Search results for: bone absorption
432 The Creation of Calcium Phosphate Coating on Nitinol Substrate
Authors: Kirill M. Dubovikov, Ekaterina S. Marchenko, Gulsharat A. Baigonakova
Abstract:
NiTi alloys are widely used as implants in medicine due to their unique properties such as superelasticity, shape memory effect and biocompatibility. However, despite these properties, one of the major problems is the release of nickel after prolonged use in the human body under dynamic stress. This occurs due to oxidation and cracking of NiTi implants, which provokes nickel segregation from the matrix to the surface and release into living tissues. As we know, nickel is a toxic element and can cause cancer, allergies, etc. One of the most popular ways to solve this problem is to create a corrosion resistant coating on NiTi. There are many coatings of this type, but not all of them have good biocompatibility, which is very important for medical implants. Coatings based on calcium phosphate phases have excellent biocompatibility because Ca and P are the main constituents of the mineral part of human bone. This fact suggests that a Ca-P coating on NiTi can enhance osteogenesis and accelerate the healing process. Therefore, the aim of this study is to investigate the structure of Ca-P coating on NiTi substrate. Plasma assisted radio frequency (RF) sputtering was used to obtain this film. This method was chosen because it allows the crystallinity and morphology of the Ca-P coating to be controlled by the sputtering parameters. It allows us to obtain three different NiTi samples with Ca-P coating. XRD, AFM, SEM and EDS were used to study the composition, structure and morphology of the coating phase. Scratch tests were carried out to evaluate the adhesion of the coating to the substrate. Wettability tests were used to investigate the hydrophilicity of the different coatings and to suggest which of them had better biocompatibility. XRD showed that the coatings of all samples were hydroxyapatite, but the matrix was represented by TiNi intermetallic compounds such as B2, Ti2Ni and Ni3Ti. The SEM shows that the densest and defect-free coating has only one sample after three hours of sputtering. Wettability tests show that the sample with the densest coating has the lowest contact angle of 40.2° and the largest free surface area of 57.17 mJ/m2, which is mostly disperse. A scratch test was carried out to investigate the adhesion of the coating to the surface and it was shown that all coatings were removed by a cohesive mechanism. However, at a load of 30N, the indenter reached the substrate in two out of three samples, except for the sample with the densest coating. It was concluded that the most promising sputtering mode was the third, which consisted of three hours of deposition. This mode produced a defect-free Ca-P coating with good wettability and adhesion.Keywords: biocompatibility, calcium phosphate coating, NiTi alloy, radio frequency sputtering.
Procedia PDF Downloads 72431 Valorization of Seafood and Poultry By-Products as Gelatin Source and Quality Assessment
Authors: Elif Tugce Aksun Tumerkan, Umran Cansu, Gokhan Boran, Fatih Ozogul
Abstract:
Gelatin is a mixture of peptides obtained from collagen by partial thermal hydrolysis. It is an important and useful biopolymer that is used in the food, pharmacy, and photography products. Generally, gelatins are sourced from pig skin and bones, beef bone and hide, but within the last decade, using alternative gelatin resources has attracted some interest. In this study, functional properties of gelatin extracted from seafood and poultry by-products were evaluated. For this purpose, skins of skipjack tuna (Katsuwonus pelamis) and frog (Rana esculata) were used as seafood by-products and chicken skin as poultry by-product as raw material for gelatin extraction. Following the extraction of gelatin, all samples were lyophilized and stored in plastic bags at room temperature. For comparing gelatins obtained; chemical composition, common quality parameters including bloom value, gel strength, and viscosity in addition to some others like melting and gelling temperatures, hydroxyproline content, and colorimetric parameters were determined. The results showed that the highest protein content obtained in frog gelatin with 90.1% and the highest hydroxyproline content was in chicken gelatin with 7.6% value. Frog gelatin showed a significantly higher (P < 0.05) melting point (42.7°C) compared to that of fish (29.7°C) and chicken (29.7°C) gelatins. The bloom value of gelatin from frog skin was found higher (363 g) than chicken and fish gelatins (352 and 336 g, respectively) (P < 0.05). While fish gelatin had higher lightness (L*) value (92.64) compared to chicken and frog gelatins, redness/greenness (a*) value was significantly higher in frog skin gelatin. Based on the results obtained, it can be concluded that skins of different animals with high commercial value may be utilized as alternative sources to produce gelatin with high yield and desirable functional properties. Functional and quality analysis of gelatin from frog, chicken, and tuna skin showed by-product of poultry and seafood can be used as an alternative gelatine source to mammalian gelatine. The functional properties, including bloom strength, melting points, and viscosity of gelatin from frog skin were more admirable than that of the chicken and tuna skin. Among gelatin groups, significant characteristic differences such as gel strength and physicochemical properties were observed based on not only raw material but also the extraction method.Keywords: chicken skin, fish skin, food industry, frog skin, gel strength
Procedia PDF Downloads 163430 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor
Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani
Abstract:
The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport
Procedia PDF Downloads 312429 Comparison of Cardiovascular and Metabolic Responses Following In-Water and On-Land Jump in Postmenopausal Women
Authors: Kuei-Yu Chien, Nai-Wen Kan, Wan-Chun Wu, Guo-Dong Ma, Shu-Chen Chen
Abstract:
Purpose: The purpose of this study was to investigate the responses of systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), rating of perceived exertion (RPE) and lactate following continued high-intensity interval exercise in water and on land. The results of studies can be an exercise program design reference for health care and fitness professionals. Method: A total of 20 volunteer postmenopausal women was included in this study. The inclusion criteria were: duration of menopause > 1 year; and sedentary lifestyle, defined as engaging in moderate-intensity exercise less than three times per week, or less than 20 minutes per day. Participants need to visit experimental place three times. The first time visiting, body composition was performed and participant filled out the questionnaire. Participants were assigned randomly to the exercise environment (water or land) in second and third time visiting. Water exercise testing was under water of trochanter level. In continuing jump testing, each movement consisted 10-second maximum volunteer jump for two sets. 50% heart rate reserve dynamic resting (walking or running) for one minute was within each set. SBP, DBP, HR, RPE of whole body/thigh (RPEW/RPET) and lactate were performed at pre and post testing. HR, RPEW, and RPET were monitored after 1, 2, and 10 min of exercise testing. SBP and DBP were performed after 10 and 30 min of exercise testing. Results: The responses of SBP and DBP after exercise testing in water were higher than those on land. Lactate levels after exercise testing in water were lower than those on land. The responses of RPET were lower than those on land post exercise 1 and 2 minutes. The heart rate recovery in water was faster than those on land at post exercise 5 minutes. Conclusion: This study showed water interval jump exercise induces higher cardiovascular responses with lower RPE responses and lactate levels than on-land jumps exercise in postmenopausal women. Fatigue is one of the major reasons to obstruct exercise behavior. Jump exercise could enhance cardiorespiratory fitness, the lower-extremity power, strength, and bone mass. There are several health benefits to the middle to older adults. This study showed that water interval jumping could be more relaxed and not tried to reach the same land-based cardiorespiratory exercise intensity.Keywords: interval exercise, power, recovery, fatigue
Procedia PDF Downloads 408428 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks
Authors: Andrew C. Eloka Eboka, Freddie L. Inambao
Abstract:
Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond
Procedia PDF Downloads 363427 The Effect of Composite Hybridization on the Back Face Deformation of Armor Plates
Authors: Attef Kouadria, Yehya Bouteghrine, Amar Manaa, Tarek Mouats, Djalel Eddine Tria, Hamid Abdelhafid Ghouti
Abstract:
Personal protection systems have been used in several forms for centuries. The need for light-weight composite structures has been in great demand due to their weight and high mechanical properties ratios in comparison to heavy and cumbersome steel plates. In this regard, lighter ceramic plates with a backing plate made of high strength polymeric fibers, mostly aramids, are widely used for protection against ballistic threats. This study aims to improve the ballistic performance of ceramic/composite plates subjected to ballistic impact by reducing the back face deformation (BFD) measured after each test. A new hybridization technique was developed in this investigation to increase the energy absorption capabilities of the backing plates. The hybridization consists of combining different types of aramid fabrics with different linear densities of aramid fibers (Dtex) and areal densities with an epoxy resin to form the backing plate. Therefore, several composite structures architectures were prepared and tested. For better understanding the effect of the hybridization, a serial of tensile, compression, and shear tests were conducted to determine the mechanical properties of the homogeneous composite materials prepared from different fabrics. It was found that the hybridization allows the backing plate to combine between the mechanical properties of the used fabrics. Aramid fabrics with higher Dtex were found to increase the mechanical strength of the backing plate, while those with lower Dtex found to enhance the lateral wave dispersion ratio due to their lower areal density. Therefore, the back face deformation was significantly reduced in comparison to a homogeneous composite plate.Keywords: aramid fabric, ballistic impact, back face deformation, body armor, composite, mechanical testing
Procedia PDF Downloads 151426 Spring Water Quality Appraisement for Drinking and Irrigation Application in Nigeria: A Muliti-Criteria Approach
Authors: Hillary Onyeka Abugu, Valentine Chinakwugwo Ezea, Janefrances Ngozi Ihedioha, Nwachukwu Romanus Ekere
Abstract:
The study assessed the spring water quality in Igbo-Etiti, Nigeria, for drinking and irrigation application using Physico-chemical parameters, water quality index, mineral and trace elements, pollution indices and risk assessment. Standard methods were used to determine the physicochemical properties of the spring water in rainy and dry seasons. Trace metals such as Pb, Cd, Zn and Cu were determined with atomic absorption spectrophotometer. The results showed that most of the physicochemical properties studied were within the guideline values set by Nigeria Standard for Drinking Water Quality (NSDWQ), WHO and US EPA for drinking water purposes. However, pH of all the spring water (4.27- 4.73; and 4.95- 5.73), lead (Pb) (0.01-1.08 mg/L) and cadmium (Cd) (0.01-0.15 mg/L) concentrations were above the guideline values in both seasons. This could be attributed to the lithography of the study area, which is the Nsukka formation. Leaching of lead and sulphides from the embedded coal deposits could have led to the increased lead levels and made the water acidic. Two-way ANOVA showed significant differences in most of the parameters studied in dry and rainy seasons. Pearson correlation analysis and cluster analysis showed strong significant positive and negative correlations in some of the parameters studied in both seasons. The water quality index showed that none of the spring water had excellent water status. However, one spring (Iyi Ase) had poor water status in dry season and is considered unsafe for drinking. Iyi Ase was also considered not suitable for irrigation application as predicted by most of the pollution indices, while others were generally considered suitable for irrigation application. Probable cancer and non-cancer risk assessment revealed a probable risk associated with the consumption of the spring in the Igbo-Ettiti area, Nigeria.Keywords: water quality, pollution index, risk assessment, physico-chemical parameters
Procedia PDF Downloads 166425 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer
Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh
Abstract:
Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering
Procedia PDF Downloads 164424 Reduction Behavior of Medium Grade Manganese Ore from Karangnunggal during a Sintering Process in Methane Gas
Authors: H. Aripin, I. Made Joni, Edvin Priatna, Nundang Busaeri, Svilen Sabchevski
Abstract:
In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The ores were grinded using a jar mill to pass through a 150 mesh sieve. The effects of keeping it at a temperature of 1200 °C in methane gas on the structural properties have been studied. The material’s properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. It has been found that the ore contains MnO₂ as the main constituents at about 46.80 wt.%. It can be also observed that the ore particles are agglomerated forming dense grains with different texture and morphology. The irregular-shaped grains with dark contrast, the large brighter grains, and smaller grains with bright texture and smooth surfaces are associated with the presence of manganese, calcium, and quartz, respectively. From XRD patterns, MnO₂ is reduced to hausmannite (Mn₃O₄), manganosite (MnO) and manganese carbide (Mn₇C₃). At a temperature of 1200°C the keeping time does not have any effect on the formation of crystals and the crystalline phases remain almost unchanged in the time range from 15 to 90 minutes. An increase of the keeping time up to 45 minutes during the sintering process leads to an increase of the MnO concentration, while at 90 minutes, the concentration decreases. At longer keeping times the excess reaction of the methane gas and manganese oxide in the ore causes an increase of carbon deposition. As a result, it blocks the particle surface and then hinders the reduction process of manganese oxide. From FTIR spectrum allows one to explain that the appearance of C=O stretching mode arises from absorption of atmospheric methane and manganese oxide of the ore. The intensity of this band increases with increasing the keeping time, indicating an increase of carbon deposition on the surface of manganese oxide.Keywords: manganese, medium grade manganese ore, structural properties, keeping the temperature, carbon deposition
Procedia PDF Downloads 155423 Preparation and Characterization of Dendrimer-Encapsulated Ytterbium Nanoparticles to Produce a New Nano-Radio Pharmaceutical
Authors: Aghaei Amirkhizi Navideh, Sadjadi Soodeh Sadat, Moghaddam Banaem Leila, Athari Allaf Mitra, Johari Daha Fariba
Abstract:
Dendrimers are good candidates for preparing metal nanoparticles because they can structurally and chemically well-defined templates and robust stabilizers. Poly amidoamine (PAMAM) dendrimer-based multifunctional cancer therapeutic conjugates have been designed and synthesized in pharmaceutical industry. In addition, encapsulated nanoparticle surfaces are accessible to substrates so that catalytic reactions can be carried out. For preparation of dendimer-metal nanocomposite, a dendrimer solution containing an average of 55 Yb+3 ions per dendrimer was prepared. Prior to reduction, the pH of this solution was adjusted to 7.5 using NaOH. NaBH4 was used to reduce the dendrimer-encapsulated Yb+3 to the zerovalent metal. The pH of the resulting solution was then adjusted to 3, using HClO4, to decompose excess BH4-. The UV-Vis absorption spectra of the mixture were recorded to ensure the formation of Yb-G5-NH2 complex. High-resolution electron microscopy (HRTEM) and size distribution results provide additional information about dendimer-metal nanocomposite shape, size, and size distribution of the particles. The resulting mixture was irradiated in Tehran Research Reactor 2h and neutron fluxes were 3×1011 n/cm2.Sec and the specific activity was 7MBq. Radiochemical and chemical and radionuclide quality control testes were carried. Gamma Spectroscopy and High-performance Liquid Chromatography HPLC, Thin-Layer Chromatography TLC were recorded. The injection of resulting solution to solid tumor in mice shows that it could be resized the tumor. The studies about solid tumors and nano composites show that ytterbium encapsulated-dendrimer radiopharmaceutical could be introduced as a new therapeutic for the treatment of solid tumors.Keywords: nano-radio pharmaceutical, ytterbium, PAMAM, dendrimers
Procedia PDF Downloads 503422 Sustainable Development of Adsorption Solar Cooling Machine
Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani
Abstract:
Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system
Procedia PDF Downloads 77421 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil
Authors: Juliana A. Galhardi, Daniel M. Bonotto
Abstract:
Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.Keywords: radon, radium, acid mine drainage, coal
Procedia PDF Downloads 432420 Quality Characteristics of Treated Wastewater of 'Industrial Area Foggia'
Authors: Grazia Disciglio, Annalisa Tarantino, Emanuele Tarantino
Abstract:
The production system of Foggia province (Apulia, Southern Italy) is characterized by the presence of numerous agro-food industries whose activities include the processing of vegetables products that release large quantities of wastewater. The reuse in agriculture of these wastewaters offers the opportunity to reduce the costs of their disposal and minimizing their environmental impact. In addition, in this area, which suffers from water shortage, the use of agro-industrial wastewater is essential in the very intensive irrigation cropping systems. The present investigation was carried out in years 2009 and 2010 to monitor the physico-chemical and microbiological characteristics of the industrial wastewater (IWW) from the secondary treatment plant of the 'Industrial Area of Foggia'. The treatment plant released on average about 567,000 m3y-1 of IWW, which distribution was not uniform over the year. The monthly values were about 250,000 m3 from November to June and about 90,000 m3 from July to October. The obtained results revealed that IWW was characterized by low values of Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Electrical Conductivity (EC) and Sodium Absorption Rate (SAR). An occasional presence of heavy metal and high concentration of total phosphorus, total nitrogen, ammoniacal nitrogen and microbial organisms (Escherichia coli and Salmonella) were observed. Due to the presence of this pathogenic microorganisms and sometimes of heavy metals, which may raise sanitary and environmental problems in order to the possible irrigation reuse of this IWW, a tertiary treatment of wastewater based on filtration and disinfection in line are recommended. Researches on the reuse of treated IWW on crops (olive, artichoke, industrial tomatoes, fennel, lettuce etc.) did not show significant differences among the irrigated plots for most of the soil and yield characteristics.Keywords: agroindustrial wastewater, irrigation, microbiological characteristic, physico-chemical characteristics
Procedia PDF Downloads 315419 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness
Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra
Abstract:
Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy
Procedia PDF Downloads 463418 Regional Anesthesia: A Vantage Point for Management of Normal Pressure Hydrocephalus
Authors: Kunal K. S., Shwetashri K. R., Keerthan G., Ajinkya R.
Abstract:
Background: Normal pressure hydrocephalus is a condition caused by abnormal accumulation of cerebrospinal fluid (CSF) within the brain resulting in enlarged cerebral ventricles due to a disruption of CSF formation, absorption, or flow. Over the course of time, ventriculoperitoneal shunt under general anesthesia has become a standard of care. Yet only a finite number of centers have started the inclusion of regional anesthesia techniques for the such patient cohort. Stem Case: We report a case of a 75-year-old male with underlying aortic sclerosis and cardiomyopathy who presented with complaints of confusion, forgetfulness, and difficulty in walking. Neuro-imaging studies revealed disproportionally enlarged subarachnoid space hydrocephalus (DESH). The baseline blood pressure was 116/67 mmHg with a heart rate of 106 beats/min and SpO2 of 96% on room air. The patient underwent smooth induction followed by sonographically guided superficial cervical plexus block and transverse abdominis plane block. Intraoperative pain indices were monitored with Analgesia nociceptive index monitor (ANI, MdolorisTM) and surgical plethysmographic index (SPI, GE Healthcare, Helsinki, FinlandTM). These remained stable during the application of the block and the entire surgical duration. No significant hemodynamic response was observed during the tunneling of the skin by the surgeon. The patient underwent a smooth recovery and emergence. Conclusion: Our decision to incorporate peripheral nerve blockade in conjunction with general anesthesia resulted in opioid-sparing anesthesia and decreased post-operative analgesic requirement by the patient. This blockade was successful in suppressing intraoperative stress responses. Our patient recovered adequately and underwent an uncomplicated post-operative stay.Keywords: desh, NPH, VP shunt, cervical plexus block, transversus abdominis plane block
Procedia PDF Downloads 80417 Lanthanum Fluoride with Embedded Silicon Nanocrystals: A Novel Material for Future Electronic Devices
Authors: Golam Saklayen, Sheikh Rashel al Ahmed, Ferdous Rahman, Ismail Abu Bakar
Abstract:
Investigation on Lanthanum Fluoride LaF3 layer embedding Silicon Nanocrystals (Si-NCs) fabricated using a novel one-step chemical method has been reported in this presentation. Application of this material has been tested for low-voltage operating non-volatile memory and Schottkey-junction solar cell. Colloidal solution of Si-NCs in hydrofluoric acid (HF) was prepared from meso-porous silicon by ultrasonic vibration (sonication). This solution prevents the Si-NCs to be oxidized. On a silicon (Si) substrate, LaCl3 solution in HCl is allowed to react with the colloidal solution of prepared Si-NCs. Since this solution contains HF, LaCl3 reacts with HF and produces LaF3 crystals that deposits on the silicon substrate as a layer embedding Si-NCs. This a novel single step chemical way of depositing LaF3 insulating layer embedding Si-NCs. The X-Ray diffraction of the deposited layer shows a polycrystalline LaF3 deposition on silicon. A non-stoichiometric LaF3 layer embedding Si-NCs was found by EDX analysis. The presence of Si-NCs was confirmed by SEM. FTIR spectroscopy of the deposited LaF3 powder also confirmed the presence of Si-NCs. The size of Si-NCs was found to be inversely proportional to the ultrasonic power. After depositing proper contacts on the back of Si and LaF3, the devices have been tested as a non-volatile memory and solar cell. A memory window of 525 mV was obtained at a programming and erasing bias of 2V. The LaF3 films with Si NCs showed strong absorption and was also found to decrease optical transmittance than pure LaF3 film of same thickness. The I-V characteristics of the films showed a dependency on the incident light intensity where current changed under various light illumination. Experimental results show a lot of promise for Si-NCs-embedded LaF3 layer to be used as an insulating layer in MIS devices as well as an photoactive material in Schottkey junction solar cells.Keywords: silicon nanocrystals (Si NCs), LaF3, colloidal solution, Schottky junction solar cell
Procedia PDF Downloads 392416 Measurement of Nasal Septal Cartilage in Adult Filipinos Using Computed Tomography
Authors: Miguel Limbert Ramos, Joseph Amado Galvez
Abstract:
Background: The nasal septal cartilage is an autologous graft that is widely used in different otolaryngologic procedures of the different subspecialties, such as in septorhinoplasty and ear rehabilitation procedures. The cartilage can be easily accessed and harvested to be utilized for such procedures. However, the dimension of the nasal septal cartilage differs, corresponding to race, gender, and age. Measurements can be done via direct measurement of harvested septal cartilage in cadavers or utilizing radiographic imaging studies giving baseline measurement of the nasal septal cartilage distinct to every race. A preliminary baseline measurement of the dimensions of Filipino nasal septal cartilage was previously established by measuring harvested nasal septal cartilage in Filipino Malay cadavers. This study intends to reinforce this baseline measurement by utilizing computed tomography (CT) scans of adult Filipinos in a tertiary government hospital in the City of Manila, Philippines, which will cover a larger sampling population. Methods: The unit of observation and analysis will be the computed tomography (CT) scans of patients ≥ 18years old who underwent cranial, facial, orbital, paranasal sinus, and temporal bone studies for the year 2019. The measurements will be done in a generated best midsagittal image (155 subjects) which is a view through the midline of the cerebrum that is simultaneously viewed with its coronal and axial views for proper orientation. The view should reveal important structures that will be used to plot the anatomic boundaries, which will be measured by a DICOM image viewing software (RadiAnt). The measured area of nasal septal cartilage will be compared by gender and age. Results: The total area of the nasal septal cartilage is larger in males compared to females, with a mean value of 6.52 cm² and 5.71 cm², respectively. The harvestable nasal septal cartilage area is also larger in males with a mean value of 3.57 cm² compared to females with only a measured mean value of 3.13 cm². The total and harvestable area of the nasal septal cartilage is largest in the 18-30 year-old age group with a mean value of 6.47 cm² and 3.60 cm² respectively and tends to decrease with the advancement of age, which can be attributed to continuous ossification changes. Conclusion: The best time to perform septorhinoplasty and other otolaryngologic procedures which utilize the nasal septal cartilage as graft material is during post-pubertal age, hence surgeries should be avoided or delayed to allow growth and maturation of the cartilage. A computed tomography scan is a cost-effective and non-invasive tool that can provide information on septal cartilage areas prior to these procedures.Keywords: autologous graft, computed tomography, nasal septal cartilage, septorhinoplasty
Procedia PDF Downloads 158415 Anatomical Investigation of Superficial Fascia Relationships with the Skin and Underlying Tissue in the Greyhound Rump, Thigh, and Crus
Authors: Oday A. Al-Juhaishi, Sa`ad M. Ismail, Hung-Hsun Yen, Christina M. Murray, Helen M. S. Davies
Abstract:
The functional anatomy of the fascia in the greyhound is still poorly understood, and incompletely described. The basic knowledge of fascia stems mainly from anatomical, histological and ultrastructural analyses. In this study, twelve specimens of hindlimbs from six fresh greyhound cadavers (3 male, 3 female) were used to examine the topographical relationships of the superficial fascia with the skin and underlying tissue. The first incision was made along the dorsal midline from the level of the thoracolumbar junction caudally to the level of the mid sacrum. The second incision was begun at the level of the first incision and extended along the midline of the lateral aspect of the hindlimb distally, to just proximal to the tarsus, and, the skin margins carefully separated to observe connective tissue links between the skin and superficial fascia, attachment points of the fascia and the relationships of the fascia with blood vessels that supply the skin. A digital camera was used to record the anatomical features as they were revealed. The dissections identified fibrous septa connecting the skin with the superficial fascia and deep fascia in specific areas. The presence of the adipose tissue was found to be very rare within the superficial fascia in these specimens. On the extensor aspects of some joints, a fusion between the superficial fascia and deep fascia was observed. This fusion created a subcutaneous bursa in the following areas: a prepatellar bursa of the stifle, a tarsal bursa caudal to the calcaneus bone, and an ischiatic bursa caudal to the ischiatic tuberosity. The evaluation of blood vessels showed that the perforating vessels passed through fibrous septa in a perpendicular direction to supply the skin, with the largest branch noted in the gluteal area. The attachment points between the superficial fascia and skin were mainly found in the region of the flexor aspect of the joints, such as caudal to the stifle joint. The numerous fibrous septa between the superficial fascia and skin that have been identified in some areas, may create support for the blood vessels that penetrate fascia and into the skin, while allowing for movement between the tissue planes. The subcutaneous bursae between the skin and the superficial fascia where it is fused with the deep fascia may be useful to decrease friction between moving areas. The adhesion points may be related to the integrity and loading of the skin. The attachment points fix the skin and appear to divide the hindlimb into anatomical compartments.Keywords: attachment points, fibrous septa, greyhound, subcutaneous bursa, superficial fascia
Procedia PDF Downloads 359414 Environmental Radioactivity Analysis by a Sequential Approach
Authors: G. Medkour Ishak-Boushaki, A. Taibi, M. Allab
Abstract:
Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress.Keywords: Bayesian approach, event mode sequence, gamma spectrometry, Monte Carlo method
Procedia PDF Downloads 495413 Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle
Authors: Ei Ei Hlaing, Narissara Lailerd, Sittiruk Roytrakul, Pichapat Piamrojanaphat
Abstract:
Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling.Keywords: proteomics, purple rice bran, skeletal muscle, type 2 diabetic rats
Procedia PDF Downloads 253412 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities
Authors: Nacer Hamza
Abstract:
Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.Keywords: norms, radon concentration, produced water, heavy metals
Procedia PDF Downloads 147411 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye
Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi
Abstract:
The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma
Procedia PDF Downloads 193410 Characteristics of Aerosols Properties Over Different Desert-Influenced Aeronet Sites
Authors: Abou Bakr Merdji, Alaa Mhawish, Xiaofeng Xu, Chunsong Lu
Abstract:
The characteristics of optical and microphysical properties of aerosols near deserts are analyzed using 11 AErosol RObotic NETwork (AERONET) sites located in 6 major desert areas (the Sahara, Arabia, Thar, Karakum, Taklamakan, and Gobi) between 1998 and 2021. The regional mean of Aerosol Optical Depth (AOD) (coarse AOD (CAOD)) are 0.44 (0.187), 0.38 (0.26), 0.35 (0.24), 0.23 (0.11), 0.20 (0.14), 0.10 (0.05) in the Thar, Arabian, Sahara, Karakum, Taklamakan and Gobi Deserts respectively, while an opposite for AE and Fine Mode Fraction (FMF). Higher extinctions are associated with larger particles (dust) over all the main desert regions. This is shown by the almost inversely proportional variations of AOD and CAOD compared with AE and FMF. Coarse particles contribute the most to the total AOD over the Sahara Desert compared to those in the other deserts all year round. Related to the seasonality of dust events, the maximum AOD (CAOD) generally appears in summer and spring, while the minimum is in winter. The mean values of absorbing AOD (AAOD), Absorbing AE (AAE), and the Single Scattering Albedo (SSA) for all sites ranged from 0.017 to 0.037, from 1.16 to 2.81 and from 0.844 to 0.944, respectively. Generally, the highest absorbing aerosol load are observed over the Thar, followed by the Karakum, the Sahara, the Gobi, and then the Taklamakan Deserts, while the largest absorbing particles are observed in the Sahara followed by Arabia, Thar, Karakum, Gobi, and the smallest over the Taklamakan Desert. Similar absorption qualities are observed over the Sahara, Arabia, Thar, and Karakum Deserts, with SSA values varying between 0.90 and 0.91, whereas the most and least absorbing particles are observed at the Taklamakan and the Gobi Deserts, respectively. The seasonal AAODs are distinctly different over the deserts, with parts of Sahara and Arabia, and the Dalanzadgad sites experiencing the maximum in summer, the Southern Sahara, Western Arabia, Jaipur, and Dushanbe in winter, while the Eastern Arabia and the Muztagh Ata in autumn. AAOD and SSA spectra are consistent with dust-dominated conditions that resulted from aerosol typing (dust and polluted dust) at most deserts, with a possible presence of other absorbing particles apart from dust at Arabia, the Taklamakan, and the Gobi Desert sites.Keywords: sahara, AERONET, desert, dust belt, aerosols, optical properties
Procedia PDF Downloads 84409 The Community Structure of Fish and its Correlation with Mangrove Forest Litter Production in Panjang Island, Banten Bay, Indonesia
Authors: Meilisha Putri Pertiwi, Mufti Petala Patria
Abstract:
Mangrove forest often categorized as a productive ecosystem in trophic water and the highest carbon storage among all the forest types. Mangrove-derived organic matter determines the food web of fish and invertebrates. In Indonesia trophic water ecosystem, 80% commersial fish caught in coastal area are high related to food web in mangrove forest ecosystem. Based on the previous research in Panjang Island, Bojonegara, Banten, Indonesia, removed mangrove litterfall to the sea water were 9,023 g/m³/s for two stations (west station–5,169 g/m³/s and north station-3,854 g/m³/s). The vegetation were dominated from Rhizophora apiculata and Rhizopora stylosa. C element is the highest content (27,303% and 30,373%) than N element (0,427% and 0,35%) and P element (0,19% and 0,143%). The aim of research also to know the diversity of fish inhabit in mangrove forest. Fish sampling is by push net. Fish caught are collected into plastics, total length measured, weigh measured, and individual and total counted. Meanwhile, the 3 modified pipes (1 m long, 5 inches diameter, and a closed one hole part facing the river by using a nylon cloth) set in the water channel connecting mangrove forest and sea water for each stasiun. They placed for 1 hour at low tide. Then calculate the speed of water flow and volume of modified pipes. The fish and mangrove litter will be weigh for wet weight, dry weight, and analyze the C, N, and P element content. The sampling data will be conduct 3 times of month in full moon. The salinity, temperature, turbidity, pH, DO, and the sediment of mangrove forest will be measure too. This research will give information about the fish diversity in mangrove forest, the removed mangrove litterfall to the sea water, the composition of sediment, the total element content (C, N, P) of fish and mangrove litter, and the correlation of element content absorption between fish and mangrove litter. The data will be use for the fish and mangrove ecosystem conservation.Keywords: fish diversity, mangrove forest, mangrove litter, carbon element, nitrogen element, P element, conservation
Procedia PDF Downloads 485408 Haematological Correlates of Ischemic Stroke and Transient Ischemic Attack: Lessons Learned
Authors: Himali Gunasekara, Baddika Jayaratne
Abstract:
Haematological abnormalities are known to cause Ischemic Stroke or Transient Ischemic Attack (TIA). The identification of haematological correlates plays an important role in a management and secondary prevention. The objective of this study was to describe haematological correlates of stroke and their association between stroke profile. The haematological correlates screened were Lupus Anticoagulant, Dysfibroginemia, Paroxysmal nocturnal haemoglobinurea (PNH), Sickle cell disease, Systemic Lupus Erythematosis (SLE) and Myeloploriferative Neoplasms (MPN). A cross sectional descriptive study was conducted in a sample of 152 stroke patients referred to haematology department of National Hospital of Sri Lanka for thrombophilia screening. Different tests were performed to assess each hematological correlate. Diluted Russels Viper Venom Test and Kaolin clotting time were done to assess Lupus anticoagulant. Full blood count (FBC), blood picture, Sickling test and High Performance Liquid Chromatography were the tests used for detection of Sickle cell disease. Paroxysmal nocturnal haemoglobinurea was assessed by FBC, blood picture, Ham test and Flowcytometry. FBC, blood picture, Janus Kinase 2 (V617F) mutation analysis, erythropoietin level and bone marrow examination were done to look for the Myeloproliferative neoplasms. Dysfibrinogenaemia was assessed by TT, fibrinogen antigen test, clot observation and clauss test. Anti nuclear antibody test was done to look for systemic lupus erythematosis. Among study sample, 134 patients had strokes and only 18 had TIA. The recurrence of stroke/TIA was observed in 13.2% of patients. The majority of patients (94.7%) have had radiological evidence of thrombotic event. One fourth of patients had past thrombotic events while 12.5% had family history of thrombosis. Out of haematological correlates screened, Lupus anticoagulant was the commonest haematological correlate (n=16 ) and dysfibrigonaemia(n=11 ) had the next high prevalence. One patient was diagnosed with Essential thrombocythaemia and one with SLE. None of the patients were positive for screening tests done for sickle cell disease and PNH. The Haematological correlates were identified in 19% of our study sample. Among stroke profile only presence of past thrombotic history was statistically significantly associated with haematological disorders (P= 0.04). Therefore, hematological disorders appear to be an important factor in etiological work-up of stroke patients particularly in patients with past thrombotic events.Keywords: stroke, transient ischemic attack, hematological correlates, hematological disorders
Procedia PDF Downloads 236407 The Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum Durum Desf)
Authors: L. Meksem Amara, M. Ferfar, N. Meksem, M. R. Djebar
Abstract:
The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants. In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalase, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.Keywords: sulfonylurea, triticum durum, oxydative stress, toxicity
Procedia PDF Downloads 413406 Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light
Authors: Md. Maksudur Rahman Khan, M. Rahim Uddin, Hamidah Abdullah, Kaykobad Md. Rezaul Karim, Abu Yousuf, Chin Kui Cheng, Huei Ruey Ong
Abstract:
A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO2) into methanol on TiO2 loaded copper ferrite (CuFe2O4) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe2O4 as tetragonal phase incorporation with anatase TiO2 in CuFe2O4/TiO2 hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe2O4 phases along with predominantly anatase phase of TiO2 in the CuFe2O4/TiO2 hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO2. Photoluminescence (PL) technique was used to study the electron–hole (e−/h+) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron–hole (e−/h+) pairs in the CuFe2O4/TiO2 hetero-structure. The photocatalytic performance of CuFe2O4/TiO2 was evaluated based on the methanol yield with varying amount of TiO2 over CuFe2O4 (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO2 in aqueous phase were dissolved CO2 and HCO3- at pH ~5.9. It was evident that the CuFe2O4 could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO2 to increase the life time of the electron and facilitating the reactions of CO2 to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe2O4, but loading with TiO2 remarkably increased the methanol yield. Methanol yield over CuFe2O4/TiO2 was found to be about three times higher (651 μmol/gcat L) than that of CuFe2O4 photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO2/CH3OH.Keywords: photocatalysis, CuFe2O4/TiO2, band-gap energy, methanol
Procedia PDF Downloads 244405 A Comparative Study of Simple and Pre-polymerized Fe Coagulants for Surface Water Treatment
Authors: Petros Gkotsis, Giorgos Stratidis, Manassis Mitrakas, Anastasios Zouboulis
Abstract:
This study investigates the use of original and pre-polymerized iron (Fe) reagents compared to the commonly applied polyaluminum chloride (PACl) coagulant for surface water treatment. Applicable coagulants included both ferric chloride (FeCl₃) and ferric sulfate (Fe₂(SO₄)₃) and their pre-polymerized Fe reagents, such as polyferric sulfate (PFS) and polyferric chloride (PFCl). The efficiency of coagulants was evaluated by the removal of natural organic matter (NOM) and suspended solids (SS), which were determined in terms of reducing the UV absorption at 254 nm and turbidity, respectively. The residual metal concentration (Fe and Al) was also measured. Coagulants were added at five concentrations (1, 2, 3, 4 and 5 mg/L) and three pH values (7.0, 7.3 and 7.6). Experiments were conducted in a jar-test device, with two types of synthetic surface water (i.e., of high and low organic strength) which consisted of humic acid (HA) and kaolin at different concentrations (5 mg/L and 50 mg/L). After the coagulation/flocculation process, clean water was separated with filters of pore size 0.45 μm. Filtration was also conducted before the addition of coagulants in order to compare the ‘net’ effect of the coagulation/flocculation process on the examined parameters (UV at 254 nm, turbidity, and residual metal concentration). Results showed that the use of PACl resulted in the highest removal of humics for both types of surface water. For the surface water of high organic strength (humic acid-kaolin, 50 mg/L-50 mg/L), the highest removal of humics was observed at the highest coagulant dosage of 5 mg/L and at pH=7. On the contrary, turbidity was not significantly affected by the coagulant dosage. However, the use of PACl decreased turbidity the most, especially when the surface water of high organic strength was employed. As expected, the application of coagulation/flocculation prior to filtration improved NOM removal but slightly affected turbidity. Finally, the residual Fe concentration (0.01-0.1 mg/L) was much lower than the residual Al concentration (0.1-0.25 mg/L).Keywords: coagulation/flocculation, iron and aluminum coagulants, metal salts, pre-polymerized coagulants, surface water treatment
Procedia PDF Downloads 154404 Highly Responsive p-NiO/n-rGO Heterojunction Based Self-Powered UV Photodetectors
Authors: P. Joshna, Souvik Kundu
Abstract:
Detection of ultraviolet (UV) radiation is very important as it has exhibited a profound influence on humankind and other existences, including military equipment. In this work, a self-powered UV photodetector was reported based on oxides heterojunctions. The thin films of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) were used for the formation of p-n heterojunction. Low-Cost and low-temperature chemical synthesis was utilized to prepare the oxides, and the spin coating technique was employed to deposit those onto indium doped tin oxide (ITO) coated glass substrates. The top electrode platinum was deposited utilizing physical vapor evaporation technique. NiO offers strong UV absorption with high hole mobility, and rGO prevents the recombination rate by separating electrons out from the photogenerated carriers. Several structural characterizations such as x-ray diffraction, atomic force microscope, scanning electron microscope were used to study the materials crystallinity, microstructures, and surface roughness. On one side, the oxides were found to be polycrystalline in nature, and no secondary phases were present. On the other side, surface roughness was found to be low with no pit holes, which depicts the formation of high-quality oxides thin films. Whereas, x-ray photoelectron spectroscopy was employed to study the chemical compositions and oxidation structures. The electrical characterizations such as current-voltage and current response were also performed on the device to determine the responsivity, detectivity, and external quantum efficiency under dark and UV illumination. This p-n heterojunction device offered faster photoresponse and high on-off ratio under 365 nm UV light illumination of zero bias. The device based on the proposed architecture shows the efficacy of the oxides heterojunction for efficient UV photodetection under zero bias, which opens up a new path towards the development of self-powered photodetector for environment and health monitoring sector.Keywords: chemical synthesis, oxides, photodetectors, spin coating
Procedia PDF Downloads 123403 Sources and Potential Ecological Risks of Heavy Metals in the Sediment Samples From Coastal Area in Ondo, Southwest Nigeria
Authors: Ogundele Lasun Tunde, Ayeku Oluwagbemiga Patrick
Abstract:
Heavy metals are released into the sediments in aquatic environment from both natural and anthropogenic sources and they are considered as worldwide issue due to their deleterious ecological risks and food chain disruption. In this study, sediments samples were collected at three major sites (Awoye, Abereke and Ayetoro) along Ondo coastal area using VanVeen grab sampler. The concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn were determined by employing Atomic Absorption Spectroscopy (AAS). The combined concentrations data were subjected to Positive Matrix Factorization (PMF) receptor approach for source identification and apportionment. The probable risks that might be posed by heavy metals in the sediment were estimated by potential and integrated ecological risks indices. Among the measured heavy metals, Fe had the average concentrations of 20.38 ± 2.86, 23.56 ± 4.16 and 25.32 ± 4.83 lg/g at Abereke, Awoye and Ayetoro sites, respectively. The PMF resulted in identification of four sources of heavy metals in the sediments. The resolved sources and their percentage contributions were oil exploration (39%), industrial waste/sludge (35%), detrital process (18%) and Mn-sources (8%). Oil exploration activities and industrial wastes are the major sources that contribute heavy metals into the coastal sediments. The major pollutants that posed ecological risks to the local aquatic ecosystem are As, Pb, Cr and Cd (40 B Ei ≤ 80) classifying the sites as moderate risk. The integrate risks values of Awoye, Abereke and Ayetoro are 231.2, 234.0 and 236.4, respectively suggesting that the study areas had a moderate ecological risk. The study showed the suitability of PMF receptor model for source identification of heavy metals in the sediments. Also, the intensive anthropogenic activities and natural sources could largely discharge heavy metals into the study area, which may increase the heavy metal contents of the sediments and further contribute to the associated ecological risk, thus affecting the local aquatic ecosystem.Keywords: positive matrix factorization, sediments, heavy metals, sources, ecological risks
Procedia PDF Downloads 21