Search results for: dispersed region growing algorithm (DRGA)
9522 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: data mining, textile production, decision trees, classification
Procedia PDF Downloads 3509521 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 859520 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education
Authors: Joseph Osodo, Motsa Thobekani Phila
Abstract:
The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.Keywords: e-learning, performance, COVID-19, history, connectivism
Procedia PDF Downloads 769519 A Study on Fundamental Problems for Small and Medium Agricultural Machinery Industries in Central Region Area
Authors: P. Thepnarintra, S. Nikorn
Abstract:
Agricultural machinery industry plays an important role in the industrial development especially the production industry of the country. There has been continuing development responding to the higher demand of the production. However, the problem in agricultural machinery production still exists. Thus, the purpose of this research is to investigate problems on fundamental factors of industry based on the entrepreneurs’ point of view. The focus was on the small and medium size industry receiving a factory license typed number 0660 from the Department of Industrial Works. The investigation was on the comparison between the management of the small and medium size agricultural industry in 3 provinces in the central region of Thailand. Population in this study consisted of 189 company managers or managing directors, of which 101 were from the small size and 88 were from the medium size industry. The data were analyzed to find percentage, arithmetic mean, and standard deviation with independent sample T-test at the statistical significance .05. The results showed that the small and medium size agricultural machinery manufacturers in the central region of Thailand reported high problems in every aspect. When compared the problems on basic factors in running the business, it was found that there was no difference statistically at .05 in managing of the small and medium size agricultural machinery manufacturers. However, there was a statistically significant difference between the small and medium size agricultural machinery manufacturers on the aspect of policy and services of the government. The problems reported by the small and medium size agricultural machinery manufacturers were the services on public tap water and the problem on politic and stability of the country.Keywords: agricultural machinery, manufacturers, problems, on running the business
Procedia PDF Downloads 2929518 From Orthodox to Haploid Mitochondrial DNA Markers: Exploring the Datum Folder of population of Sindh in Pakistan
Authors: Shahzad Bhattiab, M. Aslamkhana, Sana Abbasbc, Marcella Attimonellid, Kumarasamy Thangaraje, Erica Martinha Silva de Souzaf, Uzay U. Sezen
Abstract:
The present study was designed to investigate three regions of mitochondrial DNA, HVI, HVII and HVIII, to hold a powwow genetic diversity and affiliations in 115 probands of 6 major ethnic groups, viz., Bijarani, Chandio, Ghallu, Khoso, Nasrani and Solangi, in the province of Sindh of Pakistan. For this purpose 88 haplotypes were scrutinized, defined by particular set of nucleotides (ignoring the C insertions around position 309 and 315). In spite of that 82% sequences were observed once, 12 % twice and 5.2 % thrice. The most common South Asian haplotypes were observed M (42%), N (6.9%) and R (6.9%) whereas west Eurasian haplotypes were J (1.7%), U (23.4%), H (9.5%), W (6.9%) and T (0.86%), in six ethnic groups. A random match probability between two unrelated individuals was found 0.06 %, while genetic diversity was ranged to be 0.991 to 0.999, and nucleotide diversity ranged from 0.0089 to 0.0142 for the whole control region of the population studied.Keywords: mtDNA haplogroups, control region, Pakistan, Sindh, ethnicity
Procedia PDF Downloads 4139517 Identification of Nonlinear Systems Using Radial Basis Function Neural Network
Authors: C. Pislaru, A. Shebani
Abstract:
This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm
Procedia PDF Downloads 4709516 Integrated Intensity and Spatial Enhancement Technique for Color Images
Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela
Abstract:
Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution
Procedia PDF Downloads 5549515 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation
Authors: Daniel Pastor, Hyo-Sang Shin
Abstract:
This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.Keywords: vision, UAV, navigation, SLAM
Procedia PDF Downloads 6069514 Commodification of the Chinese Language: Investigating Language Ideology in the Chinese Complementary Schools’ Online Discourse
Authors: Yuying Liu
Abstract:
Despite the increasing popularity of Chinese and the recognition of the growing commodifying ideology of Chinese language in many contexts (Liu and Gao, 2020; Guo, Shin and Shen 2020), the ideological orientations of the Chinese diaspora community towards the Chinese language remain under-researched. This research contributes seeks to bridge this gap by investigating the micro-level language ideologies embedded in the Chinese complementary schools in the Republic of Ireland. Informed by Ruíz’s (1984) metaphorical representations of language, 11 Chinese complementary schools’ websites were analysed as discursive texts that signal the language policy and ideology to prospective learners and parents were analysed. The results of the analysis suggest that a move from a portrayal of Chinese as linked to student heritage identity, to the commodification of linguistic and cultural diversity, is evident. It denotes the growing commodifying ideology among the Chinese complementary schools in the Republic of Ireland. The changing profile of the complementary school, from serving an ethnical community to teaching Chinese as a foreign language for the wider community, indicates the possibility of creating the a positive synergy between the Complementary school and the mainstream education. This study contributes to the wider discussions of language ideology and language planning, with regards to modern language learning and heritage language maintenance.Keywords: the Chinese language;, Chinese as heritage language, Chinese as foreign language, Chinese community schools
Procedia PDF Downloads 1369513 Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing
Authors: Dawei Cai
Abstract:
This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden.Keywords: wearable device, MEMS sensor, ubiquitous computing, NFC
Procedia PDF Downloads 2409512 A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves
Authors: Mohammad Reza Ebrahimi
Abstract:
In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm.Keywords: travelling-wave, maximum energy, parallel transmission-line, fault location
Procedia PDF Downloads 1869511 Avoiding Packet Drop for Improved through Put in the Multi-Hop Wireless N/W
Authors: Manish Kumar Rajak, Sanjay Gupta
Abstract:
Mobile ad hoc networks (MANETs) are infrastructure less and intercommunicate using single-hop and multi-hop paths. Network based congestion avoidance which involves managing the queues in the network devices is an integral part of any network. QoS: A set of service requirements that are met by the network while transferring a packet stream from a source to a destination. Especially in MANETs, packet loss results in increased overheads. This paper presents a new algorithm to avoid congestion using one or more queue on nodes and corresponding flow rate decided in advance for each node. When any node attains an initial value of queue then it sends this status to its downstream nodes which in turn uses the pre-decided flow rate of packet transfer to its upstream nodes. The flow rate on each node is adjusted according to the status received from its upstream nodes. This proposed algorithm uses the existing infrastructure to inform to other nodes about its current queue status.Keywords: mesh networks, MANET, packet count, threshold, throughput
Procedia PDF Downloads 4759510 The Role of Social Media in Growing Small and Medium Enterprises: An Empirical Study in Jordan
Authors: Hanady Al-Zagheer
Abstract:
The purpose of this paper research is to introduce the role of the social media (face book) in growing small and medium enterprises in Jordan, Today’s developments of information technologies are dazzling. Using information technologies results in having advantages in competition, decreasing costs, gaining time, and getting and sharing information. Now it is possible to state that there are different types of usage within the information technologies. Small and medium enterprises have been grown rapidly in recent years and continue to grow. Jordanian females have played a large role in the growth of entrepreneurship and have made an impact on household economics. Virtual storefronts have allowed these women to balance roles assigned by tradition and culture while becoming successful providers. If you have a small business with a limited public relations and advertising budget, Facebook can be a cost effective way to promote your services because opening an account is free. However, this can work against you if you do not maintain the page. A Face book page without frequent updates can destroy your brand value and image. According to a 2009 Computerworld article by Lisa Hoover, having a Facebook page that looks abandoned is worse than having no page at all. You might need to hire someone or pay an employee to update your business’s Facebook page.Keywords: social media, social media small, medium enterprises, Jordan
Procedia PDF Downloads 3299509 Transit Facility Planning in Fringe Areas of Kolkata Metropolitan Region
Authors: Soumen Mitra, Aparna Saha
Abstract:
The perceived link between the city and the countryside is evolving rapidly and is getting shifted away from the assumptions of mainstream paradigms to new conceptual networks where rural-urban links are being redefined. In this conceptual field, the fringe interface is still considered as a transitional zone between city and countryside, and is defined as a diffused area rather than a discrete territory. In developing countries fringe areas are said to have both rural and urban characteristics but are devoid of basic municipal facilities. Again, when the urban core areas envelopes the fringe areas along with it the character of fringe changes but services are not well facilitated which in turn results to uneven growth, rapid and haphazard development. One of the major services present in fringe areas is inter-linkages in terms of transit corridors. Planning for the appropriate and sustainable future of fringe areas requires a sheer focus on these corridors pertaining to transit facility, for better accessibility and mobility. Inducing a transit facility plan enhances the various facilities and also increases their proximity for user groups. The study focuses on the western fringe region of Kolkata metropolis which is a major source of industrial hub and housing sector, thus converting the agricultural lands into non-agricultural use. The study emphasizes on providing transit facilities both physical (stops, sheds, terminals, etc.) and operational (ticketing system, route prioritization, integration of transit modes, etc.), to facilitate the region as well as accelerate the growth pattern systematically. Hence, the scope of this work is on the basis of prevailing conditions in fringe areas and attempts for an effective transit facility plan. The strategies and recommendations are in terms of road widening, service coverage, feeder route prioritization, bus stops facilitation, pedestrian facilities, etc, which in turn enhances the region’s growth pattern. Thus, this context of transit facility planning acts as a catalytic agent to avoid the future unplanned growth and accelerates it towards an integrated development.Keywords: feeder route, fringe, municipal planning, transit facility
Procedia PDF Downloads 1779508 The Contribution of Genetic Polymorphisms of Tumor Necrosis Factor Alpha and Vascular Endothelial Growth Factor into the Unfavorable Clinical Course of Ulcerative Colitis
Authors: Y. I. Tretyakova, S. G. Shulkina, T. Y. Kravtsova, A. A. Antipova, N. Y. Kolomeets
Abstract:
The research aimed to assess the functional significance of tumor necrosis factor-alpha (TNF-α) gene polymorphism at the -308G/A (rs1800629) region and vascular endothelial growth factor A (VEGFA) gene polymorphism at the -634G/C (rs 2010963) region in the development of ulcerative colitis (UC), focusing on patients from the Perm region, Russia. We examined 70 UC patients and 50 healthy donors during the active phase of the disease. Our focus was on TNF-α and VEGF concentration in the blood serum, as well as TNF-α and VEGFA gene polymorphisms at the -308G/А and -634G/C regions, respectively. We found that TNF-α and VEGF levels were significantly higher in patients with severe UC and high endoscopic activity compared to those with milder forms of the disease and low endoscopic activity. These tests could serve as additional non-invasive markers for assessing mucosal damage in the large intestine of UC patients. The frequency of allele variations in the TNF-α gene -308G/A (rs1800629) revealed a significantly higher occurrence of the unfavorable homozygote AA in UC patients compared to donors. Additionally, the major allele G and the allele pair GG were more frequent in patients with mild to moderate disease and 1-2 degree of endoscopic activity than in those with severe UC and 3-4 degree of endoscopic activity (χ2=14.19; p=0.000). We also observed a mutant allele A and the unfavorable homozygote AA associated with severe progressive UC. The occurrence of the mutant allele increased the risk of severe UC by 5 times (OR 5.03; CI 12.07-12.21). We did not find any significant differences in the frequency of the CC homozygote (χ2=1.02; p=0.6; OR=1.32) and the mutant allele C of the VEGFA gene -634G/C (rs 2010963) (χ2=0.01; p=0.913; OR=0.97) between groups of UC patients and healthy individuals. However, we detected that the mutant allele C and the unfavorable homozygote CC of the VEGFA gene were associated with more severe endoscopic changes in the colonic mucosa of UC patients (χ2=25,76; р=0,000; OR=0,15). The presence of the mutant allele increased the risk of severe UC by 6 times (OR 6,78; CI 3,13–14,7). We found a direct correlation between TNF-α and VEGFA gene polymorphisms, increased production of the same factors, disease severity, and endoscopic activity (р=0.000). Therefore, the presence of the mutant allele A and homozygote AA of the TNF-α gene at the -308G/A region and the mutant allele C and homozygote CC of the VEGFA gene at the -634G/C region are associated with risks related to an unfavorable clinical course of UC, frequent recurrences, and rapid progression. These findings should be considered when making prognoses regarding the clinical course of the disease and selecting treatment strategies. The presence of the homozygote AA in the TNF-α gene (rs1800629) is considered a sign of genetic predisposition to UC.Keywords: gene polymorphism, TNF-α, ulcerative colitis, VEGF
Procedia PDF Downloads 749507 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 1579506 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem
Authors: Takahiro Hino, Michiharu Maeda
Abstract:
Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem
Procedia PDF Downloads 5539505 Analysis of the Relationship between Micro-Regional Human Development and Brazil's Greenhouse Gases Emission
Authors: Geanderson Eduardo Ambrósio, Dênis Antônio Da Cunha, Marcel Viana Pires
Abstract:
Historically, human development has been based on economic gains associated with intensive energy activities, which often are exhaustive in the emission of Greenhouse Gases (GHGs). It requires the establishment of targets for mitigation of GHGs in order to disassociate the human development from emissions and prevent further climate change. Brazil presents itself as one of the most GHGs emitters and it is of critical importance to discuss such reductions in intra-national framework with the objective of distributional equity to explore its full mitigation potential without compromising the development of less developed societies. This research displays some incipient considerations about which Brazil’s micro-regions should reduce, when the reductions should be initiated and what its magnitude should be. We started with the methodological assumption that human development and GHGs emissions arise in the future as their behavior was observed in the past. Furthermore, we assume that once a micro-region became developed, it is able to maintain gains in human development without the need of keep growing GHGs emissions rates. The human development index and the carbon dioxide equivalent emissions (CO2e) were extrapolated to the year 2050, which allowed us to calculate when the micro-regions will become developed and the mass of GHG’s emitted. The results indicate that Brazil must throw 300 GT CO2e in the atmosphere between 2011 and 2050, of which only 50 GT will be issued by micro-regions before it’s develop and 250 GT will be released after development. We also determined national mitigation targets and structured reduction schemes where only the developed micro-regions would be required to reduce. The micro-region of São Paulo, the most developed of the country, should be also the one that reduces emissions at most, emitting, in 2050, 90% less than the value observed in 2010. On the other hand, less developed micro-regions will be responsible for less impactful reductions, i.e. Vale do Ipanema will issue in 2050 only 10% below the value observed in 2010. Such methodological assumption would lead the country to issue, in 2050, 56.5% lower than that observed in 2010, so that the cumulative emissions between 2011 and 2050 would reduce by 130 GT CO2e over the initial projection. The fact of associating the magnitude of the reductions to the level of human development of the micro-regions encourages the adoption of policies that favor both variables as the governmental planner will have to deal with both the increasing demand for higher standards of living and with the increasing magnitude of reducing emissions. However, if economic agents do not act proactively in local and national level, the country is closer to the scenario in which emits more than the one in which mitigates emissions. The research highlighted the importance of considering the heterogeneity in determining individual mitigation targets and also ratified the theoretical and methodological feasibility to allocate larger share of contribution for those who historically emitted more. It is understood that the proposals and discussions presented should be considered in mitigation policy formulation in Brazil regardless of the adopted reduction target.Keywords: greenhouse gases, human development, mitigation, intensive energy activities
Procedia PDF Downloads 3209504 Research and Development of Intelligent Cooling Channels Design System
Authors: Q. Niu, X. H. Zhou, W. Liu
Abstract:
The cooling channels of injection mould play a crucial role in determining the productivity of moulding process and the product quality. It’s not a simple task to design high quality cooling channels. In this paper, an intelligent cooling channels design system including automatic layout of cooling channels, interference checking and assembly of accessories is studied. Automatic layout of cooling channels using genetic algorithm is analyzed. Through integrating experience criteria of designing cooling channels, considering the factors such as the mould temperature and interference checking, the automatic layout of cooling channels is implemented. The method of checking interference based on distance constraint algorithm and the function of automatic and continuous assembly of accessories are developed and integrated into the system. Case studies demonstrate the feasibility and practicality of the intelligent design system.Keywords: injection mould, cooling channel, intelligent design, automatic layout, interference checking
Procedia PDF Downloads 4409503 Assessment of Fermentative Activity in Heavy Metal Polluted Soils in Alaverdi Region, Armenia
Authors: V. M. Varagyan, G. A. Gevorgyan, K. V. Grigoryan, A. L. Varagyan
Abstract:
Alaverdi region is situated in the northern part of the Republic of Armenia. Previous studies (1989) in Alaverdi region showed that due to soil irrigation with the highly polluted waters of the Debed and Shnogh rivers, the content of heavy metals in the brown forest steppe soils was significantly higher than the maximum permissible concentration as a result of which the fermentative activity in all the layers of the soils was stressed. Compared to the non-polluted soils, the activity of ferments in the plough layers of the highly polluted soils decreased by 44 - 68% (invertase – 60%, phosphatase – 44%, urease – 66%, catalase – 68%). In case of the soil irrigation with the polluted waters, a decrease in the intensity of fermentative reactions was conditioned by the high content of heavy metals in the soils and changes in chemical composition, physical and physicochemical properties. 20-year changes in the fermentative activity in the brown forest steppe soils in Alaverdi region were investigated. The activity of extracellular ferments in the soils was determined by the unification methods. The study has confirmed that self-recovery process occurs in soils previously polluted with heavy metals which can be revealed by fermentative activity. The investigations revealed that during 1989 – 2009, the activity of ferments in the plough layers of the medium and highly polluted soils increased by 31.2 – 52.6% (invertase – 31.2%, urease – 52.6%, phosphatase – 33.3%, catalase – 41.8%) and 24.1 – 87.0% (invertase – 40.4%, urease – 76.9%, phosphatase – 24.1%, catalase – 87.0%) respectively which indicated that the dynamic properties of the soils, which had been broken due to heavy metal pollution, were improved. In 1989, the activity of the Alaverdi copper smelting plant was temporarily stopped due to financial problems caused by the economic crisis and the absence of market, and the factory again started operation in 1997 and isn’t currently running at full capacity. As a result, the Debed river water has obtained a new chemical composition and comparatively good irrigation properties. Due to irrigation with this water, the gradually recovery of the soil dynamic properties, which had been broken due to irrigation with the waters polluted with heavy metals, was occurred. This is also explained by the fact that in case of irrigation with the partially cleaned water, the soil protective function against pollutants rose due to a content increase in humus and silt fractions. It is supposed that in case of the soil irrigation with the partially cleaned water, the intensity of fermentative reactions wasn’t directly affected by heavy metals.Keywords: alaverdi region, heavy metal pollution, self-recovery, soil fermentative activity
Procedia PDF Downloads 3019502 Study of the Influence of the Region, the Depth and the Drying Process on the Chemical Composition of Gelidium sesquipedale
Authors: M. Cherki, I. Taouam, A. Amiri, F. Hmimid, T. Ould Bellahcen
Abstract:
The Moroccan coasts represent an important wealth of red algae which have an economic interest. Among these algae, the Gelidium sesquipedale, which is exploited industrially for its richness in agar. The aim of this study is to establish a general overview of the macronutrient composition of Gelidium sesquipedale and to compare this composition according to three factors: the harvest site (El Jadida, Casablanca and Mohammadia), the harvest depth (coast and depth) and the drying process (open air and oven). Proteins, lipids, and carbohydrates are measured by different methods. The analysis of results show that the protein concentrations of the El Jadida and Mohammadia samples are significantly higher than that of Casablanca (0.026 ± 0.0007 µg/µg DW 0.024 ± 0.001 µg/µg DW and 0.006 ± 0.0007 µg/µg DW, p < 0.05 respectively). However, Casablanca samples are significantly richer in total sugars (0.023 ± 0.002 µg/µg DW, p < 0.05) and less rich in reducing sugars (0.0001 ± 0.00001 µg/µg DW, p < 0.05) compared to other samples. The lipid concentrations of the samples from the three harvest sites do not show any significant difference. With respect to depth, only total protein and total sugar concentrations were significantly higher in the coast versus depth samples (0.035 ± 0.004 µg/µg DW vs. 0.026 ± 0.0007 µg/µg DW and 0.035 ± 0.006 µg/µg DW vs. 0.012 ± 0.005 µg/µg DW p < 0.05 respectively). For the drying process, protein, total sugars and lipid concentrations were significantly higher in open air samples compared to oven samples (0.006 ± 0.0007 µg/µg DW). vs 0.004 ± 0.0003 µg/µg DW, 0.023 ± 0.002 µg/µg DW vs 0.007 ± 0.002 µg/µg DW and 8% vs 4% p < 0.05 respectively). Our results demonstrate that the chemical composition of Gelidium sesquipedale varies according to the harvest region. In addition, samples harvested on the coast and dried in the open air are the richest in macronutrients.Keywords: biochemical composition, drying, depth, Gelidium sesquipedale, red algae, region
Procedia PDF Downloads 1499501 Design and Implementation of Low-code Model-building Methods
Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu
Abstract:
This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment
Procedia PDF Downloads 319500 Optimal Power Exchange of Multi-Microgrids with Hierarchical Coordination
Authors: Beom-Ryeol Choi, Won-Poong Lee, Jin-Young Choi, Young-Hak Shin, Dong-Jun Won
Abstract:
A Microgrid (MG) has a major role in power system. There are numerous benefits, such as ability to reduce environmental impact and enhance the reliability of a power system. Hence, Multi-MG (MMG) consisted of multiple MGs is being studied intensively. This paper proposes the optimal power exchange of MMG with hierarchical coordination. The whole system architecture consists of two layers: 1) upper layer including MG of MG Center (MoMC) which is in charge of the overall management and coordination and 2) lower layer comprised of several Microgrid-Energy Management Systems (MG-EMSs) which make a decision for own schedule. In order to accomplish the optimal power exchange, the proposed coordination algorithm is applied to MMG system. The objective of this process is to achieve optimal operation for improving economics under the grid-connected operation. The simulation results show how the output of each MG can be changed through coordination algorithm.Keywords: microgrids, multi-microgrids, power exchange, hierarchical coordination
Procedia PDF Downloads 3729499 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.Keywords: breadth-first search, BFS, graph ordering, graph algorithm
Procedia PDF Downloads 1389498 Microbial Quality of Raw Camel Milk Produced in South of Morocco
Authors: Maha Alaoui Ismaili, Bouchta Saidi, Mohamed Zahar, Abed Hamama
Abstract:
Thirty one samples of raw camel milk obtained from the region of Laâyoune (South of Morocco) were examined for their microbial quality and presence of some pathogenic bacteria (Staphylococcus aureus and Salmonella sp.). pH of the samples ranged from 6.31 to 6.64 and their titratable acidity had a mean value of 18.56 °Dornic. Data obtained showed a strong microbial contamination with an average total aerobic flora of 1.76 108 ufc ml-1 and a very high fecal counts: 1.82 107 ; 3.25 106 and 3.75 106 ufc.ml-1 in average for total coliforms, fecal coliforms and enterococci respectively. Yeasts and moulds were also found at average respective levels of 3.13 106 and 1.60 105 ufc.ml-1. Salmonella sp. and S. aureus was detected respectively in 13% and 30% of the milk samples. These results indicate clearly the lack of hygienic conditions of camel milk production and storage in this region. Lactic acid bacteria were found at the following average numbers: 4.25 107 ; 4.45 107 and 3.55 107 ufc.ml-1 for Lactococci, Leuconostocs and Lactobacilli respectively.Keywords: camel milk, microbial quality, Salmonella, Staphylococcus aureus
Procedia PDF Downloads 4719497 An Improved C-Means Model for MRI Segmentation
Authors: Ying Shen, Weihua Zhu
Abstract:
Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.Keywords: magnetic resonance image (MRI), c-means model, image segmentation, information entropy
Procedia PDF Downloads 2269496 Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization
Authors: Sandabad Sara, Sayd Tahri Yassine, Hammouch Ahmed
Abstract:
The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature.Keywords: MRI, Em algorithm, brain, tumor, Nl-means
Procedia PDF Downloads 3369495 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 949494 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks
Authors: Sunmyeng Kim
Abstract:
IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.Keywords: cooperative communications, MAC protocol, relay node, WLAN
Procedia PDF Downloads 3339493 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 237