in the region. The dominant weed species in the region were Cromolaenaodorata and Lantana camara, besides that there were 6 types of floor plant that did not include as forage fodder.

Keywords: pastoral, ecology, mapping, beef cattle

Procedia PDF Downloads 353