Search results for: variational iteration method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19019

Search results for: variational iteration method

17069 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial

Procedia PDF Downloads 636
17068 Adoption of Digital Storytelling Tool to Teach 21st Century Skills by Malaysian Pre-service Teachers

Authors: Siti Aisyah binti Jumpaan

Abstract:

21ˢᵗ century skills (PAK-21) integration has made its way into Malaysian curriculum when Ministry of Education introduce its implementation since 2016. This study was conducted to explore pre-service teachers’ readiness in integrating 21st century skills in the classroom via the digital storytelling (DST) method and to find gaps between theory and practice that can be integral towards pre-service teachers’ professional growth. Qualitative research method was used in this research involving six respondents who were selected using a purposive sampling method. Their response from interviews and lesson plan analysis were analysed using narrative analysis. The findings showed that pre-service teachers showed a moderate level of readiness in integrating 21st century skills using DST. Pre-service teachers demonstrated high level of preparedness in writing their lesson plan, but their interview revealed that they faced struggles in implementation due to several factors, such as lack of technology and failure to obtain students’ participation. This study further strengthens the need for specialised curriculum for pre-service teachers in teaching 21st century skills via DST.

Keywords: digital storytelling, 21ˢᵗ century skills, preservice teachers, teacher training

Procedia PDF Downloads 91
17067 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 315
17066 A Novel Method for Isolation of Kaempferol and Quercetin from Podophyllum Hexandrum Rhizome

Authors: S. B. Bhandare, K. S. Laddha

Abstract:

Podphyllum hexandrum belonging to family berberidaceae has gained attention in phytochemical and pharmacological research as it shows excellent anticancer activity and has been used in treatment of skin diseases, sunburns and radioprotection. Chemically it contains lignans and flavonoids such as kaempferol, quercetin and their glycosides. Objective: To isolate and identify Kaempferol and Quercetin from Podophyllum rhizome. Method: The powdered rhizome of Podophyllum hexandrum was subjected to soxhlet extraction with methanol. This methanolic extract is used to obtain podophyllin. Podohyllin was extracted with ethyl acetate and this extract was then concentrated and subjected to column chromatography to obtain purified kaempferol and quercetin. Result: Isolated kaempferol, quercetin were light yellow and dark yellow in colour respectively. TLC of the isolated compounds was performed using chloroform: methanol (9:1) which showed single band on silica plate at Rf 0.6 and 0.4 for kaempferol and quercetin. UV spectrometric studies showed UV maxima (methanol) at 259, 360 nm and 260, 370 nm which are identical with standard kaempferol and quercetin respectively. Both IR spectra exhibited prominent absorption bands for free phenolic OH at 3277 and 3296.2 cm-1 and for conjugated C=O at 1597 and 1659.7 cm-1 respectively. The mass spectrum of kaempferol and quercetin showed (M+1) peak at m/z 287 and 303.09 respectively. 1H NMR analysis of both isolated compounds exhibited typical four-peak pattern of two doublets at δ 6.86 and δ 8.01 which was assigned to H-3’,5’ and H-2’,6’ respectively. Absence of signals less than δ 6.81 in the 1H NMR spectrum supported the aromatic nature of compound. Kaempferol and Quercetin showed 98.1% and 97% purity by HPLC at UV 370 nm. Conclusion: Easy and simple method for isolation of Kaempferol and Quercetin was developed and their structures were confirmed by UV, IR, NMR and mass studies. Method has shown good reproducibility, yield and purity.

Keywords: flavonoids, kaempferol, podophyllum rhizome, quercetin

Procedia PDF Downloads 304
17065 Hydrodynamic Study and Sizing of a Distillation Column by HYSYS Software

Authors: Derrouazin Mohammed Redhouane, Souakri Mohammed Lotfi, Henini Ghania

Abstract:

This work consists, first of all, of mastering one of the powerful process simulation tools currently used in the industrial processes, which is the HYSYS sizing software, and second, of simulating a petroleum distillation column. This study is divided into two parts; where the first one consists of a dimensioning of the column with a fast approximating method using state equations, iterative calculations, and then a precise simulation method with the HYSYS software. The second part of this study is a hydrodynamic study in order to verify by obtained results the proper functioning of the plates.

Keywords: industry process engineering, water distillation, environment, HYSYS simulation tool

Procedia PDF Downloads 129
17064 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 318
17063 The Effect of Accounting Conservatism on Cost of Capital: A Quantile Regression Approach for MENA Countries

Authors: Maha Zouaoui Khalifa, Hakim Ben Othman, Hussaney Khaled

Abstract:

Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.

Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries

Procedia PDF Downloads 355
17062 Reliability Analysis of Heat Exchanger Cycle Using Non-Parametric Method

Authors: Apurv Kulkarni, Shreyas Badave, B. Rajiv

Abstract:

Non-parametric reliability technique is useful for assessment of reliability of systems for which failure rates are not available. This is useful when detection of malfunctioning of any component is the key purpose during ongoing operation of the system. The main purpose of the Heat Exchanger Cycle discussed in this paper is to provide hot water at a constant temperature for longer periods of time. In such a cycle, certain components play a crucial role and this paper presents an effective way to predict the malfunctioning of the components by determination of system reliability. The method discussed in the paper is feasible and this is clarified with the help of various test cases.

Keywords: heat exchanger cycle, k-statistics, PID controller, system reliability

Procedia PDF Downloads 390
17061 Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method

Authors: Mahmood Khalghollah, Mohammad Tavallaeinejad, Mohammad Eghtesad

Abstract:

The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties.

Keywords: controlled lagrangian, underactuated system, flexible rotating plate, disturbance

Procedia PDF Downloads 446
17060 Integrated Best Worst PROMETHEE to Evaluate Public Transport Service Quality

Authors: Laila Oubahman, Duleba Szabolcs

Abstract:

Public transport stakeholders aim to increase the ridership ratio by encouraging citizens to use common transportation modes. For this sight, improving service quality is a crucial option to reach the quality desired by users and reduce the gap between desired and perceived quality. Multi-criteria decision aid has been applied in literature in recent decades because it provides efficient models to assess the most impacting criteria on the overall assessment. In this paper, the PROMETHEE method is combined with the best-worst approach to construct a consensual model that avoids rank reversal to support stakeholders in ameliorating service quality.

Keywords: best-worst method, MCDA, PROMETHEE, public transport

Procedia PDF Downloads 208
17059 An Enhanced Approach in Validating Analytical Methods Using Tolerance-Based Design of Experiments (DoE)

Authors: Gule Teri

Abstract:

The effective validation of analytical methods forms a crucial component of pharmaceutical manufacturing. However, traditional validation techniques can occasionally fail to fully account for inherent variations within datasets, which may result in inconsistent outcomes. This deficiency in validation accuracy is particularly noticeable when quantifying low concentrations of active pharmaceutical ingredients (APIs), excipients, or impurities, introducing a risk to the reliability of the results and, subsequently, the safety and effectiveness of the pharmaceutical products. In response to this challenge, we introduce an enhanced, tolerance-based Design of Experiments (DoE) approach for the validation of analytical methods. This approach distinctly measures variability with reference to tolerance or design margins, enhancing the precision and trustworthiness of the results. This method provides a systematic, statistically grounded validation technique that improves the truthfulness of results. It offers an essential tool for industry professionals aiming to guarantee the accuracy of their measurements, particularly for low-concentration components. By incorporating this innovative method, pharmaceutical manufacturers can substantially advance their validation processes, subsequently improving the overall quality and safety of their products. This paper delves deeper into the development, application, and advantages of this tolerance-based DoE approach and demonstrates its effectiveness using High-Performance Liquid Chromatography (HPLC) data for verification. This paper also discusses the potential implications and future applications of this method in enhancing pharmaceutical manufacturing practices and outcomes.

Keywords: tolerance-based design, design of experiments, analytical method validation, quality control, biopharmaceutical manufacturing

Procedia PDF Downloads 80
17058 Combination of Topology and Rough Set for Analysis of Power System Control

Authors: M. Kamel El-Sayed

Abstract:

In this research, we have linked the concept of rough set and topological structure to the creation of a new topological structure that assists in the analysis of the information systems of some electrical engineering issues. We used non-specific information whose boundaries do not have an empty set in the top topological structure is rough set. It is characterized by the fact that it does not contain a large number of elements and facilitates the establishment of rules. We used this structure in reducing the specifications of electrical information systems. We have provided a detailed example of this method illustrating the steps used. This method opens the door to obtaining multiple topologies, each of which uses one of the non-defined groups (rough set) in the overall information system.

Keywords: electrical engineering, information system, rough set, rough topology, topology

Procedia PDF Downloads 453
17057 Iterative Solver for Solving Large-Scale Frictional Contact Problems

Authors: Thierno Diop, Michel Fortin, Jean Deteix

Abstract:

Since the precise formulation of the elastic part is irrelevant for the description of the algorithm, we shall consider a generic case. In practice, however, we will have to deal with a non linear material (for instance a Mooney-Rivlin model). We are interested in solving a finite element approximation of the problem, leading to large-scale non linear discrete problems and, after linearization, to large linear systems and ultimately to calculations needing iterative methods. This also implies that penalty method, and therefore augmented Lagrangian method, are to be banned because of their negative effect on the condition number of the underlying discrete systems and thus on the convergence of iterative methods. This is in rupture to the mainstream of methods for contact in which augmented Lagrangian is the principal tool. We shall first present the problem and its discretization; this will lead us to describe a general solution algorithm relying on a preconditioner for saddle-point problems which we shall describe in some detail as it is not entirely standard. We will propose an iterative approach for solving three-dimensional frictional contact problems between elastic bodies, including contact with a rigid body, contact between two or more bodies and also self-contact.

Keywords: frictional contact, three-dimensional, large-scale, iterative method

Procedia PDF Downloads 210
17056 Ge₁₋ₓSnₓ Alloys with Tuneable Energy Band Gap on GaAs (100) Substrate Manufactured by a Modified Magnetron Co-Sputtering

Authors: Li Qian, Jinchao Tong, Daohua Zhang, Weijun Fan, Fei Suo

Abstract:

Photonic applications based on group IV semiconductors have always been an interest but also a challenge for the research community. We report manufacturing group IV Ge₁₋ₓSnₓ alloys with tuneable energy band gap on (100) GaAs substrate by a modified radio frequency magnetron co-sputtering. Images were taken by atomic force microscope, and scanning electron microscope clearly demonstrates a smooth surface profile, and Ge₁₋ₓSnₓ nano clusters are with the size of several tens of nanometers. Transmittance spectra were measured by Fourier Transform Infrared Spectroscopy that showed changing energy gaps with the variation in elementary composition. Calculation results by 8-band k.p method are consistent with measured gaps. Our deposition system realized direct growth of Ge₁₋ₓSnₓ thin film on GaAs (100) substrate by sputtering. This simple deposition method was modified to be able to grow high-quality photonic materials with tuneable energy gaps. This work provides an alternative and successful method for fabricating Group IV photonic semiconductor materials.

Keywords: GeSn, crystal growth, sputtering, photonic

Procedia PDF Downloads 144
17055 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: Fathi Alwafie

Abstract:

In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.

Keywords: propagation, ray tracing, network, mobile computing

Procedia PDF Downloads 400
17054 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text

Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert

Abstract:

This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.

Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies

Procedia PDF Downloads 168
17053 Fuzzy Multi-Criteria Decision-Making Based on Ignatian Discernment Process

Authors: Pathinathan Theresanathan, Ajay Minj

Abstract:

Ignatian Discernment Process (IDP) is an intense decision-making tool to decide on life-issues. Decisions are influenced by various factors outside of the decision maker and inclination within. This paper develops IDP in the context of Fuzzy Multi-criteria Decision Making (FMCDM) process. Extended VIKOR method is a decision-making method which encompasses even conflict situations and accommodates weightage to various issues. Various aspects of IDP, namely three ways of decision making and tactics of inner desires, are observed, analyzed and articulated within the frame work of fuzzy rules. The decision-making situations are broadly categorized into two types. The issues outside of the decision maker influence the person. The inner feeling also plays vital role in coming to a conclusion. IDP integrates both the categories using Extended VIKOR method. Case studies are carried out and analyzed with FMCDM process. Finally, IDP is verified with an illustrative case study and results are interpreted. A confused person who could not come to a conclusion is able to take decision on a concrete way of life through IDP. The proposed IDP model recommends an integrated and committed approach to value-based decision making.

Keywords: AHP, FMCDM, IDP, ignatian discernment, MCDM, VIKOR

Procedia PDF Downloads 260
17052 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.

Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding

Procedia PDF Downloads 129
17051 Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings

Authors: Fu-Pei Hsiao, Fung-Chung Tu, Chien-Kuo Chiu

Abstract:

In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method.

Keywords: seismic assessment, seismic reduction factor, residual seismic ratio, post-earthquake, reinforced concrete, building

Procedia PDF Downloads 400
17050 Quantification of Hydrogen Sulfide and Methyl Mercaptan in Air Samples from a Waste Management Facilities

Authors: R. F. Vieira, S. A. Figueiredo, O. M. Freitas, V. F. Domingues, C. Delerue-Matos

Abstract:

The presence of sulphur compounds like hydrogen sulphide and mercaptans is one of the reasons for waste-water treatment and waste management being associated with odour emissions. In this context having a quantifying method for these compounds helps in the optimization of treatment with the goal of their elimination, namely biofiltration processes. The aim of this study was the development of a method for quantification of odorous gases in waste treatment plants air samples. A method based on head space solid phase microextraction (HS-SPME) coupled with gas chromatography - flame photometric detector (GC-FPD) was used to analyse H2S and Metil Mercaptan (MM). The extraction was carried out with a 75-μm Carboxen-polydimethylsiloxane fiber coating at 22 ºC for 20 min, and analysed by a GC 2010 Plus A from Shimadzu with a sulphur filter detector: splitless mode (0.3 min), the column temperature program was from 60 ºC, increased by 15 ºC/min to 100 ºC (2 min). The injector temperature was held at 250 ºC, and the detector at 260 ºC. For calibration curve a gas diluter equipment (digital Hovagas G2 - Multi Component Gas Mixer) was used to do the standards. This unit had two input connections, one for a stream of the dilute gas and another for a stream of nitrogen and an output connected to a glass bulb. A 40 ppm H2S and a 50 ppm MM cylinders were used. The equipment was programmed to the selected concentration, and it automatically carried out the dilution to the glass bulb. The mixture was left flowing through the glass bulb for 5 min and then the extremities were closed. This method allowed the calibration between 1-20 ppm for H2S and 0.02-0.1 ppm and 1-3.5 ppm for MM. Several quantifications of air samples from inlet and outlet of a biofilter operating in a waste management facility in the north of Portugal allowed the evaluation the biofilters performance.

Keywords: biofiltration, hydrogen sulphide, mercaptans, quantification

Procedia PDF Downloads 476
17049 Behavior of Beam-Column Nodes Reinforced Concrete in Earthquake Zones

Authors: Zaidour Mohamed, Ghalem Ali Jr., Achit Henni Mohamed

Abstract:

This project is destined to study pole junctions of reinforced concrete beams subjected to seismic loads. A literature review was made to clarify the work done by researchers in the last three decades and especially the results of the last two years that were studied for the determination of the method of calculating the transverse reinforcement in the different nodes of a structure. For implementation efforts in the columns and beams of a building R + 4 in zone 3 were calculated using the finite element method through software. These results are the basis of our work which led to the calculation of the transverse reinforcement of the nodes of the structure in question.

Keywords: beam–column joints, cyclic loading, shearing force, damaged joint

Procedia PDF Downloads 550
17048 Non-Invasive Imaging of Tissue Using Near Infrared Radiations

Authors: Ashwani Kumar Aggarwal

Abstract:

NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense.

Keywords: least-squares optimization, filtering, tomography, laser interaction, light scattering

Procedia PDF Downloads 316
17047 Petra: Simplified, Scalable Verification Using an Object-Oriented, Compositional Process Calculus

Authors: Aran Hakki, Corina Cirstea, Julian Rathke

Abstract:

Formal methods are yet to be utilized in mainstream software development due to issues in scaling and implementation costs. This work is about developing a scalable, simplified, pragmatic, formal software development method with strong correctness properties and guarantees that are easy prove. The method aims to be easy to learn, use and apply without extensive training and experience in formal methods. Petra is proposed as an object-oriented, process calculus with composable data types and sequential/parallel processes. Petra has a simple denotational semantics, which includes a definition of Correct by Construction. The aim is for Petra is to be standard which can be implemented to execute on various mainstream programming platforms such as Java. Work towards an implementation of Petra as a Java EDSL (Embedded Domain Specific Language) is also discussed.

Keywords: compositionality, formal method, software verification, Java, denotational semantics, rewriting systems, rewriting semantics, parallel processing, object-oriented programming, OOP, programming language, correct by construction

Procedia PDF Downloads 144
17046 Study of a Few Additional Posterior Projection Data to 180° Acquisition for Myocardial SPECT

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Takao Kanzaki

Abstract:

A Dual-detector SPECT system is widely by use of myocardial SPECT studies. With 180-degree (180°) acquisition, reconstructed images are distorted in the posterior wall of myocardium due to the lack of sufficient data of posterior projection. We hypothesized that quality of myocardial SPECT images can be improved by the addition of data acquisition of only a few posterior projections to ordinary 180° acquisition. The proposed acquisition method (180° plus acquisition methods) uses the dual-detector SPECT system with a pair of detector arranged in 90° perpendicular. Sampling angle was 5°, and the acquisition range was 180° from 45° right anterior oblique to 45° left posterior oblique. After the acquisition of 180°, the detector moved to additional acquisition position of reverse side once for 2 projections, twice for 4 projections, or 3 times for 6 projections. Since these acquisition methods cannot be done in the present system, actual data acquisition was done by 360° with a sampling angle of 5°, and projection data corresponding to above acquisition position were extracted for reconstruction. We underwent the phantom studies and a clinical study. SPECT images were compared by profile curve analysis and also quantitatively by contrast ratio. The distortion was improved by 180° plus method. Profile curve analysis showed increased of cardiac cavity. Analysis with contrast ratio revealed that SPECT images of the phantoms and the clinical study were improved from 180° acquisition by the present methods. The difference in the contrast was not clearly recognized between 180° plus 2 projections, 180° plus 4 projections, and 180° plus 6 projections. 180° plus 2 projections method may be feasible for myocardial SPECT because distortion of the image and the contrast were improved.

Keywords: 180° plus acquisition method, a few posterior projections, dual-detector SPECT system, myocardial SPECT

Procedia PDF Downloads 295
17045 Obstacle Classification Method Based on 2D LIDAR Database

Authors: Moohyun Lee, Soojung Hur, Yongwan Park

Abstract:

In this paper is proposed a method uses only LIDAR system to classification an obstacle and determine its type by establishing database for classifying obstacles based on LIDAR. The existing LIDAR system, in determining the recognition of obstruction in an autonomous vehicle, has an advantage in terms of accuracy and shorter recognition time. However, it was difficult to determine the type of obstacle and therefore accurate path planning based on the type of obstacle was not possible. In order to overcome this problem, a method of classifying obstacle type based on existing LIDAR and using the width of obstacle materials was proposed. However, width measurement was not sufficient to improve accuracy. In this research, the width data was used to do the first classification; database for LIDAR intensity data by four major obstacle materials on the road were created; comparison is made to the LIDAR intensity data of actual obstacle materials; and determine the obstacle type by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that data declined in quality in comparison to 3D LIDAR and it was possible to classify obstacle materials using 2D LIDAR.

Keywords: obstacle, classification, database, LIDAR, segmentation, intensity

Procedia PDF Downloads 349
17044 Cross Professional Team-Assisted Teaching Effectiveness

Authors: Shan-Yu Hsu, Hsin-Shu Huang

Abstract:

The main purpose of this teaching research is to design an interdisciplinary team-assisted teaching method for trainees and interns and review the effectiveness of this teaching method on trainees' understanding of peritoneal dialysis. The teaching research object is the fifth and sixth-grade trainees in a medical center's medical school. The teaching methods include media teaching, demonstration of technical operation, face-to-face communication with patients, special case discussions, and field visits to the peritoneal dialysis room. Evaluate learning effectiveness before, after, and verbally. Statistical analysis was performed using the SPSS paired-sample t-test to analyze whether there is a difference in peritoneal dialysis professional cognition before and after teaching intervention. Descriptive statistics show that the average score of the previous test is 74.44, the standard deviation is 9.34, the average score of the post-test is 95.56, and the standard deviation is 5.06. The results of the t-test of the paired samples are shown as p-value = 0.006, showing the peritoneal dialysis professional cognitive test. Significant differences were observed before and after. The interdisciplinary team-assisted teaching method helps trainees and interns to improve their professional awareness of peritoneal dialysis. At the same time, trainee physicians have positive feedback on the inter-professional team-assisted teaching method. This teaching research finds that the clinical ability development education of trainees and interns can provide cross-professional team-assisted teaching methods to assist clinical teaching guidance.

Keywords: monitor quality, patient safety, health promotion objective, cross-professional team-assisted teaching methods

Procedia PDF Downloads 143
17043 Use the Null Space to Create Starting Point for Stochastic Programming

Authors: Ghussoun Al-Jeiroudi

Abstract:

Stochastic programming is one of the powerful technique which is used to solve real-life problems. Hence, the data of real-life problems is subject to significant uncertainty. Uncertainty is well studied and modeled by stochastic programming. Each day, problems become bigger and bigger and the need for a tool, which does deal with large scale problems, increase. Interior point method is a perfect tool to solve such problems. Interior point method is widely employed to solve the programs, which arise from stochastic programming. It is an iterative technique, so it is required a starting point. Well design starting point plays an important role in improving the convergence speed. In this paper, we propose a starting point for interior point method for multistage stochastic programming. Usually, the optimal solution of stage k+1 is used as starting point for the stage k. This point has the advantage of being close to the solution of the current program. However, it has a disadvantage; it is not in the feasible region of the current program. So, we suggest to take this point and modifying it. That is by adding to it a vector in the null space of the matrix of the unchanged constraints because the solution will change only in the null space of this matrix.

Keywords: interior point methods, stochastic programming, null space, starting points

Procedia PDF Downloads 418
17042 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions

Authors: M. Y. Malik, Farzana Khan

Abstract:

In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.

Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity

Procedia PDF Downloads 423
17041 Low-Surface Roughness and High Optical Quality CdS Thin Film Grown by Modified Chemical Surface Deposition Method

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali

Abstract:

We report on deposition of smooth, pinhole-free, low-surface roughness ( < 4nm) and high optical quality cadmium sulfide (CdS) thin films on glass substrates using our new method based on chemical surface deposition principle. In this method, cadmium acetate and thiourea are used as reactants under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-vis transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. Interestingly, we found that XRD pattern of the deposited films has dramatically changed when the growth temperature was raised during the reaction. Namely, the XRD measurements reveal a structural change of CdS film from Cubic to Hexagonal phase upon increase in the growth temperature from 75 °C to 200 °C. Furthermore, the deposited films show high optical quality as confirmed from observation of both sharp edge in the transmittance spectra and strong PL intensity at room temperature. Also, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap and crystal structure of the deposited CdS films; can be utilized for tuning the electronic bands alignments between CdS and other light harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of all-solution processed solar cells devices based on these heterostructures.

Keywords: thin film, CdS, new method, optical properties

Procedia PDF Downloads 260
17040 Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression

Authors: Zhengyi Kong, Xueqing Wang, Quang-Viet Vu

Abstract:

In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression.

Keywords: hot-finished, elliptical hollow section, uniaxial eccentric compression, finite element method

Procedia PDF Downloads 138