Search results for: clinical error
3498 Effects of Financial Development on Economic Growth in South Asia
Authors: Anupam Das
Abstract:
Although financial liberalization has been one of the most important policy prescriptions of international organizations like the World Bank and the IMF, the effect of financial liberalization on economic growth in developing countries is far from unanimous. Since the '80s, South Asian countries made a significant development in liberalization the financial sector. However, due to unavailability of a sufficient number of time series observations, the relationship between economic growth and financial development has not been investigated adequately. We aim to fill this gap by examining time series data of five developing countries from the South Asian region: Bangladesh, India, Pakistan, Sri Lanka, and Nepal. Applying the cointegration tests and Granger causality within the vector error correction model (VECM), we do not find unanimous evidence of financial development on positive economic growth. These results are helpful for developing countries which have been trying to liberalize the financial sector in recent decades.Keywords: economic growth, financial development, Granger causality, South Asia
Procedia PDF Downloads 3713497 Awareness Creation of Benefits of Antitrypsin-Free Nutraceutical Biopowder for Increasing Human Serum Albumin Synthesis as Possible Adjunct for Management of MDRTB or MDRTB-HIV Patients
Authors: Vincent Oghenekevbe Olughor, Olusoji Mayowa Ige
Abstract:
Except for a preexisting liver disease and malnutrition, there are no predilections for low serum albumin (SA) levels in humans. At normal reference levels (4.0-6.0g/dl) SA is a universal marker for mortality and morbidity risks assessments where depletion by 1.0g/dl increases mortality risk by 137% and morbidity by 89%.It has 40 known functions contributing significantly to the sustenance of human life. A depletion in SA to <2.2g/dl, in most clinical settings worldwide, leads to loss of oncotic pressure of blood causing clinical manifestations of bipedal Oedema, in which the patients remain conscious. SA also contributes significantly to buffering of blood to a life-sustaining pH of 7.35-7.45. A drop in blood pH to <6.9 will lead to instant coma and death, which can occur after SA continues to deplete after manifestations of bipedal Oedema. In an intervention study conducted in 2014 following the discovery that “SA is depleted during malaria fever”, a Nutraceutical formulated for use as treatment adjunct to prevent SA depletions during malaria to <2.4g/dl after Efficacy testing was found to be satisfactory. There are five known types of Malaria caused by Apicomplexan parasites, Plasmodium: the most lethal being that caused by Plasmodium falciparum causing malignant tertian malaria, in which the fever was occurring every 48 hours coincides with the dumping of malaria-toxins (Hemozoin) into blood, causing contamination: blood must remain sterile. Other Apicomplexan parasites, Toxoplasma and Cryptosporidium, are opportunistic infections of HIV. Separate studies showed SA depletions in MDRTB (multidrug resistant TB), and MDRTB-HIV patients by the same mechanism discovered with malaria and such depletions will be further complicated whenever Apicomplexan parasitic infections co-exist. Both Apicomplexan parasites and the TB parasite belong to the Obligate-group of Parasites, which are parasites that replicate only inside its host; and most of them have capacities to over-consume host nutrients during parasitaemia. In MDRTB patients the body attempts repeatedly to prevent depletions in SA to critical levels in the presence of adequate nutrients and only for a while in MDRTB-HIV patients. These groups of patients will, therefore, benefit from the already tested Nutraceutical in malaria patients. The Nutraceutical bio-Powder was formulated (to BP 1988 specification) from twelve nature-based food-grade nutrients containing all dedicated nutrients for ensuring improved synthesis of Albumin by the liver. The Nutraceutical was administered daily for 38±2days in 23 children, in a prospective phase-2 clinical trial, and its impact on body weight and core blood parameters were documented at the start and end of efficacy testing period. Sixteen children who did not experience malaria-induced depletions of SA had significant SA increase; seven children who experienced malaria-induced depletions of SA had insignificant SA decrease. The Packed Cell Volume Percentage (PCV %), a measure of the Oxygen carrying capacity of blood and the amount of nutrients the body can absorb, increased in both groups. The total serum proteins (SA+ Globulins) increased or decreased within the continuum of normal. In conclusion, MDRTB and MDRTB-HIV patients will benefit from a variant of this Nutraceutical when used as treatment adjunct.Keywords: antitrypsin-free Nutraceutical, apicomplexan parasites, no predilections for low serum albumin, toxoplasmosis
Procedia PDF Downloads 2883496 The Organization of Multi-Field Hospital’s Work Environment in the Republic of Sakha, Yakutia
Authors: Inna Vinokurova, N. Savvina
Abstract:
The goal of research: to study the organization of multi-field hospital’s work environment in the Republic of Sakha (Yakutia), Autonomous public health care institution of Republic of Sakha (Yakutia) - Republican Hospital No. 1 - National Center of Medicine. Results: Autonomous public health care institution of Republic of Sakha (Yakutia) - Republican Hospital No. 1 - National Center of Medicine is a multidisciplinary, specialized hospital complex that provides specialized and high-tech medical care to children and adults in the Republic of Sakha (Yakutia) of the Russian Federation. There are 5 diagnostic and treatment centers (advisory and diagnostic, clinical, pediatric, perinatal, Republican cardiologic dispensary) with 45 clinical specialized departments with 727 cots, 5 resuscitation departments, 20 operating rooms and out-patient department with 905 visits in alternation in the National Center of Medicine. Annually more than 20,000 patients receive treatment in the hospital of the Republican Hospital of the Republic of Sakha (Yakutia), more than 70,000 patients visit out-patient sections, more than 2 million researches are done, more than 12,000 surgeries are performed, more than 2 thousand babies are delivered. National Center of Medicine has a great influence with such population’s health indicators as total mortality, birth rate, maternal, infant and perinatal mortality, circulatory system incidence. The work environment of the Republican Hospital of the Republic of Sakha (Yakutia) is represented by the following structural departments: pharmacy, blood transfusion department, sterilization department, laundry, dietetic department, infant-feeding centre, material and technical supply. More than 200 employees work in this service. The main function of these services is to provide on-time and fail-safe supply with all necessary: wear parts, medical supplies, donated blood and its components, foodstuffs, hospital linen , sterile instruments, etc. Thus, the activity of medical organization depends on the work environment, including quality health care, so it is a main part of multi-field hospital activity.Keywords: organization of multi-field hospital’s, work environment, quality health care, pharmacy, blood transfusion department, sterilization department
Procedia PDF Downloads 2423495 Developing VR-Based Neurorehabilitation Support Tools: A Step-by-Step Approach for Cognitive Rehabilitation and Pain Distraction during Invasive Techniques in Hospital Settings
Authors: Alba Prats-Bisbe, Jaume López-Carballo, David Leno-Colorado, Alberto García Molina, Alicia Romero Marquez, Elena Hernández Pena, Eloy Opisso Salleras, Raimon Jané Campos
Abstract:
Neurological disorders are a leading cause of disability and premature mortality worldwide. Neurorehabilitation (NRHB) is a clinical process aimed at reducing functional impairment, promoting societal participation, and improving the quality of life for affected individuals. Virtual reality (VR) technology is emerging as a promising NRHB support tool. Its immersive nature fosters a strong sense of agency and embodiment, motivating patients to engage in meaningful tasks and increasing adherence to therapy. However, the clinical benefits of VR interventions are challenging to determine due to the high heterogeneity among health applications. This study explores a stepwise development approach for creating VR-based tools to assist individuals with neurological disorders in medical practice, aiming to enhance reproducibility, facilitate comparison, and promote the generalization of findings. Building on previous research, the step-by-step methodology encompasses: Needs Identification– conducting cross-disciplinary meetings to brainstorm problems, solutions, and address barriers. Intervention Definition– target population, set goals, and conceptualize the VR system (equipment and environments). Material Selection and Placement– choose appropriate hardware and software, place the device within the hospital setting, and test equipment. Co-design– collaboratively create VR environments, user interfaces, and data management strategies. Prototyping– develop VR prototypes, conduct user testing, and make iterative redesigns. Usability and Feasibility Assessment– design protocols and conduct trials with stakeholders in the hospital setting. Efficacy Assessment– conduct clinical trials to evaluate outcomes and long-term effects. Cost-Effectiveness Validation– assess reproducibility, sustainability, and balance between costs and benefits. NRHB is complex due to the multifaceted needs of patients and the interdisciplinary healthcare architecture. VR has the potential to support various applications, such as motor skill training, cognitive tasks, pain management, unilateral spatial neglect (diagnosis and treatment), mirror therapy, and ecologically valid activities of daily living. Following this methodology was crucial for launching a VR-based system in a real hospital environment. Collaboration with neuropsychologists lead to develop A) a VR-based tool for cognitive rehabilitation in patients with acquired brain injury (ABI). The system comprises a head-mounted display (HTC Vive Pro Eye) and 7 tasks targeting attention, memory, and executive functions. A desktop application facilitates session configuration, while database records in-game variables. The VR tool's usability and feasibility were demonstrated in proof-of-concept trials with 20 patients, and effectiveness is being tested through a clinical protocol with 12 patients completing 24-session treatment. Another case involved collaboration with nurses and paediatric physiatrists to create B) a VR-based distraction tool during invasive techniques. The goal is to alleviate pain and anxiety associated with botulinum toxin (BTX) injections, blood tests, or intravenous placements. An all-in-one headset (HTC Vive Focus 3) deploys 360º videos to improve the experience for paediatric patients and their families. This study presents a framework for developing clinically relevant and technologically feasible VR-based support tools for hospital settings. Despite differences in patient type, intervention purpose, and VR system, the methodology demonstrates usability, viability, reproducibility and preliminary clinical benefits. It highlights the importance approach centred on clinician and patient needs for any aspect of NRHB within a real hospital setting.Keywords: neurological disorders, neurorehabilitation, stepwise development approach, virtual reality
Procedia PDF Downloads 333494 Effects of Intensive Rehabilitation Therapy on Sleep in Children with Developmental Disorders
Authors: Sung Hyun Kim
Abstract:
Introduction: Sleep disturbance is common in children with developmental disorders (D.D.). Sleep disturbance has a variety of negative effects, such as behavior problems, medical problems, and even developmental problems in children with D.D. However, to our best knowledge, there has been no proper treatment for sleep disorders in children with D.D. Therefore, we conduct this study to know the positive effects of intensive rehabilitation therapy in children with D.D. on the degree of sleep disturbance. Method: We prospectively recruited 22 patients with a diagnosis of D.D. during the period of January 2022 through May 2022. The inclusion criteria were as follows: 1) a patient who would participate in the intensive rehabilitation therapy of our institution; 2) the age participant under 18 years at the time of assessment; 3) a child who has consented to participate in the study by signing the consent form by the legal guardian. We investigated the clinical characteristics of participants by the medical record, including sex, age, underlying diagnosis of D.D., and Gross Motor Function Measures (GMFM). Before starting the intensive rehabilitation therapy, we conducted a Sleep disturbance scale for children (SDSC). It contains 26 questions about children’s sleep, and those questions are grouped into six subscales, such as Disorders of initiating and maintaining sleep (DIMS), Sleep Breathing Disorders(SBD), Disorders of arousal(DOA), Sleep-Wake Transition Disorders(SWTD), Disorders of excessive somnolence(DOES) and Sleep Hyperhydrosis(SHY). We used the t-score, which was calculated by comparing the scores of normal children. Twenty two patients received 8 weeks of intensive rehabilitation, including daily physical and occupational therapy. After that, we did follow up with SDSC. The comparison between SDSC before and after intensive rehabilitation was calculated using the paired t-test, and P< 0.05 was considered statistically significant. Results: Demographic data and clinical characteristics of 22 patients are enrolled. Patients were 4.03 ± 2.91 years old, and of the total 22 patients, 14 (64%) were male, and 8 (36%) were female. Twelve patients(45%) were diagnosed with Cerebral palsy(C.P.), and the mean value of participants’ GMFM was 47.82 ± 20.60. Each mean value of SDSC’s subscales was also calculated. DIMS was 62.36 ± 13.72, SBD was 54.18 ± 8.39, DOA was 49.59 ± 7.01, SWTD was 58.95 ± 9.20, DOES was 53.09 ± 15.15, SHY was 52.14 ± 8.82, and the total was 59.86 ± 13.18. These values suggest that children with D.D. have sleep disorders. After 8 weeks of intensive rehabilitation treatment, the score of DIMS showed improvement(p=0.016), but not the other subscale and total score of SDSC. Conclusion: This result showed that intensive rehabilitation could be helpful to patients of D.D. with sleep disorders. Especially intensive rehabilitation therapy itself can be a meaningful treatment in inducing and maintaining sleep.Keywords: sleep disorder, developmental delay, intensive rehabilitation therapy, cerebral palsy
Procedia PDF Downloads 863493 Language Switching Errors of Bilinguals: Role of Top down and Bottom up Process
Authors: Numra Qayyum, Samina Sarwat, Noor ul Ain
Abstract:
Bilingual speakers generally can speak both languages with the same competency without mixing them intentionally and making mistakes, but sometimes errors occur in language selection. This quantitative study particularly deals with the language errors made by Urdu-English bilinguals. In this research, researchers have given special attention to the part played by bottom-up priming and top-down cognitive control in these errors. Unstable Urdu-English bilingual participants termed pictures and were prompted to shift from one language to another under the pressure of time. Different situations were given to manipulate the participants. The long and short runs trials of the same language were also given before switching to another language. The study is concluded with the findings that bilinguals made more errors when switching to the first language from their second language, and these errors are large in number, especially when a speaker is switching from L2 (second language) to L1 (first language) after a long run. When the switching is reversed, i.e., from L2 to LI, it had no effect at all. These results gave the clear responsibility of all these errors to top-down cognitive control.Keywords: bottom up priming, language error, language switching, top down cognitive control
Procedia PDF Downloads 1373492 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm
Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar
Abstract:
This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.Keywords: load frequency control, fuzzy-pid controller, type 2 fuzzy system, harmony search algorithm
Procedia PDF Downloads 2783491 Development and Evaluation of a Cognitive Behavioural Therapy Based Smartphone App for Low Moods and Anxiety
Authors: David Bakker, Nikki Rickard
Abstract:
Smartphone apps hold immense potential as mental health and wellbeing tools. Support can be made easily accessible and can be used in real-time while users are experiencing distress. Furthermore, data can be collected to enable machine learning and automated tailoring of support to users. While many apps have been developed for mental health purposes, few have adhered to evidence-based recommendations and even fewer have pursued experimental validation. This paper details the development and experimental evaluation of an app, MoodMission, that aims to provide support for low moods and anxiety, help prevent clinical depression and anxiety disorders, and serve as an adjunct to professional clinical supports. MoodMission was designed to deliver cognitive behavioural therapy for specifically reported problems in real-time, momentary interactions. Users report their low moods or anxious feelings to the app along with a subjective units of distress scale (SUDS) rating. MoodMission then provides a choice of 5-10 short, evidence-based mental health strategies called Missions. Users choose a Mission, complete it, and report their distress again. Automated tailoring, gamification, and in-built data collection for analysis of effectiveness was also included in the app’s design. The development process involved construction of an evidence-based behavioural plan, designing of the app, building and testing procedures, feedback-informed changes, and a public launch. A randomized controlled trial (RCT) was conducted comparing MoodMission to two other apps and a waitlist control condition. Participants completed measures of anxiety, depression, well-being, emotional self-awareness, coping self-efficacy and mental health literacy at the start of their app use and 30 days later. At the time of submission (November 2016) over 300 participants have participated in the RCT. Data analysis will begin in January 2017. At the time of this submission, MoodMission has over 4000 users. A repeated-measures ANOVA of 1390 completed Missions reveals that SUDS (0-10) ratings were significantly reduced between pre-Mission ratings (M=6.20, SD=2.39) and post-Mission ratings (M=4.93, SD=2.25), F(1,1389)=585.86, p < .001, np2=.30. This effect was consistent across both low moods and anxiety. Preliminary analyses of the data from the outcome measures surveys reveal improvements across mental health and wellbeing measures as a result of using the app over 30 days. This includes a significant increase in coping self-efficacy, F(1,22)=5.91, p=.024, np2=.21. Complete results from the RCT in which MoodMission was evaluated will be presented. Results will also be presented from the continuous outcome data being recorded by MoodMission. MoodMission was successfully developed and launched, and preliminary analysis suggest that it is an effective mental health and wellbeing tool. In addition to the clinical applications of MoodMission, the app holds promise as a research tool to conduct component analysis of psychological therapies and overcome restraints of laboratory based studies. The support provided by the app is discrete, tailored, evidence-based, and transcends barriers of stigma, geographic isolation, financial limitations, and low health literacy.Keywords: anxiety, app, CBT, cognitive behavioural therapy, depression, eHealth, mission, mobile, mood, MoodMission
Procedia PDF Downloads 2713490 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 1533489 The Influence of Neural Synchrony on Auditory Middle Latency and Late Latency Responses and Its Correlation with Audiological Profile in Individuals with Auditory Neuropathy
Authors: P. Renjitha, P. Hari Prakash
Abstract:
Auditory neuropathy spectrum disorder (ANSD) is an auditory disorder with normal cochlear outer hair cell function and disrupted auditory nerve function. It results in unique clinical characteristic with absent auditory brainstem response (ABR), absent acoustic reflex and the presence of otoacoustic emissions (OAE) and cochlear microphonics. The lesion site could be at cochlear inner hair cells, the synapse between the inner hair cells and type I auditory nerve fibers, and/or the auditory nerve itself. But the literatures on synchrony at higher auditory system are sporadic and are less understood. It might be interesting to see if there is a recovery of neural synchrony at higher auditory centers. Also, does the level at which the auditory system recovers with adequate synchrony to the extent of observable evoke response potentials (ERPs) can predict speech perception? In the current study, eight ANSD participants and healthy controls underwent detailed audiological assessment including ABR, auditory middle latency response (AMLR), and auditory late latency response (ALLR). AMLR was recorded for clicks and ALLR was evoked using 500Hz and 2 kHz tone bursts. Analysis revealed that the participant could be categorized into three groups. Group I (2/8) where ALLR was present only for 2kHz tone burst. Group II (4/8), where AMLR was absent and ALLR was seen for both the stimuli. Group III (2/8) consisted individuals with identifiable AMLR and ALLR for all the stimuli. The highest speech identification sore observed in ANSD group was 30% and hence considered having poor speech perception. Overall test result indicates that the site of neural synchrony recovery could be varying across individuals with ANSD. Some individuals show recovery of neural synchrony at the thalamocortical level while others show the same only at the cortical level. Within ALLR itself there could be variation across stimuli again could be related to neural synchrony. Nevertheless, none of these patterns could possible explain the speech perception ability of the individuals. Hence, it could be concluded that neural synchrony as measured by evoked potentials could not be a good clinical predictor speech perception.Keywords: auditory late latency response, auditory middle latency response, auditory neuropathy spectrum disorder, correlation with speech identification score
Procedia PDF Downloads 1493488 A Local Tensor Clustering Algorithm to Annotate Uncharacterized Genes with Many Biological Networks
Authors: Paul Shize Li, Frank Alber
Abstract:
A fundamental task of clinical genomics is to unravel the functions of genes and their associations with disorders. Although experimental biology has made efforts to discover and elucidate the molecular mechanisms of individual genes in the past decades, still about 40% of human genes have unknown functions, not to mention the diseases they may be related to. For those biologists who are interested in a particular gene with unknown functions, a powerful computational method tailored for inferring the functions and disease relevance of uncharacterized genes is strongly needed. Studies have shown that genes strongly linked to each other in multiple biological networks are more likely to have similar functions. This indicates that the densely connected subgraphs in multiple biological networks are useful in the functional and phenotypic annotation of uncharacterized genes. Therefore, in this work, we have developed an integrative network approach to identify the frequent local clusters, which are defined as those densely connected subgraphs that frequently occur in multiple biological networks and consist of the query gene that has few or no disease or function annotations. This is a local clustering algorithm that models multiple biological networks sharing the same gene set as a three-dimensional matrix, the so-called tensor, and employs the tensor-based optimization method to efficiently find the frequent local clusters. Specifically, massive public gene expression data sets that comprehensively cover dynamic, physiological, and environmental conditions are used to generate hundreds of gene co-expression networks. By integrating these gene co-expression networks, for a given uncharacterized gene that is of biologist’s interest, the proposed method can be applied to identify the frequent local clusters that consist of this uncharacterized gene. Finally, those frequent local clusters are used for function and disease annotation of this uncharacterized gene. This local tensor clustering algorithm outperformed the competing tensor-based algorithm in both module discovery and running time. We also demonstrated the use of the proposed method on real data of hundreds of gene co-expression data and showed that it can comprehensively characterize the query gene. Therefore, this study provides a new tool for annotating the uncharacterized genes and has great potential to assist clinical genomic diagnostics.Keywords: local tensor clustering, query gene, gene co-expression network, gene annotation
Procedia PDF Downloads 1683487 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 2033486 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher
Authors: M. F. Haroun, T. A. Gulliver
Abstract:
In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA
Procedia PDF Downloads 5063485 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization
Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon
Abstract:
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization
Procedia PDF Downloads 4463484 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images
Authors: Jeena R. S., Sukesh Kumar A.
Abstract:
Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.Keywords: prediction, retinal imaging, risk factors, stroke
Procedia PDF Downloads 3043483 Prevalence of Chronic Diseases and Predictors of Mortality in Home Health Care Service: Data From Saudi Arabia
Authors: Walid A. Alkeridy, Arwa Aljasser, Khalid Mohammed Alayed, Saad Alsaad, Amani S. Alqahtani, Claire Ann Lim, Sultan H. Alamri, Doaa Zainhom Mekkawy, Mohammed Al-Sofiani
Abstract:
Introduction: The history of publicly funded Home Health Care (HHC) service in Saudi Arabia dates back to 1991. The first HC program was launched to provide palliative home care services for patients with terminal cancer. Thereafter, more programs launched across Saudi Arabia most remarkably was launching the national program for HHC by the Ministry Of Health (MOH) in 2008. The national HHC MOH program is mainly providing long-term care home care services for over 40,000 Saudi citizens. The scope of the HHC service program provided by the Saudi MOH is quite diverse, ranging from basic nursing care to specialized care programs, e.g., home peritoneal dialysis, home ventilation, home infusion therapy, etc. Objectives: The primary aim of our study is to report the prevalence of chronic conditions among Saudi people receiving long-term HHC services. Secondary aims include identifying the predictors of mortality among individuals receiving long-term HHC services and studying the association between frailty and poor health outcomes among HHC users. Methods: We conducted a retrospective and cross-sectional data collection from participants receiving HHC services at King Saud University Medical City, Riyadh, Saudi Arabia. Data were collected from electronic health records (EHR), patient charts, and interviewing caregivers from the year 2019 to 2022. We assessed functional performance by Katz's activity of daily living and the Bristol Activity of Daily Living Scale (BADLS). A trained health care provider assessed frailty using the Clinical Frailty Scale (CFS). Mortality was assessed by reviewing the death certificates if patients were hospitalized through discharge status ascertainment from EHR. Results: The mean age for deceased individuals in HHC was 78.3 years. Over twenty percent of individuals receiving HHC services were readmitted to the hospital. The following variables were statistically significant between deceased and alive individuals receiving HHC services; clinical frailty scale, the total number of comorbid conditions, and functional performance based on the KATZ activity of daily living scale and the BADLS. We found that the strongest predictors for mortality were pressure ulcers which had an odds ratio of 3.75 and p-value of < 0.0001, and the clinical frailty scale, which had an odds ratio of 1.69 and p-value of 0.002, using multivariate regression analysis. In conclusion, our study found that pressure ulcers and frailty are the strongest predictors of mortality for individuals receiving home health care services. Moreover, we found a high rate of annual readmission for individuals enrolled in HHC, which requires further analysis to understand the possible contributing factors for the increased rate of hospital readmission and develop strategies to address them. Future studies should focus on designing quality improvement projects aimed at improving the quality of life for individuals receiving HHC services, especially those who have pressure ulcers at the end of life.Keywords: homecare, Saudi, prevalence, chronic
Procedia PDF Downloads 1183482 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines
Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi
Abstract:
In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.Keywords: breast cancer, mammography, CAD system, features, fusion
Procedia PDF Downloads 5993481 Performance Improvement of Cooperative Scheme in Wireless OFDM Systems
Authors: Ki-Ro Kim, Seung-Jun Yu, Hyoung-Kyu Song
Abstract:
Recently, the wireless communication systems are required to have high quality and provide high bit rate data services. Researchers have studied various multiple antenna scheme to meet the demand. In practical application, it is difficult to deploy multiple antennas for limited size and cost. Cooperative diversity techniques are proposed to overcome the limitations. Cooperative communications have been widely investigated to improve performance of wireless communication. Among diversity schemes, space-time block code has been widely studied for cooperative communication systems. In this paper, we propose a new cooperative scheme using pre-coding and space-time block code. The proposed cooperative scheme provides improved error performance than a conventional cooperative scheme using space-time block coding scheme.Keywords: cooperative communication, space-time block coding, pre-coding
Procedia PDF Downloads 3593480 Estimation of Rare and Clustered Population Mean Using Two Auxiliary Variables in Adaptive Cluster Sampling
Authors: Muhammad Nouman Qureshi, Muhammad Hanif
Abstract:
Adaptive cluster sampling (ACS) is specifically developed for the estimation of highly clumped populations and applied to a wide range of situations like animals of rare and endangered species, uneven minerals, HIV patients and drug users. In this paper, we proposed a generalized semi-exponential estimator with two auxiliary variables under the framework of ACS design. The expressions of approximate bias and mean square error (MSE) of the proposed estimator are derived. Theoretical comparisons of the proposed estimator have been made with existing estimators. A numerical study is conducted on real and artificial populations to demonstrate and compare the efficiencies of the proposed estimator. The results indicate that the proposed generalized semi-exponential estimator performed considerably better than all the adaptive and non-adaptive estimators considered in this paper.Keywords: auxiliary information, adaptive cluster sampling, clustered populations, Hansen-Hurwitz estimation
Procedia PDF Downloads 2383479 Prevalence and Mechanisms of Antibiotic Resistance in Escherichia coli Isolated from Mastitic Dairy Cattle in Canada
Authors: Satwik Majumder, Dongyun Jung, Jennifer Ronholm, Saji George
Abstract:
Bovine mastitis is the most common infectious disease in dairy cattle, with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with three heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics, and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = +0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates, corroborating phenotype observations. This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through milk and dairy products.Keywords: antimicrobial resistance, E. coli, bovine mastitis, antibiotics, heavy-metals, efflux pump, ß-lactamase enzyme, biofilm, whole-genome sequencing
Procedia PDF Downloads 2163478 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls
Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper
Abstract:
Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.Keywords: patient safety, quality improvement, serious incidents, falls, clinical care
Procedia PDF Downloads 1243477 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate
Procedia PDF Downloads 2543476 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization
Procedia PDF Downloads 1693475 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer
Authors: Ravinder Bahl, Jamini Sharma
Abstract:
The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning
Procedia PDF Downloads 3603474 Brain-Derived Neurotrophic Factor and It's Precursor ProBDNF Serum Levels in Adolescents with Mood Disorders: 2-Year Follow-Up Study
Authors: M. Skibinska, A. Rajewska-Rager, M. Dmitrzak-Weglarz, N. Lepczynska, P. Sibilski, P. Kapelski, J. Pawlak, J. Twarowska-Hauser
Abstract:
Introduction: Neurotrophic factors have been implicated in neuropsychiatric disorders. Brain-Derived Neurotrophic Factor (BDNF) influences neuron differentiation in development as well as synaptic plasticity and neuron survival in adulthood. BDNF is widely studied in mood disorders and has been proposed as a biomarker for depression. BDNF is synthesized as precursor protein – proBDNF. Both forms are biologically active and exert opposite effects on neurons. Aim: The aim of the study was to examine the serum levels of BDNF and proBDNF in unipolar and bipolar young patients below 24 years old during hypo/manic, depressive episodes and in remission compared to healthy control group. Methods: In a prospective 2 years follow-up study, we investigated alterations in levels of BDNF and proBDNF in 79 patients (23 males, mean age 19.08, SD 3.3 and 56 females, mean age 18.39, SD 3.28) diagnosed with mood disorders: unipolar and bipolar disorder compared with 35 healthy control subjects (7 males, mean age 20.43, SD 4.23 and 28 females, mean age 21.25, SD 2.11). Clinical characteristics including mood, comorbidity, family history, and treatment, were evaluated during control visits and clinical symptoms were rated using the Hamilton Depression Rating Scale and Young Mania Rating Scale. Serum BDNF and proBDNF concentrations were determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Serum BDNF and proBDNF levels were analysed with covariates: sex, age, age > 18 and < 18 years old, family history of affective disorders, drug-free vs. medicated status. Normality of the data was tested using Shapiro-Wilk test. Levene’s test was used to calculate homogeneity of variance. Non-parametric Tests: Mann-Whitney U test, Kruskal-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation coefficient were applied in analyses The statistical significance level was set at p < 0.05. Results: BDNF and proBDNF serum levels did not differ between patients at baseline and controls as well as comparing patients in acute episode of depression/hypo/mania at baseline and euthymia (at month 3 or 6). Comparing BDNF and proBDNF levels between patients in euthymia and control group no differences have been found. Increased BDNF level in women compared to men at baseline (p=0.01) have been observed. BDNF level at baseline was negatively correlated with depression and mania occurence at 24 month (p=0.04). BDNF level at 12 month was negatively correlated with depression and mania occurence at 12 month (p=0.01). Correlation of BDNF level with sex have been detected (p=0.01). proBDNF levels at month 3, 6 and 12 negatively correlated with disease status (p=0.02, p=0.008, p=0.009, respectively). No other correlations of BDNF and proBDNF levels with clinical and demographical variables have been detected. Discussion: Our results did not show any differences in BDNF and proBDNF levels between depression, mania, euthymia, and controls. Imbalance in BDNF/proBDNF signalling may be involved in pathogenesis of mood disorders. Further studies on larger groups are recommended. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.Keywords: bipolar disorder, Brain-Derived Neurotrophic Factor (BDNF), proBDNF, unipolar depression
Procedia PDF Downloads 2443473 Organizing Diabetes Care in a Resource Constrained Country: Bangladesh as an Example
Authors: Liaquat Ali, Khurshid Natasha
Abstract:
Low resource countries are not usually equipped with the organizational tools to implement health care for chronic diseases, and thus, providing effective diabetes care in such countries is a challenging task. Diabetic Association of Bangladesh (BADAS in Bengali acronym) has created a stimulating example to meet this challenge. Starting its journey in 1956 with 39 patients in a small tin shed clinic BADAS, and its affiliated associations now operate 90 hospitals and health centres all over the country. Together, these facilities provide integrated health care to about 1.5 million registered diabetic patients which constitute about 20% of the estimated diabetic population in the country. BADAS has also become a pioneer in health manpower generation in Bangladesh. Along with its affiliates, it now runs 3 Medical Colleges (to generate graduate physicians), 2 Nursing Institutes, and 2 Postgraduate Institutes which conduct 25 postgraduate courses (under the University of Dhaka) in various basic, clinical and public health disciplines. BADAS gives great emphasis on research, which encompasses basic, clinical as well as public health areas. BADAS is an ideal example of public-private partnership in health as most of its infrastructure has been created through government support but it is almost self-reliant in managing its revenue budget which approached approximately 40 million US dollar during 2010. BADAS raises resources by providing high-quality services to the people, both diabetic and non-diabetic. At the same time, BADAS has developed a cross financing model, to support diabetic patients in general and poor diabetic patients (identified through a social welfare network) in particular, through redistribution of the resources. Along with financial sustainability BADAS ensure organizational sustainability through a process of decentralization, community ownership, and democratic management. Presently a large scale pilot project (named as a Health Care Development Project or HCDP) is under implementation under BADAS umbrella with an objective to transform the diabetes care model to a health care model in general. It is expected to create further evidence on providing sustainable (with social safety net) health care delivery for diabetes, and other chronic illnesses as an integral part of general health care delivery in a resource constrained setting.Keywords: Bangladesh, self sustain, health care, constrain
Procedia PDF Downloads 1803472 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition
Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini
Abstract:
Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning
Procedia PDF Downloads 613471 Modeling Driving Distraction Considering Psychological-Physical Constraints
Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang
Abstract:
Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints
Procedia PDF Downloads 913470 Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load
Authors: Aref Aasi, Sadegh Mehdi Aghaei, Balaji Panchapakesan
Abstract:
This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations.Keywords: Euler-Bernoulli beam, natural frequency, forced vibration, experimental setup
Procedia PDF Downloads 2753469 A Generic Metamodel for Dependability Analysis
Authors: Moomen Chaari, Wolfgang Ecker, Thomas Kruse, Bogdan-Andrei Tabacaru
Abstract:
In our daily life, we frequently interact with complex systems which facilitate our mobility, enhance our access to information, and sometimes help us recover from illnesses or diseases. The reliance on these systems is motivated by the established evaluation and assessment procedures which are performed during the different phases of the design and manufacturing flow. Such procedures are aimed to qualify the system’s delivered services with respect to their availability, reliability, safety, and other properties generally referred to as dependability attributes. In this paper, we propose a metamodel based generic characterization of dependability concepts and describe an automation methodology to customize this characterization to different standards and contexts. When integrated in concrete design and verification environments, the proposed methodology promotes the reuse of already available dependability assessment tools and reduces the costs and the efforts required to create consistent and efficient artefacts for fault injection or error simulation.Keywords: dependability analysis, model-driven development, metamodeling, code generation
Procedia PDF Downloads 486