Search results for: yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2334

Search results for: yield

354 The Development of a Precision Irrigation System for Durian

Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai

Abstract:

Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.

Keywords: Durian, precision irrigation, precision agriculture, smart farm

Procedia PDF Downloads 90
353 Effect of Immunocastration Vaccine Administration at Different Doses on Performance of Feedlot Holstein Bulls

Authors: M. Bolacali

Abstract:

The aim of the study is to determine the effect of immunocastration vaccine administration at different doses on fattening performance of feedlot Holstein bulls. Bopriva® is a vaccine that stimulates the animals' own immune system to produce specific antibodies against gonadotropin releasing factor (GnRF). Ninety four Holstein male calves (309.5 ± 2.58 kg body live weight and 267 d-old) assigned to the 4 treatments. Control group; 1 mL of 0.9% saline solution was subcutaneously injected to intact bulls on 1st and 60th days of the feedlot as placebo. On the same days of the feedlot, Bopriva® at two doses of 1 mL and 1 mL for Trial-1 group, 1.5 mL, and 1.5 mL for Trial-2 group, 1.5 mL, and 1 mL for Trial-3 group were subcutaneously injected to bulls. The study was conducted in a private establishment in the Sirvan district of Siirt province and lasted 180 days. The animals were weighed at the beginning of fattening and at 30-day intervals to determine their live weights at various periods. The statistical analysis for normal distribution data of the treatment groups was carried out with the general linear model procedure of SPSS software. The fattening initial live weight in Control, Trial-1, Trial-2 and Trial-3 groups was respectively 309.21, 306.62, 312.11, and 315.39 kg. The fattening final live weight was respectively 560.88, 536.67, 548.56, and 548.25 kg. The daily live weight gain during the trial was respectively 1.40, 1.28, 1.31, and 1.29 kg/day. The cold carcass yield was respectively 51.59%, 50.32%, 50.85%, and 50.77%. Immunocastration vaccine administration at different doses did not affect the live weights and cold carcass yields of Holstein male calves reared under intensive conditions (P > 0.05). However, it was determined to reduce fattening performance between 61-120 days (P < 0.05) and 1-180 days (P < 0.01). In addition, it was determined that the best performance among the vaccine-treated groups occurred in the group administered a 1.5 mL of vaccine on the 1st and 60th study days. In animals, castration is used to control fertility, aggressive and sexual behaviors. As a result, the fact that stress is induced by physical castration in animals and active immunization against GnRF maintains performance by maximizing welfare in bulls improves carcass and meat quality and controls unwanted sexual and aggressive behavior. Considering such features, it may be suggested that immunocastration vaccine with Bopriva® can be administered as a 1.5 mL dose on the 1st and 60th days of the fattening period in Holstein bulls.

Keywords: anti-GnRF, fattening, growth, immunocastration

Procedia PDF Downloads 167
352 Optimization of Culture Conditions of Paecilomyces tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx mori

Authors: Sunghee Nam

Abstract:

Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and from ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc. have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores.

Keywords: optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi silkworm larva, bombyx mori

Procedia PDF Downloads 227
351 Luminescent Properties of Sm³⁺-Doped Silica Nanophosphor Synthesized from Highly Active Amorphous Nanosilica Derived from Rice Husk

Authors: Celestine Mbakaan, Iorkyaa Ahemen, A. D. Onoja, A. N. Amah, Emmanuel Barki

Abstract:

Rice husk (RH) is a natural sheath that forms and covers the grain of rice. The husk composed of hard materials, including opaline silica and lignin. It separates from its grain during rice milling. RH also contains approximately 15 to 28 wt % of silica in hydrated amorphous form. Nanosilica was derived from the husk of different rice varieties after pre-treating the husk (RH) with HCl and calcination at 550°C. Nanosilica derived from the husk of Osi rice variety produced the highest silica yield, and further pretreatment with 0.8 M H₃PO₄ acid removed more mineral impurities. The silica obtained from this rice variety was selected as a host matrix for doping with Sm³⁺ ions. Rice husk silica (RH-SiO₂) doped with samarium (RH-SiO₂: xSm³⁺ (x=0.01, 0.05, and 0.1 molar ratios) nanophosphors were synthesized via the sol-gel method. The structural analysis by X-ray diffraction analysis (XRD) reveals amorphous structure while the surface morphology, as revealed by SEM and TEM, indicates agglomerates of nano-sized spherical particles with an average particle size measuring 21 nm. The nanophosphor has a large surface area measuring 198.0 m²/g, and Fourier transform infrared spectroscopy (FT-IR) shows only a single absorption band which is strong and broad with a valley at 1063 cm⁻¹. Diffuse reflectance spectroscopy (DRS) shows strong absorptions at 319, 345, 362, 375, 401, and 474 nm, which can be exclusively assigned to the 6H5/2→4F11/2, 3H7/2, 4F9/2, 4D5/2, 4K11/2, and 4M15/2 + 4I11/2, transitions of Sm³⁺ respectively. The photoluminescence excitation spectra show that near UV and blue LEDs can effectively be used as excitation sources to produce red-orange and yellow-orange emission from Sm³⁺ ion-doped RH-SiO₂ nanophosphors. The photoluminescence (PL) of the nanophosphors gives three main lines; 568, 605, and 652 nm, which are attributed to the intra-4f shell transitions from the excited level to ground levels, respectively under excitation wavelengths of 365 and 400 nm. The result, as confirmed from the 1931 CIE coordinates diagram, indicates the emission of red-orange light by RH-SiO₂: xSm³⁺ (x=0.01 and 0.1 molar ratios) and yellow-orange light from RH-SiO₂: 0.05 Sm³⁺. Finally, the result shows that RH-SiO₂ doped with samarium (Sm³⁺) ions can be applicable in display applications.

Keywords: luminescence, nanosilica, nanophosphors, Sm³⁺

Procedia PDF Downloads 113
350 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 129
349 Utilization Of Guar Gum As Functional Fat Replacer In Goshtaba, A Traditional Indian Meat Product

Authors: Sajad A. Rather, F. A. Masoodi, Rehana Akhter, S. M. Wani, Adil Gani

Abstract:

Modern trend towards convenience foods has resulted in increased production and consumption of restructured meat products and are of great importance to the meat industry. In meat products fat plays an important role in cooking properties, texture & sensory scores, however, high fat contents in particular animal fats provide high amounts of saturated fatty acids and cholesterol and are associated with several types of non communicable diseases such as obesity, hypertension and coronary heart diseases. Thus, fat reduction has generally been seen as an important strategy to produce healthier meat products. This study examined the effects of reducing fat level from 20% to 10% and substituting mutton back fat with guar gum (0.5%, 1% & 1.5%) on cooking properties, proximate composition, lipid and protein oxidation, texture, microstructure and sensory characteristics of goshtaba- a traditional meat product of J & K, India were investigated and compared with high fat counterparts. Reduced- fat goshtaba samples containing guar gum had significantly (p ≤ 0.05) higher yield, less shrinkage, more moisture retention and more protein content than the control sample. TBARs and protein oxidation (carbonyl content) values of the control was significantly (p ≤ 0.05) higher than reduced fat goshtaba samples and showed a positive correlation between lipid and protein oxidation. Hardness, gumminess & chewiness of the control (20%) were significantly higher than reduced fat goshtaba samples. Microstructural differences were significant (p ≤ 0.05) between control and treated samples due to an increased moisture content in the reduced fat samples. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores for 0.5% and 1% treated samples were in the range of acceptability. Guar gum may also be used as a source of soluble dietary fibre in food products and a number of clinical studies have shown a reduction in postprandial glycemia and insulinemia on consumption of guar gum, with the mechanism being attributed to an increased transit time in the stomach and small intestine, which may have been due to the viscosity of the meal hindering the access of glucose to the epithelium.

Keywords: goshtaba, guar gum, traditional, fat reduction, acceptability

Procedia PDF Downloads 257
348 Clinical Value of 18F-FDG-PET Compared with CT Scan in the Detection of Nodal and Distant Metastasis in Urothelial Carcinoma or Bladder Cancer

Authors: Mohammed Al-Zubaidi, Katherine Ong, Pravin Viswambaram, Steve McCombie, Oliver Oey, Jeremy Ong, Richard Gauci, Ronny Low, Dickon Hayne

Abstract:

Objective: Lymph node involvement along with distant metastasis in a patient with invasive bladder cancer determines the disease survival, therefeor, it is an essential determinant of the therapeutic management and outcome. This retrospective study aims to determine the accuracy of FDG PET scan in detecting lymphatic involvement and distant metastatic urothelial cancer compared to conventional CT staging. Method: A retrospective review of 76 patients with UC or BC who underwent surgery or confirmatory biopsy that was staged with both CT and 18F-FDG-PET (up to 8 weeks apart) between 2015 and 2020. Fifty-sevenpatients (75%) had formal pelvic LN dissection or biopsy of suspicious metastasis. 18F-FDG-PET reports for positive sites were qualitative depending on SUV Max. On the other hand, enlarged LN by RECIST criteria 1.1 (>10 mm) and other qualitative findings suggesting metastasis were considered positive in CT scan. Histopathological findings from surgical specimens or image-guided biopsies were considered the gold standard in comparison to imaging reports. 18F-FDG-avid or enlarged pelvic LNs with surgically proven nodal metastasis were considered true positives. Performance characteristics of 18F-FDG-PET and CT, including sensitivity, specificity, positive predictive value (PPV), and negative predictive value (PPV), were calculated. Results: Pelvic LN involvement was confirmed histologically in 10/57 (17.5%) patients. Sensitivity, specificity, PPV and NPV of CT for detecting pelvic LN metastases were 41.17% (95% CI:18-67%), 100% (95% CI:90-100%) 100% (95% CI:59-100%) and 78.26% (95% CI:64-89%) respectively. Sensitivity, specificity, PPV and NPV of 18F-FDG-PET for detecting pelvic LN metastases were 62.5% (95% CI:35-85%), 83.78% (95% CI:68-94%), 62.5% (95% CI:35-85%), and 83.78% (95% CI:68-94%) respectively. Pre-operative staging with 18F-FDG-PET identified the distant metastatic disease in 9/76 (11.8%) patients who were occult on CT. This retrospective study suggested that 18F-FDG-PET may be more sensitive than CT for detecting pelvic LN metastases. 7/76 (9.2%) patients avoided cystectomy due to 18F-FDG-PET diagnosed metastases that were not reported on CT. Conclusion: 18F-FDG-PET is more sensitive than CT for pelvic LN metastases, which can be used as the standard modality of bladder cancer staging, as it may change the treatment by detecting lymph node metastasis that was occult in CT. Further research involving randomised controlled trials comparing the diagnostic yield of 18F-FDG-PET and CT in detecting nodal and distant metastasis in UC or BC is warranted to confirm our findings.

Keywords: FDG PET, CT scan, urothelial cancer, bladder cancer

Procedia PDF Downloads 94
347 Petrogenesis and Tectonic Implication of the Oligocene Na-Rich Granites from the North Sulawesi Arc, Indonesia

Authors: Xianghong Lu, Yuejun Wang, Chengshi Gan, Xin Qian

Abstract:

The North Sulawesi Arc, located on the east of Indonesia and to the south of the Celebes Sea, is the north part of the K-shape of Sulawesi Island and has a complex tectonic history since the Cenozoic due to the convergence of three plates (Eurasia, India-Australia and Pacific plates). Published rock records contain less precise chronology, mostly using K-Ar dating, and rare geochemistry data, which limit the understanding of the regional tectonic setting. This study presents detailed zircon U-Pb geochronological and Hf-O isotope and whole-rock geochemical analyses for the Na-rich granites from the North Sulawesi Arc. Zircon U-Pb geochronological analyses of three representative samples yield weighted mean ages of 30.4 ± 0.4 Ma, 29.5 ± 0.2 Ma, and 27.3 ± 0.4 Ma, respectively, revealing the Oligocene magmatism in the North Sulawesi Arc. The samples have high Na₂O and low K₂O contents with high Na₂O/K₂O ratios, belonging to Low-K tholeiitic Na-rich granites. The Na-rich granites are characterized by high SiO₂ contents (75.05-79.38 wt.%) and low MgO contents (0.07-0.91 wt.%) and show arc-like trace elemental signatures. They have low (⁸⁷Sr/⁸⁶Sr)i ratios (0.7044-0.7046), high εNd(t) values (from +5.1 to +6.6), high zircon εHf(t) values (from +10.1 to +18.8) and low zircon δ18O values (3.65-5.02). They show an Indian-Ocean affinity of Pb isotopic compositions with ²⁰⁶Pb/²⁰⁴Pb ratio of 18.16-18.37, ²⁰⁷Pb/²⁰⁴Pb ratio of 15.56-15.62, and ²⁰⁸Pb/²⁰⁴Pb ratio of 38.20-38.66. These geochemical signatures suggest that the Oligocene Na-rich granites from the North Sulawesi Arc formed by partial melting of the juvenile oceanic crust with sediment-derived fluid-related metasomatism in a subducting setting and support an intra-oceanic arc origin. Combined with the published study, the emergence of extensive calc-alkaline felsic arc magmatism can be traced back to the Early Oligocene period, subsequent to the Eocene back-arc basalts (BAB) that share similarity with the Celebes Sea basement. Since the opening of the Celebes Sea started from the Eocene (42~47 Ma) and stopped by the Early Oligocene (~32 Ma), the geodynamical mechanism of the formation of the Na-rich granites from the North Sulawesi Arc during the Oligocene might relate to the subduction of the Indian Ocean.

Keywords: North Sulawesi Arc, oligocene, Na-rich granites, in-situ zircon Hf–O analysis, intra-oceanic origin

Procedia PDF Downloads 48
346 Propolis as Antioxidant Formulated in Nanoemulsion

Authors: Rachmat Mauludin, Irda Fidrianny, Dita Sasri Primaviri, Okti Alifiana

Abstract:

Natural products such as propolis, green tea and corncob are containing several compounds called antioxidant. Antioxidant can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that the extract of propolis that has the highest antioxidant activity was ethanolic extract of propolis (EEP). It is important to make a dosage form that could keep the stability and could protect the effectiveness of antioxidant activity of the extracts. In this research, nanoemulsion (NE) was chosen to formulate those natural products. NE is a dispersion system between oil phase and water phase that formed by mechanical force with a lot amount of surfactants and has globule size below 100 nm. In pharmaceutical industries, NE was preferable for its stability, biodegradability, biocompatibility, its ease to be absorbed and eliminated, and for its use as carrier for lipophilic drugs. First, all of the natural products were extracted using reflux methods. Green tea and corncob were extracted using 96% ethanol while propolis using 70% ethanol. Then, the extracts were concentrated using rotavapor to obtain viscous extracts. The yield of EEP was 11.12%; green tea extract (GTE) was 23.37%; and corncob extract (CCE) was 17.23%. EEP contained steroid/triterpenoid, flavonoid and saponin. GTE contained flavonoid, tannin, and quinone while CCE contained flavonoid, phenol and tannin. The antioxidant activities of the extracts were then measured using DPPH scavenging capacity methods. The values of DPPH scavenging capacity were 61.14% for EEP; 97.16% for GTE; and 78.28% for CCE. The value of IC50 for EEP was 0.41629 ppm. After the extracts were evaluated, NE was prepared. Several surfactants and co-surfactants were used in many combinations and ratios in order to form a NE. Tween 80 and Kolliphor RH40 were used as surfactants while glycerin and propylene glycol were used as co-surfactants. The best NE consists of 26.25% of Kolliphor RH40; 8.75% of glycerin; 5% of rice bran oil; 3% of extracts; and 57% of water. EEP NE had globule size around 23.72 nm; polydispersity index below 0.5; and did not cause any irritation on rabbits. EEP NE was proven to be stable after passing stability test within 63 days at room temperature and 6 cycles of Freeze and Thaw test without separated. Based on TEM (Transmission Electron Microscopy) test, EEP NE had spherical structure with most of its size below 50 nm. The antioxidant activity of EEP NE was monitored for 6 weeks and showed no significant difference. The value of DPPH scavenging capacity for EEP NE was around 58%; for GTE NE was 96.75%; and for CCE NE was 55.69%.

Keywords: propolis, green tea, corncob, antioxidant, nanoemulsion

Procedia PDF Downloads 295
345 Early Outcomes and Lessons from the Implementation of a Geriatric Hip Fracture Protocol at a Level 1 Trauma Center

Authors: Peter Park, Alfonso Ayala, Douglas Saeks, Jordan Miller, Carmen Flores, Karen Nelson

Abstract:

Introduction Hip fractures account for more than 300,000 hospital admissions every year. Many present as fragility fractures in geriatric patients with multiple medical comorbidities. Standardized protocols for the multidisciplinary management of this patient population have been shown to improve patient outcomes. A hip fracture protocol was implemented at a Level I Trauma center with a focus on pre-operative medical optimization and early surgical care. This study evaluates the efficacy of that protocol, including the early transition period. Methods A retrospective review was performed of all patients ages 60 and older with isolated hip fractures who were managed surgically between 2020 and 2022. This included patients 1 year prior and 1 year following the implementation of a hip fracture protocol at a Level I Trauma center. Results 530 patients were identified: 249 patients were treated before, and 281 patients were treated after the protocol was instituted. There was no difference in mean age (p=0.35), gender (p=0.3), or Charlson Comorbidity Index (p=0.38) between the cohorts. Following the implementation of the protocol, there were observed increases in time to surgery (27.5h vs. 33.8h, p=0.01), hospital length of stay (6.3d vs. 9.7d, p<0.001), and ED LOS (5.1h vs. 6.2h, p<0.001). There were no differences in in-hospital mortality (2.01% pre vs. 3.20% post, p=0.39) and complication rates (25% pre vs 26% post, p=0.76). A trend towards improved outcomes was seen after the early transition period but failed to yield statistical significance. Conclusion Early medical management and surgical intervention are key determining factors affecting outcomes following fragility hip fractures. The implementation of a hip fracture protocol at this institution has not yet significantly affected these parameters. This could in part be due to the restrictions placed at this institution during the COVID-19 pandemic. Despite this, the time to OR pre-and post-implementation was quicker than figures reported elsewhere in literature. Further longitudinal data will be collected to determine the final influence of this protocol. Significance/Clinical Relevance Given the increasing number of elderly people and the high morbidity and mortality associated with hip fractures in this population finding cost effective ways to improve outcomes in the management of these injuries has the potential to have enormous positive impact for both patients and hospital systems.

Keywords: hip fracture, geriatric, treatment algorithm, preoperative optimization

Procedia PDF Downloads 50
344 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 119
343 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 29
342 Shaped Crystal Growth of Fe-Ga and Fe-Al Alloy Plates by the Micro Pulling down Method

Authors: Kei Kamada, Rikito Murakami, Masahiko Ito, Mototaka Arakawa, Yasuhiro Shoji, Toshiyuki Ueno, Masao Yoshino, Akihiro Yamaji, Shunsuke Kurosawa, Yuui Yokota, Yuji Ohashi, Akira Yoshikawa

Abstract:

Techniques of energy harvesting y have been widely developed in recent years, due to high demand on the power supply for ‘Internet of things’ devices such as wireless sensor nodes. In these applications, conversion technique of mechanical vibration energy into electrical energy using magnetostrictive materials n have been brought to attention. Among the magnetostrictive materials, Fe-Ga and Fe-Al alloys are attractive materials due to the figure of merits such price, mechanical strength, high magnetostrictive constant. Up to now, bulk crystals of these alloys are produced by the Bridgman–Stockbarger method or the Czochralski method. Using these method big bulk crystal up to 2~3 inch diameter can be grown. However, non-uniformity of chemical composition along to the crystal growth direction cannot be avoid, which results in non-uniformity of magnetostriction constant and reduction of the production yield. The micro-pulling down (μ-PD) method has been developed as a shaped crystal growth technique. Our group have reported shaped crystal growth of oxide, fluoride single crystals with different shape such rod, plate tube, thin fiber, etc. Advantages of this method is low segregation due to high growth rate and small diffusion of melt at the solid-liquid interface, and small kerf loss due to near net shape crystal. In this presentation, we report the shaped long plate crystal growth of Fe-Ga and Fe-Al alloys using the μ-PD method. Alloy crystals were grown by the μ-PD method using calcium oxide crucible and induction heating system under the nitrogen atmosphere. The bottom hole of crucibles was 5 x 1mm² size. A <100> oriented iron-based alloy was used as a seed crystal. 5 x 1 x 320 mm³ alloy crystal plates were successfully grown. The results of crystal growth, chemical composition analysis, magnetostrictive properties and a prototype vibration energy harvester are reported. Furthermore, continuous crystal growth using powder supply system will be reported to minimize the chemical composition non-uniformity along the growth direction.

Keywords: crystal growth, micro-pulling-down method, Fe-Ga, Fe-Al

Procedia PDF Downloads 308
341 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined the fiber orientation was not significantly different. It is believed the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: fiber orientation, reinforced ultra high performance concrete beams, shear, transverse steel

Procedia PDF Downloads 92
340 Biochar from Empty Fruit Bunches Generated in the Palm Oil Extraction and Its Nutrients Contribution in Cultivated Soils with Elaeis guineensis in Casanare, Colombia

Authors: Alvarado M. Lady G., Ortiz V. Yaylenne, Quintero B. Quelbis R.

Abstract:

The oil palm sector has seen significant growth in Colombia after the insertion of policies to stimulate the use of biofuels, which eventually contributes to the reduction of greenhouse gases (GHG) that deteriorate not only the environment but the health of people. However, the policy of using biofuels has been strongly questioned by the impacts that can generate; an example is the increase of other more harmful GHGs like the CH₄ that underlies the amount of solid waste generated. Casanare's department is estimated be one of the major producers of palm oil of the country given that has recently expanded its sowed area, which implies an increase in waste generated primarily in the industrial stage. For this reason, the following study evaluated the agronomic potential of the biochar obtained from empty fruit bunches and its nutritional contribution in cultivated soils with Elaeis guineensis in Casanare, Colombia. The biochar was obtained by slow pyrolysis of the clusters in a retort oven at an average temperature of 190 °C and a residence time of 8 hours. The final product was taken to the laboratory for its physical and chemical analysis as well as a soil sample from a cultivation of Elaeis guineensis located in Tauramena-Casanare. With the results obtained plus the bibliographical reports of the nutrient demand in this cultivation, the possible nutritional contribution of the biochar was determined. It is estimated that the cultivation requirements of nitrogen is 12.1 kg.ha⁻¹, potassium is 59.3 kg.ha⁻¹, magnesium is -31.5 kg.ha⁻¹ and phosphorus is 5.6 kg.ha⁻¹ obtaining a biochar contribution of 143.1 kg.ha⁻¹, 1204.5 kg.ha⁻¹, 39.2 kg.ha⁻¹ and 71.6 kg.ha⁻¹ respectively. The incorporation of biochar into the soil would significantly improve the concentrations of N, P, K and Mg, nutrients considered important in the yield of palm oil, coupled with the importance of nutrient recycling in agricultural production systems sustainable. The biochar application improves the physical properties of soils, mainly in the humidity retention. On the other hand, it regulates the availability of nutrients for plants absorption, with economic savings in the application of synthetic fertilizers and water by irrigation. It also becomes an alternative to manage agricultural waste, reducing the involuntary emissions of greenhouse gases to the environment by decomposition in the field, reducing the CO₂ content in the atmosphere.

Keywords: biochar, nutrient recycling, oil palm, pyrolysis

Procedia PDF Downloads 130
339 Effect of Two Different Method for Juice Processing on the Anthocyanins and Polyphenolics of Blueberry (Vaccinium corymbosum)

Authors: Onur Ercan, Buket Askin, Erdogan Kucukoner

Abstract:

Blueberry (Vaccinium corymbosum, bluegold) has become popular beverage due to their nutritional values such as vitamins, minerals, and antioxidants. In the study, the effects of pressing, mashing, enzymatic treatment, and pasteurization on anthocyanins, colour, and polyphenolics of blueberry juice (BJ) were studied. The blueberry juice (BJ) was produced with two different methods that direct juice extraction (DJE) and mash treatment process (MTP) were applied. After crude blueberry juice (CBJ) production, the samples were first treated with commercial enzymes [Novoferm-61 (Novozymes A/S) (2–10 mL/L)], to break down the hydrocolloid polysaccharides, mainly pectin and starch. The enzymes were added at various concentrations. The highest transmittance (%) was obtained for Novoferm-61 at a concentration of 2 mL/L was 66.53%. After enzymatic treatment, clarification trials were applied to the enzymatically treated BJs with adding various amounts of bentonite (10%, w/v), gelatin (1%, w/v) and kiselsol (15%, v/v). The turbidities of the clarified samples were then determined. However, there was no significant differences between transmittances (%) for samples. For that, only enzymatic treatment was applied to the blueberry juice processing (DDBJ, depectinized direct blueberry juice). Based on initial pressing process made to evaluate press function, it was determined that pressing fresh blueberries with no other processing did not render adequate juice due to lack of liquefaction. Therefore, the blueberries were mash into small pieces (3 mm) and then enzymatic treatments and clarification trials were performed. Finally, both BJ samples were pasteurized. Compositional analyses, colour properties, polyphenols and antioxidant properties were compared. Enzymatic treatment caused significant reductions in ACN content (30%) in Direct Blueberry Juice Processing (DBJ), while there was a significant increasing in Mash Treatment Processing (MTP). Overall anthocyanin levels were higher intreated samples after each processing step in MTP samples, but polyphenolic levels were slightly higher for both processes (DBJ and MTP). There was a reduction for ACNs and polyphenolics only after pasteurization. It has a result that the methods for tried to blueberry juice is suitable into obtain fresh juice. In addition, we examined fruit juice during processing stages; anthocyanin, phenolic substance content and antioxidant activity are higher, and yield is higher in fruit juice compared to DBJ method in MTP method, the MTP method should be preferred in processing juice of blueberry into fruit juice.

Keywords: anthocyanins, blueberry, depectinization, polyphenols

Procedia PDF Downloads 68
338 Non Destructive Ultrasound Testing for the Determination of Elastic Characteristics of AlSi7Zn3Cu2Mg Foundry Alloy

Authors: A. Hakem, Y. Bouafia

Abstract:

Characterization of materials used for various mechanical components is of great importance in their design. Several studies were conducted by various authors in order to improve their physical and/or chemical properties in general and mechanical or metallurgical properties in particular. The foundry alloy AlSi7Zn3Cu2Mg is one of the main components constituting the various mechanisms for the implementation of applications and various industrial projects. Obtaining a reliable product is not an easy task; several results proposed by different authors show sometimes results that can contradictory. Due to their high mechanical characteristics, these alloys are widely used in engineering. Silicon improves casting properties and magnesium allows heat treatment. It is thus possible to obtain various degrees of hardening and therefore interesting compromise between tensile strength and yield strength, on one hand, and elongation, on the other hand. These mechanical characteristics can be further enhanced by a series of mechanical treatments or heat treatments. Their light weight coupled with high mechanical characteristics, aluminum alloys are very much used in cars and aircraft industry. The present study is focused on the influence of heat treatments which cause significant micro structural changes, usually hardening by variation of annealing temperatures by increments of 10°C and 20°C on the evolution of the main elastic characteristics, the resistance, the ductility and the structural characteristics of AlSi7Zn3Cu2Mg foundry alloy cast in sand by gravity. These elastic properties are determined in three directions for each specimen of dimensions 200x150x20 mm³ by the ultrasonic method based on acoustic or elastic waves. The hardness, the micro hardness and the structural characteristics are evaluated by a non-destructive method. The aim of this work is to study the hardening ability of AlSi7Zn3Cu2Mg alloy by considering ten states. To improve the mechanical properties obtained with the raw casting, one should use heat treatment for structural hardening; the addition of magnesium is necessary to increase the sensitivity to this specific heat treatment: Treatment followed by homogenization which generates a diffusion of atoms in a substitution solid solution inside a hardening furnace at 500°C during 8h, followed immediately by quenching in water at room temperature 20 to 25°C, then an ageing process for 17h at room temperature and at different annealing temperature (150, 160, 170, 180, 190, 240, 200, 220 and 240°C) for 20h in an annealing oven. The specimens were allowed to cool inside the oven.

Keywords: aluminum, foundry alloy, magnesium, mechanical characteristics, silicon

Procedia PDF Downloads 240
337 Diagnostic Value of CT Scan in Acute Appendicitis

Authors: Maria Medeiros, Suren Surenthiran, Abitha Muralithar, Soushma Seeburuth, Mohammed Mohammed

Abstract:

Introduction: Appendicitis is the most common surgical emergency globally and can have devastating consequences. Diagnostic imaging in acute appendicitis has become increasingly common in aiding the diagnosis of acute appendicitis. Computerized tomography (CT) and ultrasound (US) are the most commonly used imaging modalities for diagnosing acute appendicitis. Pre-operative imaging has contributed to a reduction of negative appendicectomy rates from between 10-29% to 5%. Literature report CT scan has a diagnostic sensitivity of 94% in acute appendicitis. This clinical audit was conducted to establish if the CT scan's diagnostic yield for acute appendicitis matches the literature. CT scan has a high sensitivity and specificity for diagnosing acute appendicitis and its use can result in a lower negative appendicectomy rate. The aim of this study is to compare the pre-operative imaging findings from CT scans to the histopathology results post-operatively and establish the accuracy of CT scans in aiding the diagnosis of acute appendicitis. Methods: This was a retrospective study focusing on adult presentations to the general surgery department in a district general hospital in central London with an impression of acute appendicitis. We analyzed all patients from July 2022 to December 2022 who underwent a CT scan preceding appendicectomy. Pre-operative CT findings and post-operative histopathology findings were compared to establish the efficacy of CT scans in diagnosing acute appendicitis. Our results were also cross-referenced with pre-existing literature. Data was collected and anonymized using CERNER and analyzed in Microsoft Excel. Exclusion criteria: Children, age <16. Results: 65 patients had CT scans in which the report stated acute appendicitis. Of those 65 patients, 62 patients underwent diagnostic laparoscopies. 100% of patients who underwent an appendicectomy with a pre-operative CT scan showing acute appendicitis had acute appendicitis in histopathology analysis. 3 of the 65 patients who had a CT scan showing appendicitis received conservative treatment. Conclusion: CT scans positive for acute appendicitis had 100% sensitivity and a positive predictive value, which matches published research studies (sensitivity of 94%). The use of CT scans in the diagnostic work-up for acute appendicitis can be extremely helpful in a) confirming the diagnosis and b) reducing the rates of negative appendicectomies and consequently reducing unnecessary operative-associated risks for patients, reducing costs and reducing pressure on emergency theatre lists.

Keywords: acute apendicitis, CT scan, general surgery, imaging

Procedia PDF Downloads 56
336 Cracking Mode and Path in Duplex Stainless Steels Failure

Authors: Faraj A. E. Alhegagi, Bassam F. A. Alhajaji

Abstract:

Ductile and brittle fractures are the two main modes for the failure of engineering components. Fractures are classified with respect to several characteristics, such as strain to fracture, ductile or brittle crystallographic mode, shear or cleavage, and the appearance of fracture, granular or transgranular. Cleavage is a brittle fracture involves transcrystalline fracture along specific crystallographic planes and in certain directions. Fracture of duplex stainless steels takes place transgranularly by cleavage of the ferrite phase. On the other hand, ductile fracture occurs after considerable plastic deformation prior to failure and takes place by void nucleation, growth, and coalescence to provide an easy fracture path. Twinning causes depassivation more readily than slip and appears at stress lower than the theoretical yield stress. Consequently, damage due to twinning can occur well before that due to slip. Stainless steels are clean materials with the low efficiency of second particles phases on the fracture mechanism. The ferrite cleavage and austenite tear off are the main mode by which duplex stainless steels fails. In this study, the cracking mode and path of specimens of duplex stainless steels were investigated. Zeron 100 specimens were heat treated to different times cooled down and pulled to failure. The fracture surface was investigated by scanning electron microscopy (SEM) concentrating on the cracking mechanism, path, and origin. Cracking mechanisms were studied for those grains either as ferrite or austenite grains identified according to fracture surface features. Cracks propagated through the ferrite and the austenite two phases were investigated. Cracks arrested at the grain boundary were studied as well. For specimens aged for 100h, the ferrite phase was noted to crack by cleavage along well-defined planes while austenite ridges were clearly observed within the ferrite grains. Some grains were observed to fail with topographic features that were not clearly identifiable as ferrite cleavage or austenite tearing. Transgranular cracking was observed taking place in the ferrite phase on well-defined planes. No intergranular cracks were observed for the tested material. The austenite phase was observed to serve as a crack bridge and crack arrester.

Keywords: austenite ductile tear off, cracking mode, ferrite cleavage, stainless steels failure

Procedia PDF Downloads 121
335 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 300
334 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells

Authors: Brahim Aissa

Abstract:

Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.

Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties

Procedia PDF Downloads 128
333 Anecic and Epigeic Earthworms as Potential Biocontrol Agents of Fusarium graminearum, Causal Agent of Fusarium Head Blight on Wheat

Authors: Gabriella Jorge, Carlos A. Pérez, Hanna Friberg, Sara Söderlund, Jan Lagerlöf

Abstract:

Fusarium Head Blight (FHB) is one of the most important Fusarium-caused diseases, which affects cereals with serious detrimental effects on yield and grain quality worldwide. Earthworms have been suggested as an alternative to control this disease, which requires a combination of preventive methods to reduce level of damage, although it has been proven that their effect is species dependent. Our objective was to evaluate the effect of the earthworms Aporrectodea longa and Lumbricus rubellus, on the inoculum of Fusarium graminearum on wheat straw. To test this we kept earthworms in vessels with soil, and F. graminearum-inoculated straw covering the surface, under controlled conditions for 6 weeks. Two factors were evaluated with a complete factorial design: earthworms (three levels: without earthworms, A. longa, and L. rubellus), and straw (two levels: inoculated with the pathogen, and sterile). The presence of L. rubellus significantly (P<0.05) reduced the amount of inoculated straw at the soil surface 31% after 6 weeks, while the presence of A. longa, most found in quiescence, did not have any significant effect on the amount of straw when compared to the control. After incubation, F. graminearum was detected by qPCR, only in the surface straw in those treatments inoculated with the pathogen but without earthworms. None of the treatments showed presence of Fusarium in the buried straw, soil or earthworm casts. Both earthworm species decreased in body weight during incubation, most likely due to the decrease in soil water content during the experiment, from 25% to 20%, and/or inadequate food supply, since no other source of food was added. However, this reduction in weight occurred indistinctly of the presence or not of Fusarium (P<0.05). This indicates that both species, of different ecological groups, anecic and epigeic, can reduce F. graminearum inoculum present in wheat straw, while their growth is not negatively affected by this pathogen. These promising results place A. longa, and L. rubellus as potential biocontrol agents of this fungal plant pathogen responsible for Fusarium Head Blight disease in wheat, although further ongoing experiments are needed to confirm the repeatability of these results.

Keywords: Aporrectodea longa, biological control, fungal plant pathogen, Lumbricus rubellus, qPCR, wheat straw

Procedia PDF Downloads 250
332 Fishing Waste: A Source of Valuable Products through Anaerobic Treatments

Authors: Luisa Maria Arrechea Fajardo, Luz Stella Cadavid Rodriguez

Abstract:

Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery.

Keywords: biogas production, fishing waste, VFA membrane extraction, VFA production

Procedia PDF Downloads 86
331 Effect of Plant Growth Promoting Rhizobacteria on the Germination and Early Growth of Onion (Allium cepa)

Authors: Dragana R. Stamenov, Simonida S. Djuric, Timea Hajnal Jafari

Abstract:

Plant growth promoting rhizobacteria (PGPR) are a heterogeneous group of bacteria that can be found in the rhizosphere, at root surfaces and in association with roots, enhancing the growth of the plant either directly and/or indirectly. Increased crop productivity associated with the presence of PGPR has been observed in a broad range of plant species, such as raspberry, chickpeas, legumes, cucumber, eggplant, pea, pepper, radish, tobacco, tomato, lettuce, carrot, corn, cotton, millet, bean, cocoa, etc. However, until now there has not been much research about influences of the PGPR on the growth and yield of onion. Onion (Allium cepa L.), of the Liliaceae family, is a species of great economic importance, widely cultivated all over the world. The aim of this research was to examine the influence of plant growth promoting bacteria Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, Bacillus subtillis and Azotobacter sp. on the seed germination and early growth of onion (Allium cepa). PGPR Azotobacter sp., Bacillus subtilis, Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, from the collection of the Faculty of Agriculture, Novi Sad, Serbia, were used as inoculants. The number of cells in 1 ml of the inoculum was 10⁸ CFU/ml. The control variant was not inoculated. The effect of PGPR on seed germination and hypocotyls length of Allium cepa was evaluated in controlled conditions, on filter paper in the dark at 22°C, while effect on the plant length and mass in semicontrol conditions, in 10 l volume vegetative pots. Seed treated with fungicide and untreated seed were used. After seven days the percentage of germination was determined. After seven and fourteen days hypocotil length was measured. Fourteen days after germination, length and mass of plants were measured. Application of Pseudomonas sp. Dragana and Kiš and Bacillus subtillis had a negative effect on onion seed germination, while the use of Azotobacter sp. gave positive results. On average, application of all investigated inoculants had a positive effect on the measured parameters of plant growth. Azotobacter sp. had the greatest effect on the hypocotyls length, length and mass of the plant. In average, better results were achieved with untreated seeds in compare with treated. Results of this study have shown that PGPR can be used in the production of onion.

Keywords: germination, length, mass, microorganisms, onion

Procedia PDF Downloads 205
330 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 332
329 Effect of a Mixture of Phenol, O-Cresol, P-Cresol, and M-Cresol on the Nitrifying Process in a Sequencing Batch Reactor

Authors: Adriana Sosa, Susana Rincon, Chérif Ben, Diana Cabañas, Juan E. Ruiz, Alejandro Zepeda

Abstract:

The complex chemical composition (mixtures of ammonium and recalcitrant compounds) of the effluents from the chemical, pharmaceutical and petrochemical industries represents a challenge in their biological treatment. This treatment involves nitrification process that can suffer an inhibition due to the presence of aromatic compounds giving as a result the decrease of the process efficiency. The inhibitory effects on nitrification in the presence of aromatic compounds have already been studied; however a few studies have considered the presence of phenolic compounds in the form of mixtures, which is the form that they are present in real context. For this reason, we realized a kinetic study on the nitrifying process in the presence of different concentrations of a mixture of phenol, o-cresol, m-cresol and p-cresol (0 - 320 mg C/L) in a sequencing batch reactor (SBR). Firstly, the nitrifying process was evaluated in absence of the phenolic mixture (control 1) in a SBR with 2 L working volume and 176 mg/L of nitrogen of microbial protein. Total oxidation of initial ammonium (efficiency; ENH4+ of 100 %) to nitrate (nitrifying yield; YNO3- of 0.95) were obtained with specific rates of ammonium consumption (qN-NH4+) and nitrate production (qN-NO3-) (of 1.11 ± 0.04 h-1 and 0.67 h-1 ± 0.11 respectively. During the phase of acclimation with 40 mg C/L of the phenolic mixture, an inhibitory effect on the nitrifying process was observed, provoking a decrease in ENH4+ and YNO3- (11 and 54 % respectively) as well as in the specific rates (89 y 46 % respectively), being the ammonia oxidizing bacteria (BAO) the most affected. However, in the next cycles without the phenolic mixture (control 2), the nitrifying consortium was able to recover its nitrifying capacity (ENH4+ = 100% and YNO3-=0.98). Afterwards the SBR was fed with 10 mg C/L of the phenolic mixture, obtaining and ENH4+ of 100%, YNO3- and qN-NH4+ 0.62 ± 0.006 and 0.13 ± 0.004 respectively, while the qN-NO3- was 0.49 ± 0.007. Moreover, with the increase of the phenolic concentrations (10-160 mg C/L) and the number of cycles the nitrifying consortium was able to oxidize the ammonia with ENH4+ of 100 % and YNO3- close to 1. However a decrease in the values of the nitrification specific rates and increase in the oxidation in phenolic compounds (70 to 94%) were observed. Finally, in the presence of 320 mg C/L, the nitrifying consortium was able to simultaneously oxidize the ammonia (ENH4+= 100%) and the phenolic mixture (p-cresol>phenol>m-cresol>o-cresol) being the o-cresol the most recalcitrant compound. In all the experiments the use of a SBR allowed a respiratory adaptation of the consortium to oxidize the phenolic mixture achieving greater adaptation of the nitrite-oxidizing bacteria (NOB) than in the ammonia-oxidizing bacteria (AOB).

Keywords: cresol, inhibition, nitrification, phenol, sequencing batch reactor

Procedia PDF Downloads 335
328 Agro-Morphological Traits Based Genetic Diversity Analysis of ‘Ethiopian Dinich’ Plectranthus edulis (Vatke) Agnew Populations Collected from Diverse Agro-Ecologies in Ethiopia

Authors: Fekadu Gadissa, Kassahun Tesfaye, Kifle Dagne, Mulatu Geleta

Abstract:

‘Ethiopian dinich’ also called ‘Ethiopian potato’ is one of the economically important ‘orphan’ edible tuber crops indigenous to Ethiopia. We evaluated the morphological and agronomic traits performances of 174 samples from Ethiopia at multiple locations using 12 qualitative and 16 quantitative traits, recorded at the correct growth stages. We observed several morphotypes and phenotypic variations for qualitative traits along with a wide range of mean performance values for all quantitative traits. Analysis of variance for each quantitative trait showed a highly significant (p<0.001) variation among the collections with eventually non-significant variation for environment-traits interaction for all but flower length. A comparatively high phenotypic and genotypic coefficient of variation was observed for plant height, days to flower initiation, days to 50% flowering and tuber number per hill. Moreover, the variability and coefficients of variation due to genotype-environment interaction was nearly zero for all the traits except flower length. High genotypic coefficients of variation coupled with a high estimate of broad sense heritability and high genetic advance as a percent of collection mean were obtained for tuber weight per hill, number of primary branches per plant, tuber number per hill and number of plants per hill. Association of tuber yield per hectare of land showed a large magnitude of positive phenotypic and genotypic correlation with those traits. Principal components analysis revealed 76% of the total variation for the first six principal axes with high factor loadings again from tuber number per hill, number of primary branches per plant and tuber weight. The collections were grouped into four clusters with the weak region (zone) of origin based pattern. In general, there is high genetic-based variability for ‘Ethiopian dinich’ improvement and conservation. DNA based markers are recommended for further genetic diversity estimation for use in breeding and conservation.

Keywords: agro-morphological traits, Ethiopian dinich, genetic diversity, variance components

Procedia PDF Downloads 163
327 Antioxidative, Anticholinesterase and Anti-Neuroinflammatory Properties of Malaysian Brown and Green Seaweeds

Authors: Siti Aisya Gany, Swee Ching Tan, Sook Yee Gan

Abstract:

Diminished antioxidant defense or increased production of reactive oxygen species in the biological system can result in oxidative stress which may lead to various neurodegenerative diseases including Alzheimer’s disease (AD). Microglial activation also contributes to the progression of AD by producing several pro-inflammatory cytokines, nitric oxide (NO), and prostaglandin E2 (PGE2). Oxidative stress and inflammation have been reported to be possible pathophysiological mechanisms underlying AD. In addition, the cholinergic hypothesis postulates that memory impairment in patient with AD is also associated with the deficit of cholinergic function in the brain. Although a number of drugs have been approved for the treatment of AD, most of these synthetic drugs have diverse side effects and yield relatively modest benefits. Marine algae have great potential in pharmaceutical and biomedical applications as they are valuable sources of bioactive properties such as anti-coagulation, anti-microbial, anti-oxidative, anti-cancer and anti-inflammatory. Hence, this study aimed to provide an overview of the properties of Malaysian seaweeds (Padina australis, Sargassum polycystum and Caulerpa racemosa) in inhibiting oxidative stress, neuroinflammation and cholinesterase enzymes. All tested samples significantly exhibit potent DPPH and moderate Superoxide anion radical scavenging ability (P<0.05). Hexane and methanol extracts of S. polycystum exhibited the most potent radical scavenging ability with IC50 values of 0.1572 ± 0.004 mg/ml and 0.8493 ± 0.02 for DPPH and ABTS assays, respectively. Hexane extract of C. racemosa gave the strongest superoxide radical inhibitory effect (IC50 of 0.3862± 0.01 mg/ml). Most seaweed extracts significantly inhibited the production of cytokine (IL-6, IL-1 β, TNFα) and NO in a concentration-dependent manner without causing significant cytotoxicity to the lipopolysaccharide (LPS)-stimulated microglia cells (P<0.05). All extracts suppressed cytokine and NO level by more than 80% at the concentration of 0.4mg/ml. In addition, C. racemosa and S. polycystum also showed anti-acetylcholinesterase activities with the IC50 values ranging from 0.086-0.115 mg/ml. Moreover, C. racemosa and P. australis were also found to be active against butyrylcholinesterase with IC50 values ranging from 0.118-0.287 mg/ml.

Keywords: anti-cholinesterase, anti-oxidative, neuroinflammation, seaweeds

Procedia PDF Downloads 642
326 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.

Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR

Procedia PDF Downloads 289
325 Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study

Authors: Zeenat Rupawalla, Nicole Robinson, Susanne Schmidt, Sijie Li, Selina Carruthers, Elodie Buisset, John Roles, Ben Hankamer, Juliane Wolf

Abstract:

Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals.

Keywords: bioeconomy, decarbonisation, energy footprint, microalgae

Procedia PDF Downloads 115