Search results for: effects of relative humidity on heat pumps
13300 Influence of Percentage and Melting Temperature of Phase Change Material on the Thermal Behavior of a Hollow-Brick
Authors: Zakaria Aketouane, Mustapha Malha, Abdellah Bah, Omar Ansari, Mohamed Asbik
Abstract:
The present paper deals with the thermal performance of a hollow-brick filled with Phase Change Material (PCM). The main objective is to study the effect of percentage and melting temperature of the PCM on the thermal inertia and internal surface temperature of the hollow-brick. A numerical model based on the heat transfer equation and the apparent heat capacity method has been validated using experimental study from the literature. The results show that increasing the percentage of the PCM has a significant effect on time lag and decrement factor that define the thermal inertia; the internal temperature is reduced by 1.36°C to 5.39°C for a percentage from 11% to 71% in comparison to a brick without PCM. In addition, an appropriate melting temperature of 37°C has been deduced for the horizontal wall orientation in Rabat in comparison to 27°C and 47°C.Keywords: appropriate melting temperature, decrement factor, phase change material, thermal inertia, time lag
Procedia PDF Downloads 23613299 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs
Authors: Abdul Jamil Nazari, Shigeo Honma
Abstract:
This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.Keywords: fractional flow, relative permeability, oil recovery, water fingering
Procedia PDF Downloads 30313298 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing
Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren
Abstract:
Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).Keywords: computer modelling, droplet formation, material distortion, materials forming, welding
Procedia PDF Downloads 25613297 Alkali Activation of Fly Ash, Metakaolin and Slag Blends: Fresh and Hardened Properties
Authors: Weiliang Gong, Lissa Gomes, Lucile Raymond, Hui Xu, Werner Lutze, Ian L. Pegg
Abstract:
Alkali-activated materials, particularly geopolymers, have attracted much interest in academia. Commercial applications are on the rise, as well. Geopolymers are produced typically by a reaction of one or two aluminosilicates with an alkaline solution at room temperature. Fly ash is an important aluminosilicate source. However, using low-Ca fly ash, the byproduct of burning hard or black coal reacts and sets slowly at room temperature. The development of mechanical durability, e.g., compressive strength, is slow as well. The use of fly ashes with relatively high contents ( > 6%) of unburned carbon, i.e., high loss on ignition (LOI), is particularly disadvantageous as well. This paper will show to what extent these impediments can be mitigated by mixing the fly ash with one or two more aluminosilicate sources. The fly ash used here is generated at the Orlando power plant (Florida, USA). It is low in Ca ( < 1.5% CaO) and has a high LOI of > 6%. The additional aluminosilicate sources are metakaolin and blast furnace slag. Binary fly ash-metakaolin and ternary fly ash-metakaolin-slag geopolymers were prepared. Properties of geopolymer pastes before and after setting have been measured. Fresh mixtures of aluminosilicates with an alkaline solution were studied by Vicat needle penetration, rheology, and isothermal calorimetry up to initial setting and beyond. The hardened geopolymers were investigated by SEM/EDS and the compressive strength was measured. Initial setting (fluid to solid transition) was indicated by a rapid increase in yield stress and plastic viscosity. The rheological times of setting were always smaller than the Vicat times of setting. Both times of setting decreased with increasing replacement of fly ash with blast furnace slag in a ternary fly ash-metakaolin-slag geopolymer system. As expected, setting with only Orlando fly ash was the slowest. Replacing 20% fly ash with metakaolin shortened the set time. Replacing increasing fractions of fly ash in the binary system by blast furnace slag (up to 30%) shortened the time of setting even further. The 28-day compressive strength increased drastically from < 20 MPa to 90 MPa. The most interesting finding relates to the calorimetric measurements. The use of two or three aluminosilicates generated significantly more heat (20 to 65%) than the calculated from the weighted sum of the individual aluminosilicates. This synergetic heat contributes or may be responsible for most of the increase of compressive strength of our binary and ternary geopolymers. The synergetic heat effect may be also related to increased incorporation of calcium in sodium aluminosilicate hydrate to form a hybrid (N,C)A-S-H) gel. The time of setting will be correlated with heat release and maximum heat flow.Keywords: alkali-activated materials, binary and ternary geopolymers, blends of fly ash, metakaolin and blast furnace slag, rheology, synergetic heats
Procedia PDF Downloads 11613296 Association between Carbon Dioxide (CO2) Emission and Under-Five Mortality: Panel Data Evidence from 100 Countries
Authors: Mahadev Bhise, Nabanita Majumder
Abstract:
Recent studies have found association between air pollutants and mortality, particularly how concentration of air pollutant explains under-five mortality across the countries. Thus, the present study evaluates the relationship between Carbon dioxide (CO2) emission and under-five mortality, while controlling other well-being determinant of Under-five mortality in 100 countries using panel unbalanced cross sectional data. We have used PCSE and GMM model for the period 1990-2011 to meet our objectives. Our findings suggest that, the positive relationship between lagged periods of carbon dioxide and under-five mortality; the percentage of rural population with access of improved water is negatively associated with under-five mortality, while in case of urban population with access of improved water, is positively related to under-five mortality. Access of sanitation facility, food production index, GDP per capita, and concentration of urban population have significant negative impact on under-five mortality. Further, total fertility rate is significantly associated (positive) with under-five mortality which indicates relative change in fertility is related to relative change in under-five mortality.Keywords: arbon dioxide (CO2), under-five mortality (0q5), gross domestic product (GDP), urban population, food production, panel corrected standard errors (PCSE), generalized method of moments (GMM)
Procedia PDF Downloads 31013295 Assessing Musculoskeletal Disorder Prevalence and Heat-Related Symptoms: A Cross-sectional Comparison in Indian Farmers
Authors: Makkhan Lal Meena, R. C. Bairwa, G. S. Dangayach, Rahul Jain
Abstract:
The current study looked at the frequency of chronic illness conditions, accidents, health complaints, and ergonomic issues among 100 conventional and 100 greenhouse farmers. Data related to the health symptoms and ergonomic problems were collected through questionnaires by conducting direct interviews of farmers. According to the findings, symptoms of heat exposure (skin rashes, headache, dizziness, and lack of appetite) were substantially higher among conventional farmers than greenhouse farmers. The greenhouse farmers reported much more pain, numbness, or weakness in wrists/hands, fingers, upper back, hips, and ankles/feet than conventional farmers. The findings of the study suggest that suitable ergonomic knowledge and awareness campaign programs concentrating on safety at work, particularly low back pain, should be implemented in workplaces to allow for earlier detection of symptoms among the greenhouse farmers.Keywords: accident, conventional farmer, ergonomics, health symptoms, greenhouse farmers, pesticide
Procedia PDF Downloads 27313294 Effects of Inlet Filtration Pressure Loss on Single and Two-Spool Gas Turbine
Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Archibong Eso
Abstract:
Gas turbine operators have been faced with the dramatic financial setback resulting from compressor fouling. In a highly deregulated power industry where there is stiffness in the market competition, has made it imperative to improvise means of reducing maintenance cost in other to yield maximum profit. Compressor fouling results from the deposition of contaminants in the presence of oil and moisture on the compressor blade or annulus surfaces, which leads to a loss in flow capacity and compressor efficiency. These combined effects reduce power output, increase heat rate and cause creep life reduction. This paper also contains a model of two gas turbine engines via Cranfield University software known as TURBOMATCH, which is simulation software for detecting engine fouling rate. The model engines are of different configurations and capacities, and are operating in two different modes of constant output power and turbine inlet temperature for a two and three stage filter system. The idea is to investigate the more economically viable filtration systems by gas turbine users based on performance only. It has been demonstrated in the results that the two spool engine is a little more beneficial compared to the single spool. This is as a result of a higher pressure ratio of the two spools as well as the deceleration of the high-pressure compressor and high-pressure turbine speed in a constant TET. Meanwhile, the inlet filtration system was properly designed and balanced with a well-timed and economical compressor washing regime/scheme to control compressor fouling. The different technologies of inlet air filtration and compressor washing are considered and an attempt at optimization with respect to the cost of a combination of both control measures are made.Keywords: inlet filtration, pressure loss, single spool, two spool
Procedia PDF Downloads 32313293 Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application
Authors: Li Maksym, Prabhakar M. N., Jung-Il Song
Abstract:
In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport.Keywords: cotton farbic, flame retardancy, surface coating, intumescent mechanism
Procedia PDF Downloads 9313292 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar
Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati
Abstract:
Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse
Procedia PDF Downloads 39313291 An Energy Integration Study While Utilizing Heat of Flue Gas: Sponge Iron Process
Authors: Venkata Ramanaiah, Shabina Khanam
Abstract:
Enormous potential for saving energy is available in coal-based sponge iron plants as these are associated with the high percentage of energy wastage per unit sponge iron production. An energy integration option is proposed, in the present paper, to a coal based sponge iron plant of 100 tonnes per day production capacity, being operated in India using SL/RN (Stelco-Lurgi/Republic Steel-National Lead) process. It consists of the rotary kiln, rotary cooler, dust settling chamber, after burning chamber, evaporating cooler, electrostatic precipitator (ESP), wet scrapper and chimney as important equipment. Principles of process integration are used in the proposed option. It accounts for preheating kiln inlet streams like kiln feed and slinger coal up to 170ᴼC using waste gas exiting ESP. Further, kiln outlet stream is cooled from 1020ᴼC to 110ᴼC using kiln air. The working areas in the plant where energy is being lost and can be conserved are identified. Detailed material and energy balances are carried out around the sponge iron plant, and a modified model is developed, to find coal requirement of proposed option, based on hot utility, heat of reactions, kiln feed and air preheating, radiation losses, dolomite decomposition, the heat required to vaporize the coal volatiles, etc. As coal is used as utility and process stream, an iterative approach is used in solution methodology to compute coal consumption. Further, water consumption, operating cost, capital investment, waste gas generation, profit, and payback period of the modification are computed. Along with these, operational aspects of the proposed design are also discussed. To recover and integrate waste heat available in the plant, three gas-solid heat exchangers and four insulated ducts with one FD fan for each are installed additionally. Thus, the proposed option requires total capital investment of $0.84 million. Preheating of kiln feed, slinger coal and kiln air streams reduce coal consumption by 24.63% which in turn reduces waste gas generation by 25.2% in comparison to the existing process. Moreover, 96% reduction in water is also observed, which is the added advantage of the modification. Consequently, total profit is found as $2.06 million/year with payback period of 4.97 months only. The energy efficient factor (EEF), which is the % of the maximum energy that can be saved through design, is found to be 56.7%. Results of the proposed option are also compared with literature and found in good agreement.Keywords: coal consumption, energy conservation, process integration, sponge iron plant
Procedia PDF Downloads 14513290 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials
Authors: Mohamed Akbi, Aissa Bouchou
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission
Procedia PDF Downloads 38613289 Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company
Authors: Juan S. Vera, Miguel A. Gomez, Omar Gelvez
Abstract:
Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser.Keywords: mechanical vapor compression, distillation, wastewater, design, construction, evaluation
Procedia PDF Downloads 15913288 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites Through T6 and T8 Heat Treatments
Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.
Abstract:
In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of their benefits such as moderate strength; better deforming characteristics, excellent chemical decay resistance, and affordable cost. 7075 Al-alloys have been used in the transportation industry for the fabrication of several types of automobile parts, such as wheel covers, panels and structures. It is expected that substitution of such aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminium alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties achievable by selecting and tailoring the suitable heat treatment process. On subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments, known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. Decreasing peak hardness value with increasing aging temperature is the well-known behavior of age hardenable alloys. The peak hardness value is further increasing when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. Considering these aspects, it is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and upto 5 times increase in wear resistance are also observed in the present study.Keywords: reinforcement, precipitation, thermomechanical, dislocation, strain hardening
Procedia PDF Downloads 31213287 Simulation of the Performance of the Reforming of Methane in a Primary Reformer
Authors: A. Alkattib, M. Boumaza
Abstract:
Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non-converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.Keywords: reforming, methane, performance, hydrogen, parameters
Procedia PDF Downloads 22713286 Psychological Effects of Economic Recession on Educated Youth: Evidences from Pakistan
Authors: Mubashra Khalid, Saadia Amir
Abstract:
This study initiated to explore the empirical relationship between psychological effects of economic recession on the educated youth in Pakistan. The diminishing economic resources during recession can create certain psychological consequences on the physical and cognitive aspects of the individuals. It may generate symptoms like aggression, depression, anxiety, frustration, stress and physical health related problems among the young generation. The sample of the study was consisted of 300 students belonging to six public sector universities of the Punjab province of Pakistan. Two hypotheses were advanced in this study regarding the relationship between recession and its effects on educated youth. The findings of the research represent that a significant relationship exists between decrease in employment opportunities and growing rate of aggression among educated youth and a significant association was found between economic instability and its influence on the learning abilities of the students during recession.Keywords: psychological effects, recession, educated youth
Procedia PDF Downloads 51113285 An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger
Authors: Syukri Himran, Rustan Taraka, Anto Duma
Abstract:
The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study was carried out in a horizontal shell-and-tube type system during the melting process. Pertamina paraffin-wax was used as a phase change material (PCM), where as the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as : the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed as superior to in-line layout for thermal storage. The experimental study was used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement.Keywords: latent, sensible, paraffin-wax, thermal energy storage, conduction, natural convection
Procedia PDF Downloads 57013284 Evaluation of Fatigue Crack Growth Rate in Weldments
Authors: Pavel Zlabek, Vaclav Mentl
Abstract:
The fatigue crack growth rate evaluation is a basic experimental characteristic when assessment o f the remaining lifetime is needed. Within the repair welding technology project, the crack growth rate at cyclic loading was measured in base and weld metals and in the situation when cracks were initiated in base metal and grew into the weld metal through heat-affected zone and back to the base metal. Two welding technologies were applied and specimens in as-welded state and after heat treatment were tested. Fatigue crack growth rate measurement was performed on CrMoV pressure vessel steel and the tests were performed at room temperature. The crack growth rate was measured on CCT test specimens (see figure) for both the base and weld metals and also in the case of crack subsequent transition through all the weld zones. A 500 kN MTS controlled electro-hydraulic testing machine and Model 632.13C-20 MTS extensometer were used to perform the tests.Keywords: cracks, fatigue, steels, weldments
Procedia PDF Downloads 52213283 A Benchtop Experiment to Study Changes in Tracer Distribution in the Subarachnoid Space
Authors: Smruti Mahapatra, Dipankar Biswas, Richard Um, Michael Meggyesy, Riccardo Serra, Noah Gorelick, Steven Marra, Amir Manbachi, Mark G. Luciano
Abstract:
Intracranial pressure (ICP) is profoundly regulated by the effects of cardiac pulsation and the volume of the incoming blood. Furthermore, these effects on ICP are incremented by the presence of a rigid skull that does not allow for changes in total volume during the cardiac cycle. These factors play a pivotal role in cerebrospinal fluid (CSF) dynamics and distribution, with consequences that are not well understood to this date and that may have a deep effect on the Central Nervous System (CNS) functioning. We designed this study with two specific aims: (a) To study how pulsatility influences local CSF flow, and (b) To study how modulating intracranial pressure affects drug distribution throughout the SAS globally. In order to achieve these aims, we built an elaborate in-vitro model of the SAS closely mimicking the dimensions and flow rates of physiological systems. To modulate intracranial pressure, we used an intracranially implanted, cardiac-gated, volume-oscillating balloon (CADENCE device). Commercially available dye was used to visualize changes in CSF flow. We first implemented two control cases, seeing how the tracer behaves in the presence of pulsations from the brain phantom and the balloon individually. After establishing the controls, we tested 2 cases, having the brain and the balloon pulsate together in sync and out of sync. We then analyzed the distribution area using image processing software. The in-sync case produced a significant increase, 5x times, in the tracer distribution area relative to the out-of-sync case. Assuming that the tracer fluid would mimic blood flow movement, a drug introduced in the SAS with such a system in place would enhance drug distribution and increase the bioavailability of therapeutic drugs to a wider spectrum of brain tissue.Keywords: blood-brain barrier, cardiac-gated, cerebrospinal fluid, drug delivery, neurosurgery
Procedia PDF Downloads 18413282 Effects of Viscous Dissipation on Free Convection Boundary Layer Flow towards a Horizontal Circular Cylinder
Authors: Muhammad Khairul Anuar Mohamed, Mohd Zuki Salleh, Anuar Ishak, Nor Aida Zuraimi Md Noar
Abstract:
In this study, the numerical investigation of viscous dissipation on convective boundary layer flow towards a horizontal circular cylinder with constant wall temperature is considered. The transformed partial differential equations are solved numerically by using an implicit finite-difference scheme known as the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number and the skin friction coefficient as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number and Eckert number are analyzed and discussed. The results in this paper is original and important for the researchers working in the area of boundary layer flow and this can be used as reference and also as complement comparison purpose in future.Keywords: free convection, horizontal circular cylinder, viscous dissipation, convective boundary layer flow
Procedia PDF Downloads 43913281 Robotic Solution for Nuclear Facility Safety and Monitoring System
Authors: Altab Hossain, Shakerul Islam, Golamur R. Khan, Abu Zafar M. Salahuddin
Abstract:
An effective identification of breakdowns is of premier importance for the safe and reliable operation of Nuclear Power Plants (NPP) and its associated facilities. A great number of monitoring and diagnosis methodologies are applied and used worldwide in areas such as industry, automobiles, hospitals, and power plant to detect and reduce human disasters. The potential consequences of several hazardous activities may harm the society using nuclear and its associated facilities. Hence, one of the most popular and effective methods to ensure safety and monitor the entire nuclear facility and imply risk-free operation without human interference during the hazardous situation is using a robot. Therefore, in this study, an advanced autonomous robot has been designed and developed that can monitor several parameters in the NPP to ensure the safety and do some risky job in case of nuclear disaster. The robot consisted of autonomous track following unit, data processing and transmitting unit can follow a straight line and take turn as the bank greater than 90 degrees. The developed robot can analyze various parameters such as temperature, altitude, radiation, obstacle, humidity, detecting fire, measuring distance, ultrasonic scan and taking the heat of any particular object. It has an ability to broadcast live stream and can record the document to its own server memory. There is a separate control unit constructed with a baseboard which processes the recorded data and a transmitter which transmits the processed data. To make the robot user-friendly, the code is developed such a way that a user can control any of robotic arm as per types of work. To control at any place and without the track, there is an advanced code has been developed to take manual overwrite. Through this process, administrator who has logged in permission to Dynamic Host Client Protocol (DHCP) can make the handover of the control of the robot. In this process, this robot is provided maximum nuclear security from being hacked. Not only NPP, this robot can be used to maximize the real-time monitoring system of any nuclear facility as well as nuclear material transportation and decomposition system.Keywords: nuclear power plant, radiation, dynamic host client protocol, nuclear security
Procedia PDF Downloads 20913280 In Silico Analysis of Small Heat Shock Protein Gene Family by RNA-Seq during Tomato Fruit Ripening
Authors: Debora P. Arce, Flavia J. Krsticevic, Marco R. Bertolaccini, Joaquín Ezpeleta, Estela M. Valle, Sergio D. Ponce, Elizabeth Tapia
Abstract:
Small Heat Shock Proteins (sHSPs) are low molecular weight chaperones that play an important role during stress response and development in all living organisms. Fruit maturation and oxidative stress can induce sHSP synthesis both in Arabidopsis and tomato plants. RNA-Seq technology is becoming widely used in various transcriptomics studies; however, analyzing and interpreting the RNA-Seq data face serious challenges. In the present work, we de novo assembled the Solanum lycopersicum transcriptome for three different maturation stages (mature green, breaker and red ripe). Differential gene expression analysis was carried out during tomato fruit development. We identified 12 sHSPs differentially expressed that might be involved in breaker and red ripe fruit maturation. Interestingly, these sHSPs have different subcellular localization and suggest a complex regulation of the fruit maturation network process.Keywords: sHSPs, maturation, tomato, RNA-Seq, assembly
Procedia PDF Downloads 48213279 Relative Study of the Effect of the Temperature Gradient on Free Vibrations of Clamped Visco-Elastic Rectangular Plates with Linearly and Exponentially Thickness Variations Respectively in Two Directions
Authors: Harvinder Kaur
Abstract:
Rayleigh–Ritz method is a broadly used classical method for the calculation of the natural vibration frequency of a structure in the second or higher order. Here it is used to construct a mathematical model of relative study of the thermal effect on free transverse vibrations of clamped (c-c-c-c type) visco-elastic rectangular plate with linearly and exponentially thickness variations respectively in two directions. Researchers in the field of Engineering always make an effort for better designs of mechanical structures. In-depth study of the vibration behavior of tapered plates with diverse thickness variation under high temperature would ultimately help to finalize the accurate design of a structure. The perfect tapered structure saves weight and as well as expenses. In the present paper, the comparison has been done for deflection and time period corresponding to the first two modes of vibrations of clamped plate for various values of aspect ratio, thermal constants, and taper constants of both the cases.Keywords: Rayleigh-Ritz Method, tapered plates, transverse vibration, thermal constant, visco-elasticity
Procedia PDF Downloads 22913278 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation
Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen
Abstract:
Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration
Procedia PDF Downloads 13913277 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea
Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young
Abstract:
As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption
Procedia PDF Downloads 10313276 Critical Literature Survey of the Macroeconomic Effects of Fiscal Policy in Light of Recent Empirical Evidence
Authors: Walaa W. Diab
Abstract:
The present paper offers a fundamental critique of the macroeconomic effects of fiscal policy after it surveys the theoretical and empirical literature on the macroeconomic effects of fiscal policy. It emphasizes the importance of the fiscal policy after reviewing the revolution of almost all economic schools and bringing them in one summarized figure; the paper links the developmental role of the fiscal policy with the objectives and measures of the economic transformation. Thus, the importance of this study can be seen from several perspectives: First, it reviews the theoretical harvest of fiscal policy and provides a comparison between the main revolutionary Economic thoughts; the classical school, Keynesian school, and monetarist school. Then it turns to conclude the fiscal policy from the new consensus mainstream economic schools. Finally, the study presents grouped and classified empirical pieces of evidence as it divides those empirical studies into two groups; the first for developed economies and the second for developing ones. So the study is important also for the policymakers as well as scholars as it gives its recommendations upon the last analysis in the form of ‘policy implications’. The paper also presents a deeper look into the evaluation approaches of the macroeconomic effects of fiscal policy at the empirical level. Thus it is useful for both researchers and decision makers.Keywords: economic transformation, fiscal policy, macroeconomic effects, public spending
Procedia PDF Downloads 30513275 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm
Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot
Abstract:
The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump
Procedia PDF Downloads 15513274 Effect of Wettability Alteration in Low Salt Water Injection Modeling
Authors: H. Vahdani
Abstract:
By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest.Keywords: low salt water injection, wettability alteration, modelling, relative permeability
Procedia PDF Downloads 49913273 The Effects of Inferior Tilt Fixation on a Glenoid Components in Reverse Shoulder-Arthroplasty
Authors: Soo Min Kim, Soo-Won Chae, Soung-Yon Kim, Haea Lee, Ju Yong Kang, Juneyong Lee, Seung-Ho Han
Abstract:
Reverse total shoulder arthroplasty (RTSA) has become an effective treatment option for cuff tear arthropathy and massive, irreparable rotator cuff tears and indications for its use are expanding. Numerous methods for optimal fixation of the glenoid component have been suggested, such as inferior overhang, inferior tilt, to maximize initial fixation and prevent glenoid component loosening. The inferior tilt fixation of a glenoid component has been suggested, which is expected to decrease scapular notching and to improve the stability of a glenoid component fixation in reverse total shoulder arthroplasty. Inferior tilt fixation of the glenoid component has been suggested, which can improve stability and, because it provides the most uniform compressive forces and imparts the least amount of tensile forces and micromotion, reduce the likelihood of mechanical failure. Another study reported that glenoid component inferior tilt improved impingement-free range of motion as well as minimized the scapular notching. Several authors have shown that inferior tilt of a glenoid component reduces scapular notching. However, controversy still exists regarding its importance in the literature. In this study the influence of inferior tilt fixation on the primary stability of a glenoid component has been investigated. Finite element models were constructed from cadaveric scapulae and glenoid components were implanted with neutral and 10° inferior tilts. Most previous biomechanical studies regarding the effect of glenoid component inferior tilt used a solid rigid polyurethane foam or sawbones block, not cadaveric scapulae, to evaluate the stability of the RTSA. Relative micromotions at the bone-glenoid component interface, and the distribution of bone stresses under the glenoid component and around the screws were analyzed and compared between neutral and 10° inferior tilt groups. Contact area between bone and screws and cut surface area of the cancellous bone exposed after reaming of the glenoid have also been investigated because of the fact that cancellous and cortical bone thickness vary depending on the resection level of the inferior glenoid bone. The greater relative micromotion of the bone-glenoid component interface occurred in the 10° inferior tilt group than in the neutral tilt group, especially at the inferior area of the bone-glenoid component interface. Bone stresses under the glenoid component and around the screws were also higher in the 10° inferior tilt group than in the neutral tilt group, especially at the inferior third of the glenoid bone surface under the glenoid component and inferior scapula. Thus inferior tilt fixation of the glenoid component may adversely affect the primary stability and longevity of the reverse total shoulder arthroplasty.Keywords: finite element analysis, glenoid component, inferior tilt, reverse total shoulder arthroplasty
Procedia PDF Downloads 28713272 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils
Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen
Abstract:
Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.Keywords: copper, Klara, lime, N100, phytoextraction
Procedia PDF Downloads 14613271 Estimation of Implicit Colebrook White Equation by Preferable Explicit Approximations in the Practical Turbulent Pipe Flow
Authors: Itissam Abuiziah
Abstract:
In several hydraulic systems, it is necessary to calculate the head losses which depend on the resistance flow friction factor in Darcy equation. Computing the resistance friction is based on implicit Colebrook-White equation which is considered as the standard for the friction calculation, but it needs high computational cost, therefore; several explicit approximation methods are used for solving an implicit equation to overcome this issue. It follows that the relative error is used to determine the most accurate method among the approximated used ones. Steel, cast iron and polyethylene pipe materials investigated with practical diameters ranged from 0.1m to 2.5m and velocities between 0.6m/s to 3m/s. In short, the results obtained show that the suitable method for some cases may not be accurate for other cases. For example, when using steel pipe materials, Zigrang and Silvester's method has revealed as the most precise in terms of low velocities 0.6 m/s to 1.3m/s. Comparatively, Halland method showed a less relative error with the gradual increase in velocity. Accordingly, the simulation results of this study might be employed by the hydraulic engineers, so they can take advantage to decide which is the most applicable method according to their practical pipe system expectations.Keywords: Colebrook–White, explicit equation, friction factor, hydraulic resistance, implicit equation, Reynolds numbers
Procedia PDF Downloads 189