Search results for: solar energy storage
8374 Database Management System for Orphanages to Help Track of Orphans
Authors: Srivatsav Sanjay Sridhar, Asvitha Raja, Prathit Kalra, Soni Gupta
Abstract:
Database management is a system that keeps track of details about a person in an organisation. Not a lot of orphanages these days are shifting to a computer and program-based system, but unfortunately, most have only pen and paper-based records, which not only consumes space but it is also not eco-friendly. It comes as a hassle when one has to view a record of a person as they have to search through multiple records, and it will consume time. This program will organise all the data and can pull out any information about anyone whose data is entered. This is also a safe way of storage as physical data gets degraded over time or, worse, destroyed due to natural disasters. In this developing world, it is only smart enough to shift all data to an electronic-based storage system. The program comes with all features, including creating, inserting, searching, and deleting the data, as well as printing them.Keywords: database, orphans, programming, C⁺⁺
Procedia PDF Downloads 1588373 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa
Authors: Christopher Ikechukwu Ifeacho
Abstract:
The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability
Procedia PDF Downloads 258372 Shifting of Global Energy Security: A Comparative Analysis of Indonesia and China’s Renewable Energy Policies
Authors: Widhi Hanantyo Suryadinata
Abstract:
Efforts undertaken by Indonesia and China to shift the strategies and security of renewable energy on a global stage involve approaches through policy construction related to rare minerals processing or value-adding in Indonesia and manufacturing policies through the New Energy Vehicles (NEVs) policy in China. Both policies encompass several practical regulations and policies that can be utilized for the implementation of Indonesia and China's grand efforts and ideas. Policy development in Indonesia and China can be analyzed using a comparative analysis method, as well as employing a pyramid illustration to identify policy construction phases based on the real conditions of the domestic market and implemented policies. This approach also helps to identify the potential integration of policies needed to enhance the policy development phase of a country within the pyramid. It also emphasizes the significance of integration policy to redefine renewable energy strategy and security on the global stage.Keywords: global renewable energy security, global energy security, policy development, comparative analysis, shifting of global energy security, Indonesia, China
Procedia PDF Downloads 738371 Low Energy Mechanism in Pelvic Trauma at Elderly
Authors: Ravid Yinon
Abstract:
Introduction: Pelvic trauma causes high mortality, particularly among the elderly population. Pelvic injury ranges from low-energy incidents such as falls to high-energy trauma like motor vehicle accidents. The mortality rate among high-energy trauma patients is higher, as can be expected. The elderly population is more vulnerable to pelvic trauma even at low energy mechanisms due to the fragility and diminished physiological reserve of these patients. The aim of this study is to examine whether there is a higher long-term mortality in pelvic injuries in the elderly from the low-energy mechanism than those injured in high energy. Methods: A retrospective cohort study was conducted in a level 1 trauma center with injured patients aged 65 years and over with pelvic trauma. The patients were divided into two groups of low and high-energy mechanisms of injury. Multivariate analysis was conducted to characterize the differences between the groups. Results: There were 585 consecutive injured patients over the age of 65 with a documented pelvic injury who were treated at the primary trauma center between 2008-2020. The injured in the high energy group were younger (mean HE- 75.18, LE-80.73), with fewer comorbidities (mean 0.78 comorbidities at HE and 1.28 at LE), more men (52.6% at HE and 27.4% at LE), were consumed more treatments facilities such as angioembolization, ICU admission, emergency surgeries and blood products transfusion and higher mortality rate at admission (HE- 19/133, 14.28%, LE- 10/452, 2.21%) compared to the low energy group. However, in a long-term follow-up of one year after the injury, mortality in the low-energy group was significantly higher (HE- 14/114, 12.28%, LE- 155/442, 35.06%). Discussion: Although it can be expected that in the mechanism of high energy, the mortality rate in the long term would be higher, it was found that mortality at the low energy patient was higher. Apparently, low-energy pelvic injury in geriatric patients is a measure of frailty in these patients, causes injury to more frail and morbid patients, and is a predictor of mortality in this population in the long term. Conclusion: The long-term follow-up of injured elderly with pelvic trauma should be more intense, and the healthcare provider should put more emphasis on the rehabilitation of these special patient populations in an attempt to prevent long-term mortality.Keywords: pelvic trauma, elderly trauma, high energy trauma, low energy trauma
Procedia PDF Downloads 528370 Optimization of Energy Harvesting Systems for RFID Applications
Authors: P. Chambe, B. Canova, A. Balabanian, M. Pele, N. Coeur
Abstract:
To avoid battery assisted tags with limited lifetime batteries, it is proposed here to replace them by energy harvesting systems, able to feed from local environment. This would allow total independence to RFID systems, very interesting for applications where tag removal from its location is not possible. Example is here described for luggage safety in airports, and is easily extendable to similar situation in terms of operation constraints. The idea is to fix RFID tag with energy harvesting system not only to identify luggage but also to supply an embedded microcontroller with a sensor delivering luggage weight making it impossible to add or to remove anything from the luggage during transit phases. The aim is to optimize the harvested energy for such RFID applications, and to study in which limits these applications are theoretically possible. Proposed energy harvester is based on two energy sources: piezoelectricity and electromagnetic waves, so that when the luggage is moving on ground transportation to airline counters, the piezo module supplies the tag and its microcontroller, while the RF module operates during luggage transit thanks to readers located along the way. Tag location on the luggage is analyzed to get best vibrations, as well as harvester better choice for optimizing the energy supply depending on applications and the amount of energy harvested during a period of time. Effects of system parameters (RFID UHF frequencies, limit distance between the tag and the antenna necessary to harvest energy, produced voltage and voltage threshold) are discussed and working conditions for such system are delimited.Keywords: RFID tag, energy harvesting, piezoelectric, EM waves
Procedia PDF Downloads 4528369 Energy in the Nexus of Defense and Border Security: Securing Energy Deposits in the Natuna Islands of Indonesia
Authors: Debby Rizqie Amelia Gustin, Purnomo Yusgiantoro
Abstract:
Hydrocarbon energy is still pivotal to today’s economy, but its existence is continually declining. Thus, preserving future energy supply has become the national interest of many countries, which they cater in various way, from importing to expansion and occupation. Underwater of Natuna islands in Indonesia deposits great amount of natural gas reserved, numbered to 46 TCF (trillion cubic feet), which is highly potential to meet Indonesia future energy demand. On the other hand, there could be a possibility that others also seek this natural resources. Natuna is located in the borderline of Indonesia, directly adjacent to the South China Sea, an area which is prolonged to conflict. It is a challenge for Indonesia government to preserve their energy deposit in Natuna islands and to response accordingly if the tension in South China Sea rises. This paper examines that nowadays defense and border security is not only a matter of guarding a country from foreign invasion, but also securing its resources accumulated on the borderline. Countries with great amount of energy deposits on their borderline need to build up their defense capacity continually, to ensure their territory along with their energy deposits is free from any interferences.Keywords: border security, defense, energy, national interest, threat
Procedia PDF Downloads 4838368 Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy
Authors: Tao Yang, Yongli Zhao
Abstract:
Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture.Keywords: asphalt pavement, cold region, critical cracking temperature, fracture energy, low-temperature cracking
Procedia PDF Downloads 1918367 Environmental Cost and Benefits Analysis of Different Electricity Option: A Case Study of Kuwait
Authors: Mohammad Abotalib, Hamid Alhamadi
Abstract:
In Kuwait, electricity is generated from two primary sources that are heavy fuel combustion and natural gas combustion. As Kuwait relies mainly on petroleum-based products for electricity generation, identifying and understanding the environmental trade-off of such operations should be carefully investigated. The life cycle assessment (LCA) tool is applied to identify the potential environmental impact of electricity generation under three scenarios by considering the material flow in various stages involved, such as raw-material extraction, transportation, operations, and waste disposal. The three scenarios investigated represent current and futuristic electricity grid mixes. The analysis targets six environmental impact categories: (1) global warming potential (GWP), (2) acidification potential (AP), (3) water depletion (WD), (4) acidification potential (AP), (4) eutrophication potential (EP), (5) human health particulate matter (HHPM), and (6) smog air (SA) per one kWh of electricity generated. Results indicate that one kWh of electricity generated would have a GWP (881-1030) g CO₂-eq, mainly from the fuel combustion process, water depletion (0.07-0.1) m³ of water, about 68% from cooling processes, AP (15.3-17.9) g SO₂-eq, EP (0.12-0.14) g N eq., HHPA (1.13- 1.33)g PM₂.₅ eq., and SA (64.8-75.8) g O₃ eq. The variation in results depend on the scenario investigated. It can be observed from the analysis that introducing solar photovoltaic and wind to the electricity grid mix improves the performance of scenarios 2 and 3 where 15% of the electricity comes from renewables correspond to a further decrease in LCA results.Keywords: energy, functional uni, global warming potential, life cycle assessment, energy, functional unit
Procedia PDF Downloads 1358366 Simulation of Photovoltaic Array for Specified Ratings of Converter
Authors: Smita Pareek, Ratna Dahiya
Abstract:
The power generated by solar photovoltaic (PV) module depends on surrounding irradiance, temperature, shading conditions, and shading pattern. This paper presents a simulation of photovoltaic module using Matlab/Simulink. PV Array is also simulated by series and parallel connections of modules and their characteristics curves are given. Further PV module topology/configuration are proposed for 5.5kW inverter available in the literature. Shading of a PV array either complete or partial can have a significant impact on its power output and energy yield; therefore, the simulated model characteristics curves (I-V and P-V) are drawn for uniform shading conditions (USC) and then output power, voltage and current are calculated for variation in insolation for shading conditions. Additionally the characteristics curves are also given for a predetermined shadowing condition.Keywords: array, series, parallel, photovoltaic, partial shading
Procedia PDF Downloads 5668365 Exploring the Effect of Cellulose Based Coating Incorporated with CaCl2 and MgSO4 on Shelf Life Extension of Kinnow (Citrus reticulata blanco) Cultivar
Authors: Muhammad Atif Randhawa, Muhammad Nadeem
Abstract:
Kinnow (Citrus reticulate Blanco) is nutritious and perishable fruit with high juice content, and also rich source of vitamin-C. In Pakistan, kinnow export is limited due to inadequate post-harvest handling and lack of satisfactory storage practices. Considering these issues, the present study was designed to evaluate the effect of hydroxypropyl methylcellulose (HPMC) coating in combination with CaCl2 and MgSO4 on shelf life extension of kinnow. Fruits were treated with different levels of CaCl2 and MgSO4 followed by HPMC coating (3 and 5%) and stored at 10°C with 80% relative humidity for 6 weeks. Fruits were analyzed for various physico-chemical parameters on weekly basis. During this study lower fruit firmness (0.24Nm-2), loss in weight (0.64%) and ethylene production (0.039 µL•kg-1•hr-1) was observed in fruits treated with 1% CaCl2 + 1% MgSO4 + 5% HPMC (T6) during storage of 42 days. Minimum chilling injury indexes 0.22% and 0.61% were recorded in treatments T4 and T6, respectively. T6 showed higher values of titerable acidity (0.29%) and ascorbic acid contents (39.82mg/100g). Minimum TSS (9.62°Brix) was found in fruits of T6. Overall T6 showed significantly better results for various parameters, as compared to all other treated and control fruits.Keywords: firmness, kinnow coating, physicochemical, storage
Procedia PDF Downloads 4308364 Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025
Authors: Alfi Al Fahreizy
Abstract:
Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province.Keywords: LEAP, energy consumption, Yogyakarta, BAU
Procedia PDF Downloads 5988363 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project
Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen
Abstract:
This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project
Procedia PDF Downloads 1708362 Enhanced Photoelectrochemical performance of TiO₂ Nanorods: The Critical Role of Hydrothermal Reaction Time
Authors: Srijitra Khanpakdee, Teera Butburee, Jung-Ho Yun, Miaoqiang Lyu, Supphasin Thaweesak, Piangjai Peerakiatkhajohn
Abstract:
The synthesis of titanium dioxide (TiO₂) nanorods (NRs) on fluorine-doped tin oxide (FTO) glass via hydrothermal methods was investigated to determine the optimal reaction time for enhanced photocatalytic and optical performance. Reaction times of 4, 6, and 8 hours were studied. Characterization through SEM, UV-vis, XRD, FTIR, Raman spectroscopy and photoelectrochemical (PEC) techniques revealed significant differences in the properties of the TiO₂ NRs based on the reaction duration. XRD and Raman spectroscopy analysis confirmed the formation of the rutile phase of TiO₂. As photoanodes in PEC cells, TiO₂ NRs synthesized for 4 hours exhibited the best photocatalytic activity, with the highest photocurrent density and superior charge transport properties, attributed to their densely packed vertical structure. Longer reaction times resulted in less optimal morphological and photoelectrochemical characteristics. The bandgap of the TiO₂ NRs remained consistent around 3.06 eV, with only slight variations observed. This study highlights the critical role of reaction time in hydrothermal synthesis, identifying 4 hours as the optimal duration for producing TiO₂ NRs with superior photoelectrochemical performance. These findings provide valuable insights for optimizing TiO₂-based materials for solar energy conversion and renewable energy applications.Keywords: titanium dioxide, nanorods, hydrothermal, photocatalytic, photoelectrochemical
Procedia PDF Downloads 458361 Life Cycle Assessment of Residential Buildings: A Case Study in Canada
Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq
Abstract:
Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings
Procedia PDF Downloads 4768360 Evolution of Germany’s Feed-in Tariff Policy
Authors: Gaafar Muhammed, N. T. Ersoy
Abstract:
The role of electricity in the economic development of any country is undeniable. The main goal of utilizing renewable sources in electricity generation, especially in the emerging countries, is to improve electricity access, economic development and energy sustainability. Germany’s recent transition from conventional to renewable energy technologies is overwhelming, this might not be associated with its abundant natural resources but owing to the policies in place. In line with the fast economic and technological developments recorded in recent years, Germany currently produces approximately 1059 GW of its energy from renewable sources. Hence, at the end of 2016, Germany is among the world leaders in terms of installed renewable energy capacity. As one of the most important factors that lead to renewable energy utilization in any nation is an effective policy, this study aims at examining the effect of policies on renewable energy (RE) development in Germany. Also, the study will focus on the evolution of the adopted feed-in tariff policies, as this evolution has affected the renewable energy capacity in Germany over a period of 15 years (2000 to 2015). The main contribution of the study is to establish a link between the feed-in tariff and the increase of RE in Germany’s energy mix. This is done by analyzing the characteristics of various feed-in tariff mechanisms adopted through the years. These characteristics include the feed-in-tariff rate, degression, special conditions, supported technology, etc. Then, the renewable energy development in Germany has been analyzed through the years along with the targets and the progress in reaching these targets. The study reveals that Germany’s renewable energy support policies (especially feed-in tariff) lead to several benefits and contribute towards the targets existing for renewable energy.Keywords: feed-in tariff, Germany, policy, penewable energy
Procedia PDF Downloads 2918359 Investigation of NiO/V₂O₅ Powder Composite as Cathode Material for Lithium-Ion Batteries
Authors: Katia Ayouz-Chebout, Fatima Boudeffar, Maha Ayat, Malika Berouaken, Chafiaa Yaddaden, Saloua Merazga, Nouredine Gabouze
Abstract:
Transition metal oxide composites have been widely reported in energy storage and conversion systems. In this regard, an attempt has been made to synthesize NiO@V₂O₅ nanocomposite. The structures and morphology of synthesized powder are investigated by X-ray diffraction, scanning electron microscope (SEM), and Attenuated Total Reflection (ATR). The electrochemical properties and performances as cathode electrodes based on active material NiO@V₂O₅ were studied by cyclic voltammetry (CV), between potential bias [0.01V to 3V], with scanning speed of 0,1mVs⁻¹, the galvanostatic charge/discharge (CDG) for 100 cycles was also measured.Keywords: composite nanobelts, vanadium pentoxide, nickel oxide, Li-ion batteries
Procedia PDF Downloads 268358 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing
Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako
Abstract:
Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration
Procedia PDF Downloads 2768357 Mathematical Modeling of the Effect of Pretreatment on the Drying Kinetics, Energy Requirement and Physico-Functional Properties of Yam (Dioscorea Rotundata) and Cocoyam (Colocasia Esculenta)
Authors: Felix U. Asoiro, Kingsley O. Anyichie, Meshack I. Simeon, Chinenye E. Azuka
Abstract:
The work was aimed at studying the effects of microwave drying (450 W) and hot air oven drying on the drying kinetics and physico-functional properties of yams and cocoyams species. The yams and cocoyams were cut into chips of thicknesses of 3mm, 5mm, 7mm, 9mm, and 11mm. The drying characteristics of yam and cocoyam chips were investigated under microwave drying and hot air oven temperatures (50oC – 90oC). Drying methods, temperature, and thickness had a significant effect on the drying characteristics and physico-functional properties of yam and cocoyam. The result of the experiment showed that an increase in the temperature increased the drying time. The result also showed that the microwave drying method took lesser time to dry the samples than the hot air oven drying method. The iodine affinity of starch for yam was higher than that of cocoyam for the microwaved dried samples over those of hot air oven-dried samples. The results of the analysis would be useful in modeling the drying behavior of yams and cocoyams under different drying methods. It could also be useful in the improvement of shelf life for yams and cocoyams as well as designs of efficient systems for drying, handling, storage, packaging, processing, and transportation of yams and cocoyams.Keywords: coco yam, drying, microwave, modeling, energy consumption, iodine affinity, drying ate
Procedia PDF Downloads 1078356 Dimensional-Controlled Functional Gold Nanoparticles and Zinc Oxide Nanorods for Solar Water Splitting
Authors: Kok Hong Tan, Hing Wah Lee, Jhih-Wei Chen, Chang Fu Dee, Chung-Lin Wu, Siang-Piao Chai, Wei Sea Chang
Abstract:
Semiconductor photocatalyst is known as one of the key roles in developing clean and sustainable energy. However, most of the semiconductor only possesses photoactivity within the UV light region, and hence, decreases the overall photocatalyst efficiency. Generally, the overall effectiveness of the photocatalyst activity is determined by three critical steps: (i) light absorption efficiency and photoexcitation electron-hole pair generation, (ii) separation and migration of charge carriers to the surface of the photocatalyst, and (iii) surface reaction of the carriers with its environment. Much effort has been invested on optimizing hierarchical nanostructures of semiconductors for efficient photoactivity due to the fact that the visible light absorption capability and occurrence of the chemical reactions mostly depend on the dimension of photocatalysts. In this work, we incorporated zero-dimensional (0D) gold nanoparticles (AuNPs) and one dimensional (1D) Zinc Oxide (ZnO) nanorods (NRs) onto strontium titanate (STO) for efficient visible light absorption, charge transfer, and separation. We demonstrate that the electrical and optical properties of the photocatalyst can be tuned by controlling the dimensional structures of AuNPs and ZnO NRs. We found that smaller AuNPs sizes exhibited higher photoactivity because of Fermi level shifting toward the conductive band of STO, STO band gap narrowing and broadening of absorption spectrum to the visible light region. For ZnO NRs, it was found that the average ZnO NRs c-axis length must achieve of certain length to induce multiphoton absorption as a result of light reflection and trapping behavior in the free space between adjacent ZnO NRs hence broadening the absorption spectrum of ZnO from UV to visible light region. This work opens up a new way of broadening the absorption spectrum by incorporating controllable nanostructures of semiconductors, which is important in optimizing the solar water splitting process.Keywords: gold nanoparticles, photoelectrochemical, PEC, semiconductor photocatalyst, zinc oxide nanorods
Procedia PDF Downloads 1628355 A Review on Big Data Movement with Different Approaches
Authors: Nay Myo Sandar
Abstract:
With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques
Procedia PDF Downloads 888354 The Relationship between Knowledge Management Processes and Strategic Thinking at the Organization Level
Authors: Bahman Ghaderi, Hedayat Hosseini, Parviz Kafche
Abstract:
The role of knowledge management processes in achieving the strategic goals of organizations is crucial. To this end, understanding the relationship between knowledge management processes and different aspects of strategic thinking (followed by long-term organizational planning) should be considered. This research examines the relationship between each of the five knowledge management processes (creation, storage, transfer, audit, and deployment) with each dimension of strategic thinking (vision, creativity, thinking, communication and analysis) in one of the major sectors of the food industry in Iran. In this research, knowledge management and its dimensions (knowledge acquisition, knowledge storage, knowledge transfer, knowledge auditing, and finally knowledge utilization) as independent variables and strategic thinking and its dimensions (creativity, systematic thinking, vision, strategic analysis, and strategic communication) are considered as the dependent variable. The statistical population of this study consisted of 245 managers and employees of Minoo Food Industrial Group in Tehran. In this study, a simple random sampling method was used, and data were collected by a questionnaire designed by the research team. Data were analyzed using SPSS 21 software. LISERL software is also used for calculating and drawing models and graphs. Among the factors investigated in the present study, knowledge storage with 0.78 had the most effect, and knowledge transfer with 0.62 had the least effect on knowledge management and thus on strategic thinking.Keywords: knowledge management, strategic thinking, knowledge management processes, food industry
Procedia PDF Downloads 1728353 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar
Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex
Abstract:
Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.Keywords: mortar, sawdust waste, thermal, experimental, analysis
Procedia PDF Downloads 858352 Energy Performance of Buildings Due to Downscaled Seasonal Models
Authors: Anastasia K. Eleftheriadou, Athanasios Sfetsos, Nikolaos Gounaris
Abstract:
The present work examines the suitability of a seasonal forecasting model downscaled with a very high spatial resolution in order to assess the energy performance and requirements of buildings. The application of the developed model is applied on Greece for a period and with a forecast horizon of 5 months in the future. Greece, as a country in the middle of a financial crisis and facing serious societal challenges, is also very sensitive to climate changes. The commonly used method for the correlation of climate change with the buildings energy consumption is the concept of Degree Days (DD). This method can be applied to heating and cooling systems for a better management of environmental, economic and energy crisis, and can be used as medium (3-6 months) planning tools in order to predict the building needs and country’s requirements for residential energy use.Keywords: downscaled seasonal models, degree days, energy performance
Procedia PDF Downloads 4538351 Energy Use, Emissions, Economic Growth and Trade: Evidence from Mauritius
Authors: B. Seetanah, H. Neeliah
Abstract:
This paper investigates the relationship among energy, emissions and economic growth in Mauritius in the presence of trade activities, with capital and labour as other control variables. Using annual data from 1960 to 2011, it is found that the variables are non-stationary and cointegrated. The relationship among the various variables are thus examined in a dynamic VECM framework. Our empirical results comply with the growth hypothesis. Output elasticities of 0.17, 0.25 and 0.43 show that increases in energy consumption cause increases in economic growth, capital accumulation and trade in the long run. We also found that CO2 negatively affects output, but has no significant effect on trade. Findings for the long-run generally tend to tally with those in the short-run. Interestingly we found that energy consumption has a significant impact on CO2 emissions. Our results tend to suggest that implementing energy conservation strategies to mitigate the negative impact of CO2 emissions can dent economic growth, and that promoting cleaner energy production could be a better alternative for Mauritius.Keywords: energy, emissions, economic growth, export, VECM
Procedia PDF Downloads 4798350 Effect of High Pressure Treatment on the Microbial Contamination and on Some Chemical and Physical Properties of Minced Chicken
Authors: Siddig H. Hamad, Salah M. Al-Eid, Fahad M. Al-Jassas
Abstract:
Composite samples of minced chicken were vacuum-packaged and pressure treated at 300, 400, 450 and 500 MPa in a Stansted 'FOOD-LAB' model S-FL-850-9-W high hydrostatic pressure research apparatus (Stansted Fluid Power Ltd., Stansted, UK). Treated and untreated samples were then stored at 3°C, and microbial content as well as some chemical and physical properties monitored. The microbial load of the untreated samples reached the spoilage level of 107 cfu/g in about one week, resulting in bad smell and dark brown color. The pressure treatments reduced total bacterial counts by about 1.8 to 3.2 log10 cycles and reduced counts of Enterobacteriaceae and Salmonella to non-detectable levels. The color of meat was slightly affected, but pH, moisture content and the oxidation products of lipids were not substantially changed. The treatment killed mainly gram negative bacteria but also caused sub-lethal injury to part of the population resulting in prolonged lag phase. The population not killed by the 350 to 450 MPa treatments grew relatively slowly during storage, and its loads reached spoilage level in 4 to 6 weeks, while the load of the population treated at 500 MPa did not reach this level till the end of a storage period of 9 weeks.Keywords: chicken, cold storage, microbial spoilage, high hydrostatic pressure
Procedia PDF Downloads 2458349 Optimisation of Photovoltaic Array with DC-DC Converter Groups
Authors: Fatma Soltani
Abstract:
In power electronics the DC-DC converters or choppers are now employed in large areas, particularly in the field of electricity generation by wind and solar energy conversion. Photovoltaic generators (GPV) can deliver maximum power for a point on the characteristic P = f (Vpv), called maximum power point (MPP), or climatic variations, entraiment fluctuation PPM. To remedy this problem is interposed between the generator and receiver a DC-DC converter. The converter is usually used a simple MOSFET chopper. However, the MOSFET can be applied in the field of low power when you need a high switching frequency but becomes highly dissipative when should block large voltages For PV generators medium and high power, the use of IGBT chopper is by far the most recommended. To reduce stress on semiconductor components using several choppers series connected in parallel is known as interleaved chopper. These choppers lead to rotas.Keywords: converter DC-DC entrelaced, photovoltaic generators, IGBT, optimisation
Procedia PDF Downloads 5398348 Metachromatic Leukodystrophy: A Case Report
Authors: Mary Rose Eunice S. Gundayao, Manolo M. Fernandez
Abstract:
Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder with an autosomal recessive inheritance pattern. Lysosomal storage disorders are often severe, follow a progressively neurodegenerative path, and may result in multi-organ failure, potentially leading to death within 5 to 6 years in cases of early-onset forms. There are limited data regarding cases of MLD in Filipino children. This is the case of a 2-year-old Filipino girl who presented with progressive neurological deterioration and was diagnosed with metachromatic leukodystrophy by molecular genetic testing. This case report aims to present this patient’s clinical history, neurological findings, diagnosis and novel genetic mutations causing MLD. A concise review of updated literature on MLD will be discussed.Keywords: metachromatic leukodystrophy, ARSA gene, peripheral neuropathy, case report, demyelinating disease
Procedia PDF Downloads 218347 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform
Authors: S. Chandrasekaran, P. A. Kiran
Abstract:
Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.Keywords: offshore platforms, stability, postulated failure, dynamic tether tension
Procedia PDF Downloads 1808346 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst
Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba
Abstract:
Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations
Procedia PDF Downloads 3268345 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Authors: Taha Bensiradj, Samira Moussaoui
Abstract:
Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.Keywords: HSVN, ITS, VANET, WSN
Procedia PDF Downloads 363