Search results for: induced systemic resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6326

Search results for: induced systemic resistance

4376 Damages of Highway Bridges in Thailand during the 2014-Chiang Rai Earthquake

Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom

Abstract:

On May 5, 2014, an earthquake of magnitude 6.3 Richter hit the Northern part of Thailand. The epicenter was in Phan District, Chiang Rai Province. This earthquake or the so-called 2014-Chiang Rai Earthquake is the strongest ground shaking that Thailand has ever been experienced in her modern history. The 2014-Chiang Rai Earthquake confirms the geological evidence, which has previously been ignored by most engineers, that earthquakes of considerable magnitudes 6 to 7 Richter can occurr within the country. This promptly stimulates authorized agencies to pay more attention at the safety of their assets and promotes the comprehensive review of seismic resistance design of their building structures. The focus of this paper is to summarize the damages of highway bridges as a result of the 2014-Chiang Rai ground shaking, the remedy actions, and the research needs. The 2014-Chiang Rai Earthquake caused considerable damages to nearby structures such as houses, schools, and temples. The ground shaking, however, caused damage to only one highway bridge, Mae Laos Bridge, located several kilometers away from the epicenter. The damage of Mae Laos Bridge was in the form of concrete spalling caused by pounding of cap beam on the deck structure. The damage occurred only at the end or abutment span. The damage caused by pounding is not a surprise, but the pounding by only one bridge requires further investigation and discussion. Mae Laos Bridge is a river crossing bridge with relatively large approach structure. In as much, the approach structure is confined by strong retaining walls. This results in a rigid-like approach structure which vibrates at the acceleration approximately equal to the ground acceleration during the earthquake and exerts a huge force to the abutment causing the pounding of cap beam on the deck structure. Other bridges nearby have relatively small approach structures, and therefore have no capability to generate pounding. The effect of mass of the approach structure on pounding of cap beam on the deck structure is also evident by the damage of one pedestrian bridge in front of Thanthong Wittaya School located 50 meters from Mae Laos Bridge. The width of the approach stair of this bridge is wider than the typical one to accommodate the stream of students during pre- and post-school times. This results in a relatively large mass of the approach stair which in turn exerts a huge force to the pier causing pounding of cap beam on the deck structure during ground shaking. No sign of pounding was observed for a typical pedestrian bridge located at another end of Mae Laos Bridge. Although pounding of cap beam on the deck structure of the above mentioned bridges does not cause serious damage to bridge structure, this incident promotes the comprehensive review of seismic resistance design of highway bridges in Thailand. Given a proper mass and confinement of the approach structure, the pounding of cap beam on the deck structure can be easily excited even at the low to moderate ground shaking. In as much, if the ground shaking becomes stronger, the pounding is certainly more powerful. This may cause the deck structure to be unseated and fall off in the case of unrestrained bridge. For the bridge with restrainer between cap beam and the deck structure, the restrainer may prevent the deck structure from falling off. However, preventing free movement of the pier by the restrainer may damage the pier itself. Most highway bridges in Thailand have dowel bars embedded connecting cap beam and the deck structure. The purpose of the existence of dowel bars is, however, not intended for any seismic resistance. Their ability to prevent the deck structure from unseating and their effect on the potential damage of the pier should be evaluated. In response to this expected situation, Thailand Department of Highways (DOH) has set up a team to revise the standard practices for the seismic resistance design of highway bridges in Thailand. In addition, DOH has also funded the research project 'Seismic Resistance Evaluation of Pre- and Post-Design Modifications of DOH’s Bridges' with the scope of full-scale tests of single span bridges under reversed cyclic static loadings for both longitudinal and transverse directions and computer simulations to evaluate the seismic performance of the existing bridges and the design modification bridges. The research is expected to start in October, 2015.

Keywords: earthquake, highway bridge, Thailand, damage, pounding, seismic resistance

Procedia PDF Downloads 286
4375 Neuroprotection against N-Methyl-D-Aspartate-Induced Optic Nerve and Retinal Degeneration Changes by Philanthotoxin-343 to Alleviate Visual Impairments Involve Reduced Nitrosative Stress

Authors: Izuddin Fahmy Abu, Mohamad Haiqal Nizar Mohamad, Muhammad Fattah Fazel, Renu Agarwal, Igor Iezhitsa, Nor Salmah Bakar, Henrik Franzyk, Ian Mellor

Abstract:

Glaucoma is the global leading cause of irreversible blindness. Currently, the available treatment strategy only involves lowering intraocular pressure (IOP); however, the condition often progresses despite lowered or normal IOP in some patients. N-methyl-D-aspartate receptor (NMDAR) excitotoxicity often occurs in neurodegeneration-related glaucoma; thus it is a relevant target to develop a therapy based on neuroprotection approach. This study investigated the effects of Philanthotoxin-343 (PhTX-343), an NMDAR antagonist, on the neuroprotection of NMDA-induced glaucoma to alleviate visual impairments. Male Sprague-Dawley rats were equally divided: Groups 1 (control) and 2 (glaucoma) were intravitreally injected with phosphate buffer saline (PBS) and NMDA (160nM), respectively, while group 3 was pre-treated with PhTX-343 (160nM) 24 hours prior to NMDA injection. Seven days post-treatments, rats were subjected to visual behavior assessments and subsequently euthanized to harvest their retina and optic nerve tissues for histological analysis and determination of nitrosative stress level using 3-nitrotyrosine ELISA. Visual behavior assessments via open field, object, and color recognition tests demonstrated poor visual performance in glaucoma rats indicated by high exploratory behavior. PhTX-343 pre-treatment appeared to preserve visual abilities as all test results were significantly improved (p < 0.05). H&E staining of the retina showed a marked reduction of ganglion cell layer thickness in the glaucoma group; in contrast, PhTX-343 significantly increased the number by 1.28-folds (p < 0.05). PhTX-343 also increased the number of cell nuclei/100μm2 within inner retina by 1.82-folds compared to the glaucoma group (p < 0.05). Toluidine blue staining of optic nerve tissues showed that PhTX-343 reduced the degeneration changes compared to the glaucoma group which exhibited vacuolation overall sections. PhTX-343 also decreased retinal 3- nitrotyrosine concentration by 1.74-folds compared to the glaucoma group (p < 0.05). All results in PhTX-343 group were comparable to control (p > 0.05). We conclude that PhTX-343 protects against NMDA-induced changes and visual impairments in the rat model by reducing nitrosative stress levels.

Keywords: excitotoxicity, glaucoma, nitrosative stress , NMDA receptor , N-methyl-D-aspartate , philanthotoxin, visual behaviour

Procedia PDF Downloads 133
4374 The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells

Authors: Jeongyeon Park, Yeo Jun Yoon, Jiyoung Seo, In Seok Moon, Hae Jun Lee, Kiwon Song

Abstract:

Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 ‑/‑ and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs.

Keywords: cold atmospheric pressure plasma, apoptosis, proliferation, cancer cells, adult stem cells

Procedia PDF Downloads 278
4373 Deubiquitinase USP35 Regulates Mitosis Progression by Blocking CDH1-Mediated Degradation of Aurora B.

Authors: Jinyoung Park, Eun Joo Song

Abstract:

Introduction: Deubiquitinating enzymes (DUBs) are proteases that cleave ubiquitin or ubiquitin-like modifications on substrates. Deubiquitination could regulate cellular physiology, such as signal transduction, DNA damage and repair, and cell cycle progression. Although more than 100 DUBs are encoded in the human and the importance of DUBs has been realized, the functions of most DUBs are unknown. This study aims to identify the molecular mechanism by which deubiquitinating enzyme USP35 regulates cell cycle progression for the first time. Methods: USP35 RNAi was mainly used to identify the function of USP35 in cell cycle progression. To find substrates of USP35, we analyzed protein-protein interaction using LC-MS. Several biological methods, such as ubiquitination assay, cell synchronization, immunofluorescence, and immunoprecipitation assay were used to investigate the exact mechanism by which USP35 affects successful completion of mitosis. Results: USP35 knockdown caused not only reduction of mitotic cell number but also induction of mitotic cells with abnormal spindle formation. Actually, cell proliferation was decreased by USP35 knockdown. Interestingly, we found that loss of USP35 decreased the stability and expression of Aurora B, a member of chromosomal passenger complex (CPC), and the phosphorylation of its substrate. Indeed, USP35 interacted with Aurora B and deubiquitinated it. In addition, USP35 knockdown induced abnormal localization of Aurora B in mitotic cells. Finally, CDH1-mediated ubiquitination of Aurora B level was rescued by USP35 overexpression, but not inactive form of USP35, USP35 C450A. Discussion: Our findings suggest that USP35 regulates Aurora B-mediated mitotic spindle assembly and G2-M transition by blocking CDH1-induced degradation of Aurora B.

Keywords: USP35, HSP90, Aurora B, cell cycle progression

Procedia PDF Downloads 354
4372 Unforeseen Inequity: Childhood Sexual Abuse in Aotearoa, New Zealand

Authors: Nicola Harrison

Abstract:

Familial childhood sexual abuse (FCSA) prevalence rates in Aotearoa, New Zealand, are amongst the highest globally, particularly in indigenous communities. However, such statistics seem incongruent with indigenous paradigms of unity, care, and connection. The inability of policymakers and mainstream service providers to acknowledge the direct links between the social contexts created by colonisation for indigenous families in Aotearoa and intergenerational FCSA has meant there has been little meaningful success in combatting this significant social problem. This research traces the conditions of intergenerational FCSA to the systemic inequalities created by colonization. Kaupapa Māori methodologies were applied to this qualitative piece of empirical research wherein 17 indigenous contributors shared their stories of FCSA. From these stories and existing literature, we can identify how the machinations of colonisation are mirrored by techniques used to perpetrate abuse. Once identified, we are then able to recommend actions for halting FCSA for future generations.

Keywords: indigenity, family violence, childhood sexual abuse, colonization

Procedia PDF Downloads 121
4371 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique

Authors: Bashar Tarawneh, Yasser Hakam

Abstract:

Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.

Keywords: compaction, RIC, ground improvement, CPT

Procedia PDF Downloads 361
4370 Comparative Analysis of Residual Shear Depiction and Grain Distribution Characteristics of Slide Soil Profile Sections

Authors: Ephrem Getahun, Shengwen Qi, Songfeng Guo, Yu Zou, Melesse Alemayehu

Abstract:

Residual shear characteristics of slide soil profile sections (SSPS) were examined using ring shear tests to know the relative residual shear behaviors among the sections of slide soil. The multistage-multiphase shearing techniques were employed to perform the experiment for each soil specimen continuously towards large displacements. The grain distribution analysis of SSPS samples was characterized by coarsening upward from bottom slip to the top sections; however, the slip surface was considered as a sheared zone that endorses their low shear resistance for failure. There is an average range of 1-2.5 mm axial displacement on each stage of loadings and phases of shearing that depicts the significant effect of dilation and compression of soil specimen. The middle section has the largest consolidation percentage (10-29%), and vertical displacement compared to other sections and showed high shear strengthening behavior having maximum shear stress of 189kPa at 240kPa loading compared to basal and top sections. It is found that the middle section of SSPS has relatively high shear resistance behavior for large displacement shearing. The residual shear assessment indicates that there is a significant influence of large displacement and rate on the friction coefficient behaviors; it resulted in shear weakening effect to attain their residual condition.

Keywords: comparison, displacements, residual shear stress, shear behavior, slide soils

Procedia PDF Downloads 144
4369 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer

Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam

Abstract:

Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.

Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations

Procedia PDF Downloads 128
4368 COVID-19: Potential Effects of Nutritional Factors on Inflammation Relief

Authors: Maryam Nazari

Abstract:

COVID-19 is a respiratory disease triggered by the novel coronavirus, SARS-CoV-2, that has reached pandemic status today. Acute inflammation and immune cells infiltration into lung injuries result in multi-organ failure. The presence of other non-communicable diseases (NCDs) with systemic inflammation derived from COVID-19 may exacerbate the patient's situation and increase the risk for adverse effects and mortality. This pandemic is a novel situation and the scientific community at this time is looking for vaccines or drugs to treat the pathology. One of the biggest challenges is focused on reducing inflammation without compromising the correct immune response of the patient. In this regard, addressing the nutritional factors should not be overlooked not only as a matter of avoiding the presence of NCDs with severe infections but also as an adjunctive way to modulate the inflammatory status of the patients. Despite the pivotal role of nutrition in modifying immune response, due to the novelty of the COVID-19 disease, information about the effects of specific dietary agents is limited in this area. From the macronutrients point of view, protein deficiency (quantity or quality) has negative effects on the number of functional immunoglobulins and gut-associated lymphoid tissue (GALT). High biological value proteins or some amino acids like arginine and glutamine are well known for their ability to augment the immune system. Among lipids, fish oil has the ability to inactivate enveloped viruses, suppress pro-inflammatory prostaglandin production and block platelet-activating factors and their receptors. In addition, protectin D1, which is an Omega-3 PUFAs derivation, is a novel antiviral drug. So it seems that these fatty acids can reduce the severity and/or improve recovery of patients with COVID-19. Carbohydrates with lower glycemic index and fibers are associated with lower levels of inflammatory cytokines (CRP, TNF-α, and IL-6). Short-Chain Fatty acids not only exert a direct anti-inflammatory effect but also provide appropriate gut microbial, which is important in gastrointestinal issues related to COVID-19. From the micronutrients point of view, Vitamins A, C, D, E, iron, magnesium, zinc, selenium and copper play a vital role in the maintenance of immune function. Inadequate status in these nutrients may result in decreased resistance against COVID-19 infection. There are specific bioactive compounds in the diet that interact with the ACE2 receptor, which is the gateway for SARS and SARS-CoV-2, and thus controls the viral infection. Regarding this, the potential benefits of probiotics, resveratrol (a polyphenol found in grape), oleoylethanolamide (derived from oleic acid), and natural peroxisome proliferator-activated receptor γ agonists in foodstuffs (like curcumin, pomegranate, hot pepper) are suggested. Yet, it should be pointed out that most of these results have been reported in animal models and further human studies are needed to be verified.

Keywords: Covid-19, inflammation, nutrition, dietary agents

Procedia PDF Downloads 171
4367 Effect of Oxytocin on Cytosolic Calcium Concentration of Alpha and Beta Cells in Pancreas

Authors: Rauza Sukma Rita, Katsuya Dezaki, Yuko Maejima, Toshihiko Yada

Abstract:

Oxytocin is a nine-amino acid peptide synthesized in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. Oxytocin promotes contraction of the uterus during birth and milk ejection during breast feeding. Although oxytocin receptors are found predominantly in the breasts and uterus of females, many tissues and organs express oxytocin receptors, including the pituitary, heart, kidney, thymus, vascular endothelium, adipocytes, osteoblasts, adrenal gland, pancreatic islets, and many cell lines. On the other hand, in pancreatic islets, oxytocin receptors are expressed in both α-cells and β-cells with stronger expression in α- cells. However, to our knowledge there are no reports yet about the effect of oxytocin on cytosolic calcium reaction on α and β-cell. This study aims to investigate the effect of oxytocin on α-cells and β-cells and its oscillation pattern. Islet of Langerhans from wild type mice were isolated by collagenase digestion. Isolated and dissociated single cells either α-cells or β-cells on coverslips were mounted in an open chamber and superfused in HKRB. Cytosolic concentration ([Ca2+]i) in single cells were measured by fura-2 microfluorimetry. After measurement of [Ca2+]i, α-cells were identified by subsequent immunocytochemical staining using an anti-glucagon antiserum. In β-cells, the [Ca2+]i increase in response to oxytocin was observed only under 8.3 mM glucose condition, whereas in α-cells, [Ca2+]i an increase induced by oxytocin was observed in both 2.8 mM and 8.3 mM glucose. The oscillation incidence was induced more frequently in β-cells compared to α-cells. In conclusion, the present study demonstrated that oxytocin directly interacts with both α-cells and β-cells and induces increase of [Ca2+]i and its specific patterns.

Keywords: α-cells, β-cells, cytosolic calcium concentration, oscillation, oxytocin

Procedia PDF Downloads 186
4366 Intervention Programs for Children of Divorced Parents: Presentation of the Children’s Support Group Developed in Belgium

Authors: Therese Scali

Abstract:

Couple separations and divorces seem to be commonplace events. However, their frequency does not reduce their impact. Indeed, the adverse effects of parental divorce on children have been well documented. Thus, supporting the children from divorced families is a key concern. Several preventive interventions have been developed for children of divorced parents, such as Children’s Support Group. The present paper aims at presenting the program that has been created in Liege (Belgium). The setting and the tools will be presented. This Children’s Support Group is based on psychoeducational and systemic principles, art-therapy, and aims at acquiring coping skills and seeking social support. Also, the effectiveness of the program will be discussed. Results show that after parental divorce, a group intervention for children can be efficacious in promoting children’s well-being and parent-child communication. This paper contributes to enrich the understanding of children’s needs and to highlight the existence and efficacy of a program that helps them overcome the difficulties of divorce.

Keywords: art-therapy, children’s support group, divorce, efficacy, separation

Procedia PDF Downloads 149
4365 Clinical, Bacteriological and Histopathological Aspects of First-Time Pyoderma in a Population of Iranian Domestic Dogs: A Retrospective Study (2012-2017)

Authors: Shaghayegh Rafatpanah, Mehrnaz Rad, Ahmad Reza Movassaghi, Javad Khoshnegah

Abstract:

The purpose of the present study was to investigate the prevalence of isolation, antimicrobial susceptibility and ERIC-PCR typing of staphylococci species from dogs with pyoderma. The study animals were 61 clinical cases of Iranian domestic dogs with the first-time pyoderma. The prevalence of pyoderma was significantly higher amongst adult (odds Ratio: 0.21; p=0.001) large breed (odds Ratio: 2.42; p=0.002)dogs. There was no difference in prevalence of pyoderma in male and females (odds Ratio: 1.27; p= 0.337). The 'head, face and pinna' and 'trunk' were the most affected lesion regions, each with 19 cases (26.76%). An identifiable underlying disease was present in 52 (85.24%) of the dogs. Bacterial species were recovered from 43 of the 61 (70.49%) studied animals. No isolates were recovered from 18 studied dogs. The most frequently recovered bacterial genus was Staphylococcus (32/43 isolates, 74.41%) including S. epidermidis (22/43 isolates, 51.16%), S. aureus (7/43 isolates, 16.27%) and S. pseudintermedius (3/43 isolates, 6.97%). Staphylococci species resistance was most commonly seen against amoxicillin (94.11%), penicillin (83.35%), and ampicillin (76.47%). Resistant to cephalexin and cefoxitin was 5.88% and 2.94%, respectively. A total of 27 of the staphylococci isolated (84.37 %) were resistant to at least one antimicrobial agent, and 19 isolates (59.37%) were resistant to three or more antimicrobial drugs. There were no significant differences in the prevalence of resistance between the staphylococci isolated from cases of superficial and deep pyoderma. ERIC-PCR results revealed 19 different patterns among 22 isolates of S. epidermidis and 7 isolates of S. aureus.

Keywords: dog, pyoderma, Staphylococcus, Staphylococcus epidermidis, Iran

Procedia PDF Downloads 176
4364 Effect of Withania Somnifera in Alloxan Induced Diabetic Rabbits

Authors: Farah Ali, Tehreem Fayyaz, Musadiq Idris

Abstract:

The present work was undertaken to investigate effects of various extracts of W. somniferafor anti-diabetic activity in alloxan induced diabetic rabbits. Rabbits were acclimatized for a week to standard laboratory temperature. Animals were fed according to a strict schedule (8 am, 3 pm and 10 pm) with green fodder (Medicago sativa) and tap water ad libitum. Animals were divided into nine groups of six rabbits each in a random manner. Body weights and physical activities of all rabbits were recorded before start of experiments. The animals of group 1 and 2 were given lactose (250 mg/kg,p.o) and Withaniasomniferaroot powder (100 mg/kg, p.o) respectively daily from day 1-20. Animals of group 3 were given alloxan (100 mg/kg,i.v) as a single dose on day 1. Powdered root of Withaniasomnifera in the doses of 100, 150, 200 mg/kg and its aqueous and ethanol extracts (equivalent to 200 mg/kg of crude drug) were given to the treated animals (groups 4-8), respectively by oral route for three weeks (day 1-20o.d), along with alloxan (100 mg/kg, i.v) as a single dose on day 1. Group 9 was treated with metformin (200 mg/kg, p.o) daily from day 1-20, along with a single dose of alloxan (100 mg/ kg, i.v) on day 1. Fasting serum glucose concentration in groups 3-9 was increased significantly (p<0.05) on day 3, with a maximum increase (215.3 mg/dl) in animals of toxic control (TC) group (3) on day 21 of the experiment as compared to normal control (NC) group (1). Effects of different doses (100, 150, 200 mg/kg, p.o) of W. somnifera root powder (WS) decreased the fasting serum glucose concentration as compared to toxic control group, with a maximum decrease (88.3 mg/dl) in group 2 (treated control) on day 21 of the experiment. Metformin (200 mg/kg, p.o) (reference control), aqueous extract (AWS) and ethanol extract (EWS) of W. somnifera (equivalent to 100 mg/kg W.somnifera root, p.o) antagonized the effects of alloxan as compared to toxic control group. These results indicate that the W. somnifera possess significant anti –diabetic activity.

Keywords: diabetes, serum, glucose, blood, sugar, rabbits

Procedia PDF Downloads 559
4363 Data-Driven Crop Advisory – A Use Case on Grapes

Authors: Shailaja Grover, Purvi Tiwari, Vigneshwaran S. R., U. Dinesh Kumar

Abstract:

In India, grapes are one of the most important horticulture crops. Grapes are most vulnerable to downy mildew, which is one of the most devasting diseases. In the absence of a precise weather-based advisory system, farmers spray pesticides on their crops extensively. There are two main challenges associated with using these pesticides. Firstly, most of these sprays were panic sprays, which could have been avoided. Second, farmers use more expensive "Preventive and Eradicate" chemicals than "Systemic, Curative and Anti-sporulate" chemicals. When these chemicals are used indiscriminately, they can enter the fruit and cause health problems such as cancer. This paper utilizes decision trees and predictive modeling techniques to provide grape farmers with customized advice on grape disease management. This model is expected to reduce the overall use of chemicals by approximately 50% and the cost by around 70%. Most of the grapes produced will have relatively low residue levels of pesticides, i.e., below the permissible level.

Keywords: analytics in agriculture, downy mildew, weather based advisory, decision tree, predictive modelling

Procedia PDF Downloads 71
4362 Examining Postcolonial Corporate Power Structures through the Lens of Development Induced Projects in Africa

Authors: Omogboyega Abe

Abstract:

This paper examines the relationships between socio-economic inequalities of power, race, wealth engendered by corporate structure, and domination in postcolonial Africa. The paper further considers how land as an epitome of property and power for the locals paved the way for capitalist accumulation and control in the hands of transnational corporations. European colonization of Africa was contingent on settler colonialism, where properties, including land, were re-modified as extractive resources for primitive accumulation. In developing Africa's extractive resources, transnational corporations (TNCs) usurped states' structures and domination over native land. The usurpation/corporate capture that exists to date has led to remonstrations and arguably a counter-productive approach to development projects. In some communities, the mention of extractive companies triggers resentment. The paradigm of state capture and state autonomy is simply inadequate to either describe or resolve the play of forces or actors responsible for severe corporate-induced human rights violations in emerging markets. Moreover, even if the deadly working conditions are conceived as some regulatory failure, it is tough to tell whose failure. The analysis in this paper is that the complexity and ambiguity evidenced by the multiple regimes and political and economic forces shaping production, consumption, and distribution of socio-economic variables are not exceptional in emerging markets. Instead, the varied experience in developing countries provides a window for seeing what we face in understanding and theorizing the structure and operation of the global economic and regulatory order in general.

Keywords: colonial, emerging markets, business, human rights, corporation

Procedia PDF Downloads 61
4361 Changing the Biopower Hierarchy between Women’s Bodily Knowledge and the Medical Knowledge about the Body: The Case of Female Ejaculation and #Notpee

Authors: Lior B. Navon

Abstract:

The objective of this study is to investigate how technology, such as social media, can influence the biopower hierarchy between the medical knowledge about the body and women’s bodily knowledge through the case study of the hashtag 'notpee'. In January 2015, the hashtag #notpee, relating to a feminine physiological phenomenon called female ejaculation (FE) or squirting (SQ) started circulating on twitter. This hashtag, born as a reaction to a medical study claiming that SQ is essentially involuntary emission of urine during sexual activity, sparked an unusual public discourse about FE, a phenomenon that is usually not discussed or referred to in socio-legitimate public spheres. This unusual backlash got the attention of women’s magazines and blogs, as well as more mainstream large and respected outlets such as The Guardian and CNN. Both the tweets on twitter, as well as the media coverage of them, were mainly aimed at rejecting the research’s findings. While not offering an alternative and choosing to define the phenomenon by negation, women argued that the fluid extracted was not pee based on their personal experiences. Based on a critical discourse analysis of 742 tweets with the hashtag 'notpee' between January 2015 and January 2016, and of 15 articles covering the backlash, this study suggests that the #notpee backlash challenged the power balance between the medical knowledge about the feminine body and the feminine bodily knowledge through two different, yet related, forms of resistance to biopower. The first resistance is to the authority over knowledge production — who has the power to produce 'true' statements when it comes to the body? Is it the women who experience the phenomenon, or is it the medical institution? The second resistance to biopower has to do with what we regard as facts or veracity. A critical discourse analysis reveals that while both the scientific field, as well as the women arguing against its findings, use empirical information, they, nevertheless, rely on two dichotomic databases- while the scientific research relies on samples from the 'dead like body', these woman are relying on their lived subjective senses as a source for fact making. Nevertheless, while #notpee is asking to change the power relations between the feminine subjective bodily knowledge and the seemingly objective masculine medical knowledge about the body, it by no means dismisses it. These women are essentially asking the medical institution to take into consideration the subjective body as well as the objective one while acknowledging and accepting the power of the latter over knowledge production.

Keywords: biopower, female ejaculation, new media, bodily knowledge

Procedia PDF Downloads 152
4360 Hyparrhenia hirta: A Potential Protective Agent against DNA Damage and Liver Toxicity of Sodium Nitrate in Adult Rats

Authors: Hanen Bouaziz-Ketata, Ghada Ben Salah, Hichem Ben Salah, Kamel Jamoussi, Najiba Zeghal

Abstract:

The present study investigated the protective role of Hyparrhenia hirta on nitrate-induced liver damage. Experiments were carried out on adult rats divided into 3 groups, a control group and two treated groups. NaNO3 was administered daily by oral gavage at a dose of 400 mg/kg bw in treated groups either alone or coadministered with Hyparrhenia hirta methanolic extract via drinking water at a dose of 200 mg/kg bw for 50 days. Liver toxicity induced by NaNO3 was characterized by higher serum levels of glucose, total cholesterol and triglyceride and lower serum total protein than those of controls. Transaminases and lactate deshydrogenase activities in serum were elevated indicating hepatic cells’ damage after treatment with NaNO3. The hyperbilirubinemia and the increased serum gamma glutamyl transferase activities suggested the presence of cholestasis in NaNO3 exposed rats. In parallel, NaNO3 caused oxidant/antioxidant imbalance in the liver as reflected by the increased lipid peroxidation, the decreased total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities. Nitrate caused also a significant induction of DNA fragmentation as evidenced by the presence of a smear without ladder formation on agarose gel. Hyparrhenia hirta supplementation showed an improvement of all parameters cited above. We conclude that the present work provides ethnopharmacological relevance of Hyparrhenia hirta against the toxic effect of nitrate, suggesting its role as a potential antioxidant.

Keywords: Hyparrhenia hirta, liver, nitrate toxicity, oxidative stress, rat

Procedia PDF Downloads 540
4359 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton

Abstract:

Cold bituminous asphalt mixture (CBEM) provide a sustainable, cost effective and energy efficiency alternative to traditional hot mixtures. However, these mixtures have a comparatively low initial strength and as it is considered as evolutionary materials, mainly in the early life where the initial cohesion is low and builds up slowly. On the other hand, asphalt concrete is, by far, the most common mixtures in use as binder course and base in road pavement in the UK having a continuous grade offer a good aggregate interlock results in this material having very good load-spreading properties as well as a high resistance to permanent deformation. This study aims at developing a novel fast curing cold asphalt concrete binder course mixtures by using Ordinary Portland Cement (OPC) as a replacement to conventional mineral filler (0%-100%) while new by-product material (LJMU-A2) was used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was approved by assessing the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance by adding of LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to stiffness modulus after 2- day curing comparable to those obtained with Portland cement after 7-day curing.

Keywords: cold mix asphalt, binder course, cement, stiffness modulus, water sensitivity

Procedia PDF Downloads 307
4358 Effect of Minimalist Footwear on Running Economy Following Exercise-Induced Fatigue

Authors: Jason Blair, Adeboye Adebayo, Mohamed Saad, Jeannette M. Byrne, Fabien A. Basset

Abstract:

Running economy is a key physiological parameter of an individual’s running efficacy and a valid tool for predicting performance outcomes. Of the many factors known to influence running economy (RE), footwear certainly plays a role owing to its characteristics that vary substantially from model to model. Although minimalist footwear is believed to enhance RE and thereby endurance performance, conclusive research reports are scarce. Indeed, debates remain as to which footwear characteristics most alter RE. The purposes of this study were, therefore, two-fold: (a) to determine whether wearing minimalist shoes results in better RE compared to shod and to identify relationships with kinematic and muscle activation patterns; (b) to determine whether changes in RE with minimalist shoes are still evident following a fatiguing bout of exercise. Well-trained male distance runners (n=10; 29.0 ± 7.5 yrs; 71.0 ± 4.8 kg; 176.3 ± 6.5 cm) partook first in a maximal O₂ uptake determination test (VO₂ₘₐₓ = 61.6 ± 7.3 ml min⁻¹ kg⁻¹) 7 days prior to the experimental sessions. Second, in a fully randomized fashion, an RE test consisting of three 8-min treadmill runs in shod and minimalist footwear were performed prior to and following exercise induced fatigue (EIF). The minimalist and shod conditions were tested with a minimum of 7-day wash-out period between conditions. The RE bouts, interspaced by 2-min rest periods, were run at 2.79, 3.33, and 3.89 m s⁻¹ with a 1% grade. EIF consisted of 7 times 1000 m at 94-97% VO₂ₘₐₓ interspaced with 3-min recovery. Cardiorespiratory, electromyography (EMG), kinematics, rate of perceived exertion (RPE) and blood lactate were measured throughout the experimental sessions. A significant main speed effect on RE (p=0.001) and stride frequency (SF) (p=0.001) was observed. The pairwise comparisons showed that running at 2.79 m s⁻¹ was less economic compared to 3.33, and 3.89 m s⁻¹ (3.56 ± 0.38, 3.41 ± 0.45, 3.40 ± 0.45 ml O₂ kg⁻¹ km⁻¹; respectively) and that SF increased as a function of speed (79 ± 5, 82 ± 5, 84 ± 5 strides min⁻¹). Further, EMG analyses revealed that root mean square EMG significantly increased as a function of speed for all muscles (Biceps femoris, Gluteus maximus, Gastrocnemius, Tibialis anterior, Vastus lateralis). During EIF, the statistical analysis revealed a significant main effect of time on lactate production (from 2.7 ± 5.7 to 11.2 ± 6.2 mmol L⁻¹), RPE scores (from 7.6 ± 4.0 to 18.4 ± 2.7) and peak HR (from 171 ± 30 to 181 ± 20 bpm), expect for the recovery period. Surprisingly, a significant main footwear effect was observed on running speed during intervals (p=0.041). Participants ran faster with minimalist shoes compared to shod (3:24 ± 0:44 min [95%CI: 3:14-3:34] vs. 3:30 ± 0:47 min [95%CI: 3:19-3:41]). Although EIF altered lactate production and RPE scores, no other effect was noticeable on RE, EMG, and SF pre- and post-EIF, except for the expected speed effect. The significant footwear effect on running speed during EIF was unforeseen but could be due to shoe mass and/or heel-toe-drop differences. We also cannot discard the effect of speed on foot-strike pattern and therefore, running performance.

Keywords: exercise-induced fatigue, interval training, minimalist footwear, running economy

Procedia PDF Downloads 244
4357 Long Time Oxidation Behavior of Machined 316 Austenitic Stainless Steel in Primary Water Reactor

Authors: Siyang Wang, Yujin Hu, Xuelin Wang, Wenqian Zhang

Abstract:

Austenitic stainless steels are widely used in nuclear industry to manufacture critical components owing to their excellent corrosion resistance at high temperatures. Almost all the components used in nuclear power plants are produced by surface finishing (surface cold work) such as milling, grinding and so on. The change of surface states induced by machining has great influence on the corrosion behavior. In the present study, long time oxidation behavior of machined 316 austenitic stainless steel exposed to simulated pressure water reactor environment was investigated considering different surface states. Four surface finishes were produced by electro-polishing (P), grinding (G), and two milling (M and M1) processes respectively. Before oxidation, the surface Vickers micro-hardness, surface roughness of each type of sample was measured. Corrosion behavior of four types of sample was studied by using oxidation weight gain method for six oxidation periods. The oxidation time of each period was 120h, 216h, 336h, 504h, 672h and 1344h, respectively. SEM was used to observe the surface morphology of oxide film in several period. The results showed that oxide film on austenitic stainless steel has a duplex-layer structure. The inner oxide film is continuous and compact, while the outer layer is composed of oxide particles. The oxide particle consisted of large particles (nearly micron size) and small particles (dozens of nanometers to a few hundred nanometers). The formation of oxide particle could be significantly affected by the machined surface states. The large particle on cold worked samples (grinding and milling) appeared earlier than electro-polished one, and the milled sample has the largest particle size followed by ground one and electro-polished one. For machined samples, the large particles were almost distributed along the direction of machining marks. Severe exfoliation was observed on one milled surface (M) which had the most heavily cold worked layer, while rare local exfoliation occurred on the ground sample (G) and the other milled sample (M1). The electro-polished sample (P) entirely did not exfoliate.

Keywords: austenitic stainless steel, oxidation, machining, SEM

Procedia PDF Downloads 283
4356 Molecular Modeling a Tool for Postulating the Mechanism of Drug Interaction: Glimepiride Alters the Pharmacokinetics of Sildenafil Citrate in Diabetic Nephropathy Animals

Authors: Alok Shiomurti Tripathi, Ajay Kumar Timiri, Papiya Mitra Mazumder, Anil Chandewar

Abstract:

The present study evaluates the possible drug interaction between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ) induced in diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction by molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg/kg, ip) and confirms it by assessing the blood and urine biochemical parameters on 28th day of its induction. Selected DN animals were used for the drug interaction between GLIM (0.5mg/kg, p.o.) and SIL (2.5 mg/kg, p.o.) after 29th and 70th day of protocol. Drug interaction were assessed by evaluating the plasma drug concentration using HPLC-UV and also determine the change in the biochemical parameter in blood and urine. Mechanism of the interaction was postulated by molecular modeling study using Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in the blood and urine biochemical parameter in STZ treated groups. The concentration of SIL increased significantly (p<0.001) in rat plasma when co administered with GLIM after 70th day of protocol. Molecular modelling study revealed few important interactions with rat serum albumin and CYP2C9.GLIM has strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL. Whereas, for CYP2C9, GLIM has strong hydrogen bond with polar contacts and hydrophobic interactions than SIL. Present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals and mechanism has been supported by molecular modeling studies.

Keywords: diabetic nephropathy, glimepiride, sildenafil citrate, pharmacokinetics, homology modeling, schrodinger

Procedia PDF Downloads 370
4355 Hygrothermal Performance of Sheep Wool in Cold and Humid Climates

Authors: Yuchen Chen, Dehong Li, Bin Li, Denis Rodrigue, Xiaodong (Alice) Wang

Abstract:

When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped.

Keywords: sheep wool, water content, hygrothermal performance, mould growth risk

Procedia PDF Downloads 85
4354 Liquidity Management in Islamic Banks: Challenges and Prospects for Non-Interest Banking in Nigeria

Authors: Fatai O. Bakare

Abstract:

This paper x-rays the liquidity problems exposed to by Islamic banks in terms of challenges in managing surplus as well as deficit liquidity positions and the attendant effects in the contemporary system of Islamic banking. Effective liquidity management is understood to be a cardinal consideration for sustainability of Islamic/non-interest banking in Nigeria and the world over. While a background is laid by considering the general situations at a global scale, a particular attention is devoted to the peculiar circumstances of the non-interest banking in Nigeria. In bring home the points various efforts of major notable supra-national institutions in bridging liquidity management gap in Islamic banks are presented. While it is believed that a good lesson could be learnt from the developmental phases of Malaysian Islamic banking system and the approaches to meeting its liquidity management problems, much emphasis is laid in maintaining that, although in the absence of political will to provide systemic support for non-interest banking in Nigeria, the challenge of liquidity management is not unsurmountable.

Keywords: deficit, liquidity management, non-interest, surplus

Procedia PDF Downloads 316
4353 Bond Strength of Nano Silica Concrete Subjected to Corrosive Environments

Authors: Muhammad S. El-Feky, Mohamed I. Serag, Ahmed M. Yasien, Hala Elkady

Abstract:

Reinforced concrete requires steel bars in order to provide the tensile strength that is needed in structural concrete. However, when steel bars corrode, a loss in bond between the concrete and the steel bars occurs due to the formation of rust on the bars surface. Permeability of concrete is a fundamental property in perspective of the durability of concrete as it represents the ease with which water or other fluids can move through concrete, subsequently transporting corrosive agents. Nanotechnology is a standout amongst active research zones that envelops varies disciplines including construction materials. The application of nanotechnology in the corrosion protection of metal has lately gained momentum as nano scale particles have ultimate physical, chemical and physicochemical properties, which may enhance the corrosion protection in comparison to large size materials. The presented research aims to study the bond performance of concrete containing relatively high volume nano silica (up to 4.5%) exposed to corrosive conditions. This was extensively studied through tensile, bond strengths as well as the permeability of nano silica concrete. In addition micro-structural analysis was performed in order to evaluate the effect of nano silica on the properties of concrete at both; the micro and nano levels. The results revealed that by the addition of nano silica, the permeability of concrete mixes decreased significantly to reach about 50% of the control mix by the addition of 4.5% nano silica. As for the corrosion resistance, the nano silica concrete is comparatively higher resistance than ordinary concrete. Increasing Nano Silica percentage increased significantly the critical time corresponding to a metal loss (equal to 50 ϻm) which usually corresponding to the first concrete cracking due to the corrosion of reinforcement to reach about 49 years instead of 40 years as for the normal concrete. Finally, increasing nano Silica percentage increased significantly the residual bond strength of concrete after being subjected to corrosive environment. After being subjected to corrosive environment, the pullout behavior was observed for the bars embedded in all of the mixes instead of the splitting behavior that was observed before being corroded. Adding 4.5% nano silica in concrete increased the residual bond strength to reach 79% instead of 27% only as compared to control mix (0%W) before the subjection of the corrosive environment. From the conducted study we can conclude that the Nano silica proved to be a significant pore blocker material.

Keywords: bond strength, concrete, corrosion resistance, nano silica, permeability

Procedia PDF Downloads 306
4352 Induced Affectivity and Impact on Creativity: Personal Growth and Perceived Adjustment when Narrating an Intense Emotional Experience

Authors: S. Da Costa, D. Páez, F. Sánchez

Abstract:

We examine the causal role of positive affect on creativity, the association of creativity or innovation in the ideation phase with functional emotional regulation, successful adjustment to stress and dispositional emotional creativity, as well as the predictive role of creativity for positive emotions and social adjustment. The study examines the effects of modification of positive affect on creativity. Participants write three poems, narrate an infatuation episode, answer a scale of personal growth after this episode and perform a creativity task, answer a flow scale after creativity task and fill a dispositional emotional creativity scale. High and low positive effect was induced by asking subjects to write three poems about high and low positive connotation stimuli. In a neutral condition, tasks were performed without previous affect induction. Subjects on the condition of high positive affect report more positive and less negative emotions, more personal growth (effect size r = .24) and their last poem was rated as more original by judges (effect size r = .33). Mediational analysis showed that positive emotions explain the influence of the manipulation on personal growth - positive affect correlates r = .33 to personal growth. The emotional creativity scale correlated to creativity scores of the creative task (r = .14), to the creativity of the narration of the infatuation episode (r = .21). Emotional creativity was also associated, during performing the creativity task, with flow (r = .27) and with affect balance (r = .26). The mediational analysis showed that emotional creativity predicts flow through positive affect. Results suggest that innovation in the phase of ideation is associated with a positive affect balance and satisfactory performance, as well as dispositional emotional creativity is adaptive.

Keywords: affectivity, creativity, induction, innovation, psychological factors

Procedia PDF Downloads 106
4351 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs

Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon

Abstract:

The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.

Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs

Procedia PDF Downloads 115
4350 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 377
4349 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells

Authors: Saheed O. Akinwale, Olufemi A. Koya

Abstract:

Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.

Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness

Procedia PDF Downloads 231
4348 Six Years Antimicrobial Resistance Trends among Bacterial Isolates in Amhara National Regional State, Ethiopia

Authors: Asrat Agalu Abejew

Abstract:

Background: Antimicrobial resistance (AMR) is a silent tsunami and one of the top global threats to health care and public health. It is one of the common agendas globally and in Ethiopia. Emerging AMR will be a double burden to Ethiopia, which is facing a series of problems from infectious disease morbidity and mortality. In Ethiopia, although there are attempts to document AMR in healthcare institutions, comprehensive and all-inclusive analysis is still lacking. Thus, this study is aimed to determine trends in AMR from 2016-2021. Methods: A retrospective analysis of secondary data recorded in the Amhara Public Health Institute (APHI) from 2016 to 2021 G.C was conducted. Blood, Urine, Stool, Swabs, Discharge, body effusions, and other Microbiological specimens were collected from each study participants, and Bacteria identification and Resistance tests were done using the standard microbiologic procedure. Data was extracted from excel in August 2022, Trends in AMR were analyzed, and the results were described. In addition, the chi-square (X2) test and binary logistic regression were used, and a P. value < 0.05 was used to determine a significant association. Results: During 6 years period, there were 25143 culture and susceptibility tests. Overall, 265 (46.2%) bacteria were resistant to 2-4 antibiotics, 253 (44.2%) to 5-7 antibiotics, and 56 (9.7%) to >=8 antibiotics. The gram-negative bacteria were 166 (43.9%), 155 (41.5%), and 55 (14.6%) resistant to 2-4, 5-7, and ≥8 antibiotics, respectively, whereas 99(50.8%), 96(49.2% and 1 (0.5%) of gram-positive bacteria were resistant to 2-4, 5-7 and ≥8 antibiotics respectively. K. pneumonia 3783 (15.67%) and E. coli 3199 (13.25%) were the most commonly isolated bacteria, and the overall prevalence of AMR was 2605 (59.9%), where K. pneumonia 743 (80.24%), E. cloacae 196 (74.81%), A. baumannii 213 (66.56%) being the most common resistant bacteria for antibiotics tested. Except for a slight decline during 2020 (6469 (25.4%)), the overall trend of AMR is rising from year to year, with a peak in 2019 (8480 (33.7%)) and in 2021 (7508 (29.9%). If left un-intervened, the trend in AMR will increase by 78% of variation from the study period, as explained by the differences in years (R2=0.7799). Ampicillin, Augmentin, ciprofloxacin, cotrimoxazole, tetracycline, and Tobramycin were almost resistant to common bacteria they were tested. Conclusion: AMR is linearly increasing during the last 6 years. If left as it is without appropriate intervention after 15 years (2030 E.C), AMR will increase by 338.7%. A growing number of multi-drug resistant bacteria is an alarm to awake policymakers and those who do have the concern to intervene before it is too late. This calls for a periodic, integrated, and continuous system to determine the prevalence of AMR in commonly used antibiotics.

Keywords: AMR, trend, pattern, MDR

Procedia PDF Downloads 71
4347 The Effect of Linear Low-Density Polyethylene Cross-Contamination by Other Plastic Types on Bitumen Modification

Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili

Abstract:

Currently, the recycling of plastic wastes has been the subject of much research attention, especially in pavement constructions, where virgin polymers can be replaced by recycled plastics for asphalt binder modification. Among the plastic types, recycled linear low-density polyethylene (RLLDPE) has been one of the common and largely available plastics for bitumen modification. However, it is important to note that during the recycling process, LLDPE can easily be contaminated with other plastic types, especially with low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP). The cross-contamination of LLDPE with other plastics lowers its quality and, consequently, can affect the asphalt modification process. This study aims to assess the effect of LLDPE cross-contamination on bitumen modification. To do so, samples of bitumen modified with LLDPE and blends of LLDPE with LDPE, HDPE, and PP were prepared and compared through physical and rheological evaluations. The experimental tests, including softening point, penetration, viscosity at 135 °C, and dynamic shear rheometer, were conducted. The results indicated that the effect of cross-contamination on softening point and rutting resistance was negligible. On the other side, penetration and viscosity were highly impacted. The results also showed that among contamination of LLDPE with the other plastic types, PP had the highest influence in comparison with HDPE and LDPE on changing the properties of the LLDPE- modified bitumen.

Keywords: recycled polyethylene, polymer cross-contamination, waste plastic, bitumen, rutting resistance

Procedia PDF Downloads 119