Search results for: energy sector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10931

Search results for: energy sector

8981 Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation

Authors: Richard, Iyan Subiyanto, Chairul Hudaya

Abstract:

Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste.

Keywords: activated carbon, energy storage material, green coke, specific surface area

Procedia PDF Downloads 167
8980 Energy Scenarios for Greater Kampala Metropolitan Area towards a Sustainable 2050: A TIMES-VEDA Analysis

Authors: Kimuli Ismail, Michael Lubwama, John Baptist Kirabira, Adam Sebbit

Abstract:

This study develops 4 energy scenarios for Greater Kampala Metropolitan Area (GKMA). GKMA is Uganda’s capital with a population of 4.1million and a GDP growth rate of 5.8 with a nonsustainable energy management system. The study uses TIMES-VEDA to examine the energy impacts of business as usual (BAU), Kabejja, Carbon-Tax, and Lutta scenarios in commercial, industrial, transportation, residential, agricultural, and electricity generation activities. BAU is the baseline scenario with limited CO2 emissions restrictions against which Kabejja with 20% CO2 emissions restriction, a carbon tax of $100/ton imposed in 2050 for Carbon-Tax scenario, and Lutta with 95% CO2 emissions restriction is made. The analysis suggests that if the current policy trends continue as BAU, consumption would increase from 139.6PJ to 497.42PJ and CO2 emissions will increase from 4.6mtns to 7mtns. However, consumption would decrease by 2.3% in Kabejja, 3.4% in Carbon-Tax, and 3.3 % in Lutta compared to BAU. The CO2 emissions would decrease by 8.57% in Kabejja, 55.14% in Carbon-Tax, and 60% in Lutta compared to BAU. Sustainability is achievable when low-carbon electricity is increased by 53.68% in the EMS, and setting up an electrified Kampala metro. The study recommends Lutta as the sustainable pathway to a lowcarbon 2050.

Keywords: Sustainability, Scenario Plannnig, Times-Veda Modelling, Energy Policy Development

Procedia PDF Downloads 69
8979 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 277
8978 Patients' Satisfaction about Private Sector Primary Care Nurses in Sri Lanka

Authors: N. R. N. Mendis, S. N. Silva

Abstract:

Introduction: Patient satisfaction of services provided by primary care health services depends on many factors. One key factor in this depends on is the nursing services received in primary care. Since majority of the primary care in Sri Lanka is provided by the private sector, it is important to assess patient satisfaction on this. Objective: To assess the satisfaction among the public on nurses working in dispensaries in Sri Lanka. Methods: A descriptive study was done on 200 individual selected using convenient sampling among dispensaries in Gampaha district, Sri Lanka. Results: 59.3% of the sample had long term illnesses or disabilities and all of them preferred speaking to a nurse. 70.9% of the sample used to make appointments with nurses while 57.8% out of them were comfortable in discussing their health concerns. 98.9 % agreed that they get individual attention by the nurses. Majority of the sample that is 34.2% spends around 20 minutes with the nurse without even making any pay. Significantly, the whole sample believes that the nurses are professional and admits that the care given is of high quality. All 100% of the sample said that the nurses could understand their concerns while 93.5% admitted that it was very useful in their recovery. Conclusions: Majority of the public were very much satisfied with the nurses and their practice at the dispensaries.

Keywords: health education, nurses practices, patient satisfaction, primary care

Procedia PDF Downloads 380
8977 Harmonic Analysis to Improve Power Quality

Authors: Rumana Ali

Abstract:

The presence of nonlinear and power electronic switching devices produce distorted output and harmonics into the system. This paper presents a technique to analyze harmonics using digital series oscilloscope (DSO). In power distribution system further measurements are done by DSO, and the waveforms are analyzed using FFT program. The results of this proposed work are helpful for the investigator to install an appropriate compensating device to mitigate the harmonics, in turn, improve the power quality. This case study is carried out at AIT Chikmagalur. It is done as a starting step towards the improvement of energy efficiency at AIT Chikmagalur, and with an overall aim of reducing the electricity bill with a complete energy audit of the institution. Strategies were put forth to reach the above objective: The following strategies were proposed to be implemented to analyze the power quality in EEE department of the institution. Strategy 1: The power factor has to be measured using the energy meter. Power factor improvement may reduce the voltage drop in lines. This brings the voltages at the socket in the labs closer to the nominal voltage of 230V, and thus power quality improves. Strategy 2: The harmonics at the power inlet has to be measured by means of a DSO. The DSO waveform is analyzed using FFT to know the percentage harmonic up to the 13th harmonics of 50Hz. Reduction in the harmonics in the inlet of the EEE department may reduce line losses and therefore reduces energy bill to the institution.

Keywords: harmonic analysis, energy bill, power quality, electronic switching devices

Procedia PDF Downloads 309
8976 Complaint Management Mechanism: A Workplace Solution in Development Sector of Bangladesh

Authors: Nusrat Zabeen Islam

Abstract:

Partnership between local Non-Government organizations (NGO) and International development organizations has become an important feature in the development sector of Bangladesh. It is an important challenge for International development organizations to work with local NGOs with proper HR practice. Local NGOs have a lack of quality working environment and this affects the employee’s work experiences and overall performance at individual, partnership with International development organizations and organizational level. Many local development organizations due to the size of the organization and scope do not have a human resource (HR) unit. Inadequate Human Resource Policies, skills, leadership and lack of effective strategy is now a common scenario in Non-Government organization sector of Bangladesh. So corruption, nepotism, and fraud, risk of Political Contribution in office /work space, Sexual/ gender based abuse, insecurity take place in work place of development sector. The Complaint Management Mechanism (CMM) in human resource management could be one way to improve human resource competence in these organizations. The responsibility of Complaint Management Unit (CMU) of an International development organization is to make workplace maltreating, discriminating communities free. The information of impact of CMM was collected through case study of an International organization and some of its partner national organizations in Bangladesh who are engaged in different projects/programs. In this mechanism International development organizations collect complaints from beneficiaries/ staffs by complaint management unit and investigate by segregating the type and mood of the complaint and find out solution to improve the situation within a very short period. A complaint management committee is formed jointly with HR and management personnel. Concerned focal point collect complaints and share with CM unit. By conducting investigation, review of findings, reply back to CM unit and implementation of resolution through this mechanism, a successful bridge of communication and feedback can be established within beneficiaries, staffs and upper management. The overall result of Complaint management mechanism application indicates that by applying CMM accountability and transparency of workplace and workforce in development organization can be increased significantly. Evaluations based on outcomes, and measuring indicators such as productivity, satisfaction, retention, gender equity, proper judgment will guide organizations in building a healthy workforce, and will also clearly articulate the return on investment and justify any need for further funding.

Keywords: human resource management in NGOs, challenges in human resource, workplace environment, complaint management mechanism

Procedia PDF Downloads 322
8975 Investigating Flutter Energy Harvesting through Piezoelectric Materials in Both Experimental and Theoretical Modes

Authors: Hassan Mohammad Karimi, Ali Salehzade Nobari, Hosein Shahverdi

Abstract:

With the advancement of technology and the decreasing weight of aerial structures, there is a growing demand for alternative energy sources. Structural vibrations can now be utilized to power low-power sensors for monitoring structural health and charging small batteries in drones. Research on extracting energy from flutter using piezoelectric has been extensive in recent years. This article specifically examines the use of a single-jointed beam with a free surface attached to its free end and a bimorph piezoelectric patch connected to the joint, providing two degrees of torsional and bending freedom. The study investigates the voltage harvested at various wind speeds and bending and twisting stiffness in a wind tunnel. The results indicate that as flutter speed increases, the output voltage also increases to some extent. However, at high wind speeds, the limited cycle created becomes unstable, negatively impacting the harvester's performance. These findings align with other research published in reputable scientific journals.

Keywords: energy harvesting, piezoelectric, flutter, wind tunnel

Procedia PDF Downloads 65
8974 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee

Abstract:

Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.

Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant

Procedia PDF Downloads 155
8973 About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach

Authors: Brandtner-Hafner Martin

Abstract:

Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this.

Keywords: interface bonding safety, adhesively bonded concrete joints, GF-principle, fracture analysis

Procedia PDF Downloads 305
8972 Developing a Green Information Technology Model in Australian Higher-Educational Institutions

Authors: Mahnaz Jafari, Parisa Izadpanahi, Francesco Mancini, Muhammad Qureshi

Abstract:

The advancement in Information Technology (IT) has been an intrinsic element in the developments of the 21st century bringing benefits such as increased economic productivity. However, its widespread application has also been associated with inadvertent negative impacts on society and the environment necessitating selective interventions to mitigate these impacts. This study responded to this need by developing a Green IT Rating Tool (GIRT) for higher education institutions (HEI) in Australia to evaluate the sustainability of IT-related practices from an environmental, social, and economic perspective. Each dimension must be considered equally to achieve sustainability. The development of the GIRT was informed by the views of interviewed IT professionals whose opinions formed the basis of a framework listing Green IT initiatives in order of their importance as perceived by the interviewed professionals. This framework formed the base of the GIRT, which identified Green IT initiatives (such as videoconferencing as a substitute for long-distance travel) and the associated weighting of each practice. The proposed sustainable Green IT model could be integrated into existing IT systems, leading to significant reductions in carbon emissions and e-waste and improvements in energy efficiency. The development of the GIRT and the findings of this study have the potential to inspire other organizations to adopt sustainable IT practices, positively impact the environment, and be used as a reference by IT professionals and decision-makers to evaluate IT-related sustainability practices. The GIRT could also serve as a benchmark for HEIs to compare their performance with other institutions and to track their progress over time. Additionally, the study's results suggest that virtual and cloud-based technologies could reduce e-waste and energy consumption in the higher education sector. Overall, this study highlights the importance of incorporating Green IT practices into the IT systems of HEI to contribute to a more sustainable future.

Keywords: green information technology, international higher-educational institution, sustainable solutions, environmentally friendly IT systems

Procedia PDF Downloads 76
8971 Region Coastal Land Management and Tracking Changes in Ownership Status

Authors: Tayfun Cay, Fazil Nacar

Abstract:

Energy investments have increased in North Mediterranean Ceyhan and Yumurtalık districts of Turkey in the last years because of the treaties which are signed between Turkey and other countries for petroleum and natural gas transmission. Authority of land use has passed to district and metropolitan municipalities from town municipalities because of changes in coast legislation and local management legislation. Also Ministry of Environment and Urban Planning and Ministry of Industry and Commerce have had a right to comment on planning unofficially. Public investments increase in area and related planning and expropriation services continue. On the other hand, a lot of private sectors invest in organised industrial sites and industrial areas and it causes a rapid change in ownership status. Also Ceyhan-yumurtalık region is the tourism centre of North Mediterranean. Tourism investments continue in this district. Especially construction sector gain speed and a lot of country sites and apartments are built. In these studies, changes in planning activities in management of different administrative organisations and changes in ownership status and changes in private properties will be presented.

Keywords: coast management, land management, land use, property, public interest

Procedia PDF Downloads 511
8970 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 357
8969 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks

Authors: A. Khan, H. Mahmood

Abstract:

In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.

Keywords: energy holes, interference, routing, underwater

Procedia PDF Downloads 409
8968 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 84
8967 Analysis of Thermal Damage Characteristics of High Pressure Turbine Blade According to Off-Design Operating Conditions

Authors: Seon Ho Kim, Minho Bang, Seok Min Choi, Young Moon Lee, Dong Kwan Kim, Hyung Hee Cho

Abstract:

Gas turbines are heat engines that convert chemical energy into electrical energy through mechanical energy. Since their high energy density per unit volume and low pollutant emissions, gas turbines are classified as clean energy. In order to obtain better performance, the turbine inlet temperature of the current gas turbine is operated at about 1600℃, and thermal damage is a very serious problem. Especially, these thermal damages are more prominent in off-design conditions than in design conditions. In this study, the thermal damage characteristics of high temperature components of a gas turbine made of a single crystal material are studied numerically for the off-design operating conditions. The target gas turbine is configured as a reheat cycle and is operated in peak load operation mode, not normal operation. In particular, the target gas turbine features a lot of low-load operation. In this study, a commercial code, ANSYS 18.2, was used for analyzing the thermal-flow coupling problems. As a result, the flow separation phenomenon on the pressure side due to the flow reduction was remarkable at the off-design condition, and the high heat transfer coefficient at the upper end of the suction surface due to the tip leakage flow was appeared.

Keywords: gas turbine, single crystal blade, off-design, thermal analysis

Procedia PDF Downloads 213
8966 Explore and Reduce the Performance Gap between Building Modelling Simulations and the Real World: Case Study

Authors: B. Salehi, D. Andrews, I. Chaer, A. Gillich, A. Chalk, D. Bush

Abstract:

With the rapid increase of energy consumption in buildings in recent years, especially with the rise in population and growing economies, the importance of energy savings in buildings becomes more critical. One of the key factors in ensuring energy consumption is controlled and kept at a minimum is to utilise building energy modelling at the very early stages of the design. So, building modelling and simulation is a growing discipline. During the design phase of construction, modelling software can be used to estimate a building’s projected energy consumption, as well as building performance. The growth in the use of building modelling software packages opens the door for improvements in the design and also in the modelling itself by introducing novel methods such as building information modelling-based software packages which promote conventional building energy modelling into the digital building design process. To understand the most effective implementation tools, research projects undertaken should include elements of real-world experiments and not just rely on theoretical and simulated approaches. Upon review of the related studies undertaken, it’s evident that they are mostly based on modelling and simulation, which can be due to various reasons such as the more expensive and time-consuming nature of real-time data-based studies. Taking in to account the recent rise of building energy software modelling packages and the increasing number of studies utilising these methods in their projects and research, the accuracy and reliability of these modelling software packages has become even more crucial and critical. This Energy Performance Gap refers to the discrepancy between the predicted energy savings and the realised actual savings, especially after buildings implement energy-efficient technologies. There are many different software packages available which are either free or have commercial versions. In this study, IES VE (Integrated Environmental Solutions Virtual Environment) is used as it is a common Building Energy Modeling and Simulation software in the UK. This paper describes a study that compares real time results with those in a virtual model to illustrate this gap. The subject of the study is a north west facing north-west (345°) facing, naturally ventilated, conservatory within a domestic building in London is monitored during summer to capture real-time data. Then these results are compared to the virtual results of IES VE, which is a commonly used building energy modelling and simulation software in the UK. In this project, the effect of the wrong position of blinds on overheating is studied as well as providing new evidence of Performance Gap. Furthermore, the challenges of drawing the input of solar shading products in IES VE will be considered.

Keywords: building energy modelling and simulation, integrated environmental solutions virtual environment, IES VE, performance gap, real time data, solar shading products

Procedia PDF Downloads 139
8965 Indigenous Companies in Nigeria's Oil Sector: Stages, Opportunities, and Obstacles regarding Corporate Social Responsibility

Authors: L. U. Dumuje, R. Leite

Abstract:

There is an ongoing debate in terms of corporate social responsibility (CSR) initiative in Niger Delta, Nigeria, that originates from existing gap between stated objective of organizations in the Nigerian oil sector and their main activities that threaten the society. CSR in developing countries is becoming popular, and to contribute to scientific knowledge, we need to research on CSR practices and discourse in indigenous Nigeria that is scarce. Despite governments mandate in terms of unofficial blazing, methane gas is released into the air around refinery area which contributes to global warming. There is a need to understand if this practice applies to indigenous oil companies in Nigeria. To get a better understanding of CSR among indigenous oil companies in Nigeria, our study focuses on discourse and rhetoric regarding CSR. This current paper contributions is twofold: on the one hand, it aims to better understand practitioner’s rationale and fundamentals of CSR in Nigerian oil companies. On the other hand, it intends to identify the stages of CSR initiatives, advantages and difficulties of CSR implementation in indigenous Nigeria oil sector. This current paper uses the qualitative research as a methodological strategy. Instrument for data collection is semi-structured interview. Besides 28 interviews, we conduct five focus group discussions with stakeholders. Participant for this study consist of: employees, managers and executives of indigenous oil companies in Nigeria. It is relevant to mention, key informants as government institution, environmental organization and community leader/member are part of our sample. It is important that despite significant findings in some studies, there are still some gaps. To help filling this existing gaps, we have formulated some research questions, as follows: ‘What are the stages, opportunities and obstacles of having corporate social responsibility practice in indigenous oil companies in Nigeria’. This ongoing research sub-questions as follows: What are the CSR discourses and practices among indigenous companies in the Nigerian oil sector; what is the actual status regarding CSR development; what are the main perceptions of opportunities and obstacles with regard to CSR in indigenous Nigerian oil companies; who are the main stakeholders of indigenous Nigerian oil companies and their different meanings and understandings of CSR practices. Regarding the above questions, the following objectives have been determined: first, we conduct a literature review with the aim of understanding and identifying importance of CSR practises in western and developing countries. Second, this current paper identify specific characteristics of the national context in terms of CSR engagement in Nigeria, so we perform empirical research with relevant stakeholder in indigenous Nigerian, as well as key informants, in order to identify development of CSR and different perception of this praised initiative, CSR.

Keywords: corporate social responsibility, indigenous, oil organizations, Nigeria, practice

Procedia PDF Downloads 137
8964 The Role of Temples Redevelopment for Informal Sector Business Development in India

Authors: Prashant Gupta

Abstract:

Throughout India, temples have served as cultural centers, commerce hubs, art galleries, educational institutions, and social centers in addition to being places of worship since centuries. Across the country, there are over two million temples, which are crucial economic hubs, attracting devotees and tourists worldwide. In India, we have 53 temples per each 100,000 Indians. As per NSSO survey, the temple economy is worth about $40 billion and 2.32 per cent of GDP based on major temple’s survey, which only includes formal sector. It could be much larger as an actual estimation has not been done yet. In India, 43.1% of total economy represents informal sector. Over 10 billion domestic tourists visit to new destinations every year within India. Even 20 per cent of the 90 million foreign tourists visited Madurai and Mahabalipuram temples which became the most visited tourist spot in 2022. Recently the current central government in power have started revitalizing the ancient Indian civilization by reconstructing and beautifying the major temples of India i.e., Kashi Vishwanath Corridor, Mahakaleshwara Temple, Kedarnath, Ayodhya etc. The reason researcher chose Kashi as a case study because it is known as a Spiritual Capital of India, which is also the abode for the spread of Hinduism, Buddhism, Jainism and Sikkism, which are core Sanatan Dharmic practices. 17,800 Million INR Amount was spend to redevelop Kashi Vishwanath Corridor since 2019. RESEARCH OBJECTIVES 1. To assess historical contribution of temples in socio economic development and revival of Indic Civilization. 2. To examine the role of temples redevelopment for informal sector businesses. 3. To identify the sub-sectors of informal sector businesses 4. To identify products and services of informal businesses for investigation of marketing strategies and business development. PROPOSED METHODS AND PROCEDURES This study will follow a mixed approach, employing both qualitative and quantitative methods of research. To conduct the study, data will be collected from 500 informal business owners through structured questionnaire and interview instruments. The informal business owners will be selected using a systematic random sampling technique. In addition, documents from government offices of the last 10 years of tax collection will be reviewed to substantiate the study. To analyze the study, descriptive and econometric analysis techniques will be employed. EXPECTED CONTRIBUTION OF THE PROPOSED STUDY By studying the contribution of temple re-development on informal business creation and growth, the study will be beneficial to the informal business owners and the government. For the government, scientific and empirical evidence on the contribution of temple re-development for informal business creation and growth to give evidence the study will give based infrastructural development and boosting tax collection. For informal businesses, the study will give them a detailed insight on the nature of their business and the possible future growth potential of their business, and the alternative products and services supplying to their customers in the future. Studying informal businesses will help to identify the key products and services which are majorly profitable and possess potential to multiply and grow through correct product marketing strategies and business development.

Keywords: business development, informal sector businesses, services and products marketing, temple economics

Procedia PDF Downloads 80
8963 Si Doped HfO₂ Anti-Ferroelectric Thin Films for Energy Storage and Solid State Cooling Applications

Authors: Faizan Ali, Dayu Zhou, Xiaohua Liu, Tony Schenk, Johannes Muller, Uwe Schroeder

Abstract:

Recently, the ferroelectricity (FE) and anti-ferroelectricity (AFE) introduced in so-called 'high-k dielectric' HfO₂ material incorporated with various dopants (Si, Gd, Y, Sr, Gd, Al, and La, etc.), HfO₂-ZrO₂ solid-solution, Al or Si-doped Hf₀.₅Zr₀.₅O₂ and even undoped HfO₂ thin films. The origin of FE property was attributed to the formation of a non-centrosymmetric orthorhombic (o) phase of space group Pbc2₁. To the author’s best knowledge, AFE property was observed only in HfO₂ doped with a certain amount of Si, Al, HfₓZr₁₋ₓO₂ (0 ≤ x < 0.5), and in Si or Al-doped Hf₀.₅Zr₀.₅O₂. The origin of the anti-ferroelectric behavior is an electric field induced phase transition between the non-polar tetragonal (t) and the polar ferroelectric orthorhombic (o) phase. Compared with the significant amount of studies for the FE properties in the context of non-volatile memories, AFE properties of HfO₂-based and HfₓZr₁₋ₓO₂ (HZO) thin films have just received attention recently for energy-related applications such as electrocaloric cooling, pyroelectric energy harvesting, and electrostatic energy storage. In this work, energy storage and solid state cooling properties of Si-doped HfO₂ AFE thin films are investigated. Owing to the high field-induced polarization and slim double hysteresis, an extremely large Energy storage density (ESD) value of 61.2 J cm⁻³ is achieved at 4.5 MV cm⁻¹ with high efficiency of ~65%. In addition, the ESD and efficiency exhibit robust thermal stability in 210-400 K temperature range and excellent endurance up to 10⁹ times of charge/discharge cycling at a very high electric field of 4.0 MV cm⁻¹. Similarly, for solid-state cooling, the maximum adiabatic temperature change (

Keywords: thin films, energy storage, endurance, solid state cooling, anti-ferroelectric

Procedia PDF Downloads 128
8962 Passive Solar Water Concepts for Human Comfort

Authors: Eyibo Ebengeobong Eddie

Abstract:

Taking advantage of the sun's position to design buildings to ensure human comfort has always been an important aspect in an architectural design. Using cheap and less expensive methods and systems for gaining solar energy, heating and cooling has always been a great advantage to users and occupants of a building. As the years run by, daily techniques and methods have been created and more are being discovered to help reduce the energy demands of any building. Architects have made effective use of a buildings orientation, building materials and elements to achieve less energy demand. This paper talks about the various techniques used in solar heating and passive cooling of buildings and through water techniques and concepts to achieve thermal comfort.

Keywords: comfort, passive, solar, water

Procedia PDF Downloads 460
8961 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam

Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra

Abstract:

Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.

Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity

Procedia PDF Downloads 304
8960 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak

Abstract:

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation

Procedia PDF Downloads 465
8959 Block Matching Based Stereo Correspondence for Depth Calculation

Authors: G. Balakrishnan

Abstract:

Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.

Keywords: stereo matching, filters, energy matrix, disparity

Procedia PDF Downloads 215
8958 Thermal Comfort and Energy Saving Evaluation of a Combined System in an Office Room Using Displacement Ventilation

Authors: A. Q. Ahmed, S. Gao

Abstract:

In this paper, the energy saving and human thermal comfort in a typical office room are investigated. The impact of a combined system of exhaust inlet air with light slots located at the ceiling level in a room served by displacement ventilation system is numerically modelled. Previous experimental data are used to validate the computational fluid dynamic (CFD) model. A case study of simulated office room includes two seating occupants, two computers, two data loggers and four lamps. The combined system is located at the ceiling level above the heat sources. A new method of calculation for the cooling coil load in stratified air distribution (STRAD) system is used in this study. The results show that 47.4 % energy saving of space cooling load can be achieved by combing the exhaust inlet air with light slots at the ceiling level above the heat sources.

Keywords: air conditioning, displacement ventilation, energy saving, thermal comfort

Procedia PDF Downloads 483
8957 Piaui Solar: State Development Impulsed by Solar Photovoltaic Energy

Authors: Amanda Maria Rodrigues Barroso, Ary Paixao Borges Santana Junior, Caio Araujo Damasceno

Abstract:

In Piauí, the Brazilian state, solar energy has become one of the renewable sources targeted by internal and external investments, with the intention of leveraging the development of society. However, for a residential or business consumer to be able to deploy this source, there is usually a need for a high initial investment due to its high cost. The countless high taxes on equipment and services are one of the factors that contribute to this cost and ultimately fall on the consumer. Through analysis, a way of reducing taxes is sought in order to encourage consumer adhesion to the use of photovoltaic solar energy. Thus, the objective is to implement the Piauí Solar Program in the state of Piauí in order to stimulate the deployment of photovoltaic solar energy, through benefits granted to users, providing state development by boosting the diversification of the state's energy matrix. The research method adopted was based on the analysis of data provided by the Teresina City Hall, by the Brazilian Institute of Geography and Statistics and by a private company in the capital of Piauí. The account was taken of the total amount paid in Property and Urban Territorial Property Tax (IPTU), in electricity and in the service of installing photovoltaic panels in a residence with 6 people. Through Piauí Solar, a discount of 80% would be applied to the taxes present in the budgets regarding the implementation of these photovoltaic plates in homes and businesses, as well as in the IPTU. In addition, another factor also taken into account is the energy savings generated after the implementation of these boards. In the studied residence, the annual payment of IPTU went from R $ 99.83 reais to R $ 19.96, the reduction of taxes present in the budget for the implantation of solar panels, caused the value to increase from R $ 42,744.22 to R $ 37,241.98. The annual savings in electricity bills were estimated at around R $ 6,000. Therefore, there is a reduction of approximately 24% in the total invested. The trend of the Piauí Solar program, then, is to bring benefits to the state, providing an improvement in the living conditions of the population, through the savings generated by this program. In addition, an increase in the diversification of the Piauí energy matrix can be seen with the advancement of the use of this renewable energy.

Keywords: development, economy, energy, taxes

Procedia PDF Downloads 137
8956 Structured Tariff Calculation to Promote Geothermal for Energy Security

Authors: Siti Mariani, Arwin DW Sumari, Retno Gumilang Dewi

Abstract:

This paper analyzes the necessity of a structured tariff calculation for geothermal electricity in Indonesia. Indonesia is blessed with abundant natural resources and a choices of energy resources to generate electricity among other are coal, gas, biomass, hydro to geothermal, creating a fierce competition in electricity tariffs. While geothermal is inline with energy security principle and green growth initiative, it requires a huge capital funding. Geothermal electricity development consists of phases of project with each having its own financial characteristics. The Indonesian government has set a support in the form of ceiling price of geothermal electricity tariff by 11 U.S cents / kWh. However, the government did not set a levelized cost of geothermal, as an indication of lower limit capacity class, to which support is given. The government should establish a levelized cost of geothermal energy to reflect its financial capability in supporting geothermal development. Aside of that, the government is also need to establish a structured tariff calculation to reflect a fair and transparent business cooperation.

Keywords: load fator, levelized cost of geothermal, geothermal power plant, structured tariff calculation

Procedia PDF Downloads 440
8955 The Role of Ionic Strength and Mineral Size to Zeta Potential for the Adhesion of P. putida to Mineral Surfaces

Authors: Fathiah Mohamed Zuki, Robert George Edyvean

Abstract:

Electrostatic interaction energy (∆EEDL) is a part of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which, together with van der Waals (∆EVDW) and acid base (∆EAB) interaction energies, has been extensively used to investigate the initial adhesion of bacteria to surfaces. Electrostatic or electrical double layer interaction energy is considerably affected by surface potential, however it cannot be determined experimentally and is usually replaced by zeta (ζ) potential via electrophoretic mobility. This paper focuses on the effect of ionic concentration as a function of pH and the effect of mineral grain size on ζ potential. It was found that both ionic strength and mineral grain size play a major role in determining the value of ζ potential for the adhesion of P. putida to hematite and quartz surfaces. Higher ζ potential values lead to higher electrostatic interaction energies and eventually to higher total XDLVO interaction energy resulting in bacterial repulsion.

Keywords: XDLVO, electrostatic interaction energy, zeta potential, P. putida, mineral

Procedia PDF Downloads 446
8954 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials

Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates

Abstract:

The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.

Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation

Procedia PDF Downloads 256
8953 Ways Management of Foods Not Served to Consumers in Food Service Sector

Authors: Marzena Tomaszewska, Beata Bilska, Danuta Kolozyn-Krajewska

Abstract:

Food loss and food waste are a global problem of the modern economy. The research undertaken aimed to analyze how food is handled in catering establishments when it comes to food waste and to demonstrate main ways of management with foods/dishes not served to consumers. A survey study was conducted from January to June 2019. The selection of catering establishments participating in the study was deliberate. The study included establishments located only in Mazowieckie Voivodeship (Poland). 42 completed questionnaires were collected. In some questions, answers were based on a 5-point scale of 1 to 5 (from 'always'/'every day' to 'never'). The survey also included closed questions with a suggested cafeteria of answers. The respondents stated that in their workplaces, dishes served cold and hot ready meals are discarded every day or almost every day (23.7% and 20.5% of answers respectively). A procedure most frequently used for dealing with dishes not served to consumers on a given day is their storage at a cool temperature until the following day. In the research, 1/5 of respondents admitted that consumers 'always' or 'usually' leave uneaten meals on their plates, and over 41% 'sometimes' do so. It was found additionally that food not used in food service sector is most often thrown into a public container for rubbish. Most often thrown into the public container (with communal trash) were: expired products (80.0%), plate waste (80.0%), and inedible products (fruit and vegetable peels, egg shells) (77.5%). Most frequently into the container dedicated only for food waste were thrown out used deep-frying oil (62.5%). 10% of respondents indicated that inedible products in their workplaces is allocate for animal feeds. Food waste in the food service sector still remains an insufficiently studied issue, as owners of these objects are often unwilling to disclose data pertaining to the subject. Incorrect ways of management with foods not served to consumers were observed. There is the need to develop the educational activities for employees and management in the context of food waste management in the food service sector. This publication has been developed under the contract with the National Center for Research and Development No Gospostrateg1/385753/1/NCBR/2018 for carrying out and funding of a project implemented as part of the 'The social and economic development of Poland in the conditions of globalizing markets - GOSPOSTRATEG' program entitled 'Developing a system for monitoring wasted food and an effective program to rationalize losses and reduce food wastage' (acronym PROM).

Keywords: food waste, inedible products, plate waste, used deep-frying oil

Procedia PDF Downloads 119
8952 Comprehensive Experimental Study to Determine Energy Dissipation of Nappe Flows on Stepped Chutes

Authors: Abdollah Ghasempour, Mohammad Reza Kavianpour, Majid Galoie

Abstract:

This study has investigated the fundamental parameters which have effective role on energy dissipation of nappe flows on stepped chutes in order to estimate an empirical relationship using dimensional analysis. To gain this goal, comprehensive experimental study on some large-scale physical models with various step geometries, slopes, discharges, etc. were carried out. For all models, hydraulic parameters such as velocity, pressure, water depth, flow regime and etc. were measured precisely. The effective parameters, then, could be determined by analysis of experimental data. Finally, a dimensional analysis was done in order to estimate an empirical relationship for evaluation of energy dissipation of nappe flows on stepped chutes. Because of using the large-scale physical models in this study, the empirical relationship is in very good agreement with the experimental results.

Keywords: nappe flow, energy dissipation, stepped chute, dimensional analysis

Procedia PDF Downloads 361