Search results for: satellite imaging
88 Combined Pneumomediastinum and Pneumothorax Due to Hyperemesis Gravidarum
Authors: Fayez Hanna, Viet Tran
Abstract:
A 20 years old lady- primigravida 6 weeks pregnant with unremarkable past history, presented to the emergency department at the Royal Hobart Hospital, Tasmania, Australia, with hyperemesis gravidarum associated with, dehydration and complicated with hematemesis and chest pain resistant. Accordingly, we conducted laboratory investigations which revealed: FBC: WBC 23.9, unremarkable U&E, LFT, lipase and her VBG showed a pH 7.4, pCo2 36.7, cK+ 3.2, cNa+ 142. The decision was made to do a chest X-ray (CXR) after explaining the risks/benefit of performing radiographic investigations during pregnancy and considering the patient's plan for the termination of the pregnancy as she was not ready for motherhood for shared decision-making and consent to look for pneumoperitoneum to suggest perforated viscus that might cause the hematemesis. However, the CXR showed pneumomediastinum but no evidence of pneumoperitoneum or pneumothorax. Consequently, a decision was made to proceed with CT oesophagography with imaging pre and post oral contrast administration to identify a potential oesophageal tear since it could not be excluded using a plain film of the CXR. The CT oesophagography could not find a leak for the administered oral contrast and thus, no oesophageal tear could be confirmed but could not exclude the Mallory-Weiss tear (lower oesophageal tear). Further, the CT oesophagography showed an extensive pneumomediastinum that could not be confirmed to be pulmonary in origin noting the presence of bilateral pulmonary interstitial emphysema and pneumothorax in the apex of the right lung that was small. The patient was admitted to the Emergency Department Inpatient Unit for monitoring, supportive therapy, and symptomatic management. Her hyperemesis was well controlled with ondansetron 8mg IV, metoclopramide 10mg IV, doxylamine 25mg PO, pyridoxine 25mg PO, esomeprazole 40mg IV and oxycodone 5mg PO was given for pain control and 2 litter of IV fluid. The patient was stabilized after 24 hours and discharged home on ondansetron 8mg every 8 hours whereas the patient had a plan for medical termination of pregnancy. Three weeks later, the patient represented with nausea and vomiting complicated by a frank hematemesis. Her observation chart showed HR 117- other vital signs were normal. Pathology showed WBC 14.3 with normal U&E and Hb. The patient was managed in the Emergency Department with the same previous regimen and was discharged home on same previous regimes. Five days later, she presented again with nausea, vomiting and hematemesis and was admitted under obstetrics and gynaecology for stabilization then discharged home with a plan for surgical termination of pregnancy after 3-days rather than the previously planned medical termination of pregnancy to avoid extension of potential oesophageal tear. The surgical termination and follow up period were uneventful. The case is considered rare as pneumomediastinum is a very rare complication of hyperemesis gravidarum where vomiting-induced barotrauma leads to a ruptured oesophagus and air leak into the mediastinum. However no rupture oesophagus in our case. Although the combination of pneumothorax and pneumomediastinum without oesophageal tear was reported only 8 times in the literature, but none of them was due to hyperemesis gravidarum.Keywords: Pneumothorax, pneumomediastinum, hyperemesis gravidarum, pneumopericardium
Procedia PDF Downloads 10287 Auto Surgical-Emissive Hand
Authors: Abhit Kumar
Abstract:
The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.Keywords: active robots, algorithm, emission, icy steam, TIC, laser
Procedia PDF Downloads 35886 Elevated Celiac Antibodies and Abnormal Duodenal Biopsies Associated with IBD Markers: Possible Role of Altered Gut Permeability and Inflammation in Gluten Related Disorders
Authors: Manav Sabharwal, Ruda Rai Md, Candace Parker, James Ridley
Abstract:
Wheat is one of the most commonly consumed grains worldwide, which contains gluten. Nowadays, gluten intake is considered to be a trigger for GRDs, including Celiac disease (CD), a common genetic disease affecting 1% of the US population, non-celiac gluten sensitivity (NCGS) and wheat allergy. NCGS is being recognized as an acquired gluten-sensitive enteropathy that is prevalent across age, ethnic and geographic groups. The cause of this entity is not fully understood, and recent studies suggest that it is more common in participants with irritable bowel syndrome (IBS), with iron deficiency anemia, symptoms of fatigue, and has considerable overlap in symptoms with IBS and Crohn’s disease. However, these studies were lacking in availability of complete serologies, imaging tests and/or pan-endoscopy. We performed a prospective study of 745 adult patients who presented to an outpatient clinic for evaluation of chronic upper gastro-intestinal symptoms and subsequently underwent an upper endoscopic (EGD) examination as standard of care. Evaluation comprised of comprehensive celiac antibody panel, inflammatory bowel disease (IBD) serologic markers, duodenal biopsies and Small Bowel Video Capsule Endoscopy (VCE), when available. At least 6 biopsy specimens were obtained from the duodenum and proximal jejunum during EGD, and CD3+ Intraepithelial lymphocytes (IELs) and villous architecture were evaluated by a single experienced pathologist, and VCE was performed by a single experienced gastroenterologist. Of the 745 patients undergoing EGD, 12% (93/745) patients showed elevated CD3+ IELs in the duodenal biopsies. 52% (387/745) completed a comprehensive CD panel and 7.2% (28/387) were positive for at least 1 CD antibody (Tissue transglutaminase (tTG), being the most common antibody in 65% (18/28)). Of these patients, 18% (5/28) showed increased duodenal CD3+ IELs, but 0% showed villous blunting or distortion to meet criteria for CD. Surprisingly, 43% (12/28) were positive for at 1 IBD serology (ASCA, ANCA or expanded IBD panel (LabCorp)). Of these 28 patients, 29% (8/28) underwent a SB VCE, of which 100 % (8/8) showed significant jejuno-ileal mucosal lesions diagnostic for IBD. Findings of abnormal CD antibodies (7.2%, 28/387) and increased CD3+ IELs on duodenal biopsy (12%, 93/745) were observed frequently in patients with UGI symptoms undergoing EGD in an outpatient clinic. None met criteria for CD, and a high proportion (43%, 12/28) showed evidence of overlap with IBD. This suggests a potential causal link of acquired GRDs to underlying inflammation and gut mucosal barrier disruption. Further studies to investigate a role for abnormal antigen presentation of dietary gluten to gut associated lymphoid tissue as a cause are justified. This may explain a high prevalence of GRDs in the population and correlation with IBS, IBD and other gut inflammatory disorders.Keywords: celiac, gluten sensitive enteropathy, lymphocitic enteritis, IBS, IBD
Procedia PDF Downloads 16985 Lake Water Surface Variations and Its Influencing Factors in Tibetan Plateau in Recent 10 Years
Authors: Shanlong Lu, Jiming Jin, Xiaochun Wang
Abstract:
The Tibetan Plateau has the largest number of inland lakes with the highest elevation on the planet. These massive and large lakes are mostly in natural state and are less affected by human activities. Their shrinking or expansion can truly reflect regional climate and environmental changes and are sensitive indicators of global climate change. However, due to the sparsely populated nature of the plateau and the poor natural conditions, it is difficult to effectively obtain the change data of the lake, which has affected people's understanding of the temporal and spatial processes of lake water changes and their influencing factors. By using the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD09Q1 surface reflectance images as basic data, this study produced the 8-day lake water surface data set of the Tibetan Plateau from 2000 to 2012 at 250 m spatial resolution, with a lake water surface extraction method of combined with lake water surface boundary buffer analyzing and lake by lake segmentation threshold determining. Then based on the dataset, the lake water surface variations and their influencing factors were analyzed, by using 4 typical natural geographical zones of Eastern Qinghai and Qilian, Southern Qinghai, Qiangtang, and Southern Tibet, and the watersheds of the top 10 lakes of Qinghai, Siling Co, Namco, Zhari NamCo, Tangra Yumco, Ngoring, UlanUla, Yamdrok Tso, Har and Gyaring as the analysis units. The accuracy analysis indicate that compared with water surface data of the 134 sample lakes extracted from the 30 m Landsat TM (Thematic Mapper ) images, the average overall accuracy of the lake water surface data set is 91.81% with average commission and omission error of 3.26% and 5.38%; the results also show strong linear (R2=0.9991) correlation with the global MODIS water mask dataset with overall accuracy of 86.30%; and the lake area difference between the Second National Lake Survey and this study is only 4.74%, respectively. This study provides reliable dataset for the lake change research of the plateau in the recent decade. The change trends and influencing factors analysis indicate that the total water surface area of lakes in the plateau showed overall increases, but only lakes with areas larger than 10 km2 had statistically significant increases. Furthermore, lakes with area larger than 100 km2 experienced an abrupt change in 2005. In addition, the annual average precipitation of Southern Tibet and Southern Qinghai experienced significant increasing and decreasing trends, and corresponding abrupt changes in 2004 and 2006, respectively. The annual average temperature of Southern Tibet and Qiangtang showed a significant increasing trend with an abrupt change in 2004. The major reason for the lake water surface variation in Eastern Qinghai and Qilian, Southern Qinghai and Southern Tibet is the changes of precipitation, and that for Qiangtang is the temperature variations.Keywords: lake water surface variation, MODIS MOD09Q1, remote sensing, Tibetan Plateau
Procedia PDF Downloads 23184 Diagnostic Yield of CT PA and Value of Pre Test Assessments in Predicting the Probability of Pulmonary Embolism
Authors: Shanza Akram, Sameen Toor, Heba Harb Abu Alkass, Zainab Abdulsalam Altaha, Sara Taha Abdulla, Saleem Imran
Abstract:
Acute pulmonary embolism (PE) is a common disease and can be fatal. The clinical presentation is variable and nonspecific, making accurate diagnosis difficult. Testing patients with suspected acute PE has increased dramatically. However, the overuse of some tests, particularly CT and D-dimer measurement, may not improve care while potentially leading to patient harm and unnecessary expense. CTPA is the investigation of choice for PE. Its easy availability, accuracy and ability to provide alternative diagnosis has lowered the threshold for performing it, resulting in its overuse. Guidelines have recommended the use of clinical pretest probability tools such as ‘Wells score’ to assess risk of suspected PE. Unfortunately, implementation of guidelines in clinical practice is inconsistent. This has led to low risk patients being subjected to unnecessary imaging, exposure to radiation and possible contrast related complications. Aim: To study the diagnostic yield of CT PA, clinical pretest probability of patients according to wells score and to determine whether or not there was an overuse of CTPA in our service. Methods: CT scans done on patients with suspected P.E in our hospital from 1st January 2014 to 31st December 2014 were retrospectively reviewed. Medical records were reviewed to study demographics, clinical presentation, final diagnosis, and to establish if Wells score and D-Dimer were used correctly in predicting the probability of PE and the need for subsequent CTPA. Results: 100 patients (51male) underwent CT PA in the time period. Mean age was 57 years (24-91 years). Majority of patients presented with shortness of breath (52%). Other presenting symptoms included chest pain 34%, palpitations 6%, collapse 5% and haemoptysis 5%. D Dimer test was done in 69%. Overall Wells score was low (<2) in 28 %, moderate (>2 - < 6) in 47% and high (> 6) in 15% of patients. Wells score was documented in medical notes of only 20% patients. PE was confirmed in 12% (8 male) patients. 4 had bilateral PE’s. In high-risk group (Wells > 6) (n=15), there were 5 diagnosed PEs. In moderate risk group (Wells >2 - < 6) (n=47), there were 6 and in low risk group (Wells <2) (n=28), one case of PE was confirmed. CT scans negative for PE showed pleural effusion in 30, Consolidation in 20, atelactasis in 15 and pulmonary nodule in 4 patients. 31 scans were completely normal. Conclusion: Yield of CT for pulmonary embolism was low in our cohort at 12%. A significant number of our patients who underwent CT PA had low Wells score. This suggests that CT PA is over utilized in our institution. Wells score was poorly documented in medical notes. CT-PA was able to detect alternative pulmonary abnormalities explaining the patient's clinical presentation. CT-PA requires concomitant pretest clinical probability assessment to be an effective diagnostic tool for confirming or excluding PE. . Clinicians should use validated clinical prediction rules to estimate pretest probability in patients in whom acute PE is being considered. Combining Wells scores with clinical and laboratory assessment may reduce the need for CTPA.Keywords: CT PA, D dimer, pulmonary embolism, wells score
Procedia PDF Downloads 23383 Blister Formation Mechanisms in Hot Rolling
Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe
Abstract:
Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.Keywords: FEG-SEM, nucleation, oxide morphology, surface defect
Procedia PDF Downloads 14582 Enhancement of Radiosensitization by Aptamer 5TR1-Functionalized AgNCs for Triple-Negative Breast Cancer
Authors: Xuechun Kan, Dongdong Li, Fan Li, Peidang Liu
Abstract:
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with a poor prognosis, and radiotherapy is one of the main treatment methods. However, due to the obvious resistance of tumor cells to radiotherapy, high dose of ionizing radiation is required during radiotherapy, which causes serious damage to normal tissues near the tumor. Therefore, how to improve radiotherapy resistance and enhance the specific killing of tumor cells by radiation is a hot issue that needs to be solved in clinic. Recent studies have shown that silver-based nanoparticles have strong radiosensitization, and silver nanoclusters (AgNCs) also provide a broad prospect for tumor targeted radiosensitization therapy due to their ultra-small size, low toxicity or non-toxicity, self-fluorescence and strong photostability. Aptamer 5TR1 is a 25-base oligonucleotide aptamer that can specifically bind to mucin-1 highly expressed on the membrane surface of TNBC 4T1 cells, and can be used as a highly efficient tumor targeting molecule. In this study, AgNCs were synthesized by DNA template based on 5TR1 aptamer (NC-T5-5TR1), and its role as a targeted radiosensitizer in TNBC radiotherapy was investigated. The optimal DNA template was first screened by fluorescence emission spectroscopy, and NC-T5-5TR1 was prepared. NC-T5-5TR1 was characterized by transmission electron microscopy, ultraviolet-visible spectroscopy and dynamic light scattering. The inhibitory effect of NC-T5-5TR1 on cell activity was evaluated using the MTT method. Laser confocal microscopy was employed to observe NC-T5-5TR1 targeting 4T1 cells and verify its self-fluorescence characteristics. The uptake of NC-T5-5TR1 by 4T1 cells was observed by dark-field imaging, and the uptake peak was evaluated by inductively coupled plasma mass spectrometry. The radiation sensitization effect of NC-T5-5TR1 was evaluated through cell cloning and in vivo anti-tumor experiments. Annexin V-FITC/PI double staining flow cytometry was utilized to detect the impact of nanomaterials combined with radiotherapy on apoptosis. The results demonstrated that the particle size of NC-T5-5TR1 is about 2 nm, and the UV-visible absorption spectrum detection verifies the successful construction of NC-T5-5TR1, and it shows good dispersion. NC-T5-5TR1 significantly inhibited the activity of 4T1 cells and effectively targeted and fluoresced within 4T1 cells. The uptake of NC-T5-5TR1 reached its peak at 3 h in the tumor area. Compared with AgNCs without aptamer modification, NC-T5-5TR1 exhibited superior radiation sensitization, and combined radiotherapy significantly inhibited the activity of 4T1 cells and tumor growth in 4T1-bearing mice. The apoptosis level of NC-T5-5TR1 combined with radiation was significantly increased. These findings provide important theoretical and experimental support for NC-T5-5TR1 as a radiation sensitizer for TNBC.Keywords: 5TR1 aptamer, silver nanoclusters, radio sensitization, triple-negative breast cancer
Procedia PDF Downloads 6481 Restless Leg Syndrome as the Presenting Symptom of Neuroendocrine Tumor
Authors: Mustafa Cam, Nedim Ongun, Ufuk Kutluana
Abstract:
Introduction: Restless LegsSyndrome (RLS) is a common, under-recognized disorder disrupts sleep and diminishes quality of life (1). The most common conditions highly associated with RLS include renalfailure, iron and folic acid deficiency, peripheral neuropathy, pregnancy, celiacdisease, Crohn’sdiseaseandrarelymalignancy (2).Despite a clear relation between low peripheral iron and increased prevalence and severity of RLS, the prevalence and clinical significance of RLS in iron-deficientanemic populations is unknown (2). We report here a case of RLS due to iron deficiency in the setting of neuroendocrinetumor. Report of Case: A 35 year-old man was referred to our clinic with general weakness, weight loss (10 kg in 2 months)and 2-month history of uncomfortable sensations in his legs with urge to move, partially relieved by movement. The symptoms were presented very day, worsening in the evening; the discomfort forced the patient to getup and walk around at night. RLS was severe, with a score of 22 at the International RLS ratingscale. The patient had no past medical history. The patient underwent a complete set of blood analyses and the following ab normal values were found (normal limitswithinbrackets): hemoglobin 9.9 g/dl (14-18), MCV 70 fL (80-94), ferritin 3,5 ng/mL (13-150). Brain and spinemagnetic resonance imaging was normal. The patient consultated with gastroenterology clinic and gastointestinal systemendoscopy was performed for theetiology of the iron deficiency anemia. After the gastricbiopsy, results allowed us to reach the diagnosis of neuroen docrine tumor and the patient referred to oncology clinic. Discussion: The first important consideration from this case report is that the patient was referred to our clinic because of his severe RLS symptoms dramatically reducing his quality of life. However, our clinical study clearly demonstrated that RLS was not the primary disease. Considering the information available for this patient, we believe that the most likely possibility is that RLS was secondary to iron deficiency, a very well-known and established cause of RLS in theliterature (3,4). Neuroendocrine tumors (NETs) are rare epithelial neoplasms with neuroendocrine differentiation that most commonly originate in the lungs and gastrointestinal tract (5). NETs vary widely in their clinical presentation; symptoms are often nonspecific and can be mistaken for those of other more common conditions (6). 50% of patients with reported disease stage have either regional or distant metastases at diagnosis (7). Accurate and earlier NET diagnosis is the first step in shortening the time to optimal care and improved outcomes for patients (8). The most important message from this case report is that RLS symptoms can sometimes be thesign of a life-threatening condition. Conclusion: Careful and complete collection of clinical and laboratory data should be carried out in RLS patients. Inparticular, if RLS onset coincides with weight loss and iron deficieny anemia, gastricendos copy should be performed. It is known about that malignancy is a rare etiology in RLS patients and to our knowledge; it is the first case with neuro endocrine tumor presenting with RLS.Keywords: neurology, neuroendocrine tumor, restless legs syndrome, sleep
Procedia PDF Downloads 28580 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes
Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert
Abstract:
In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theoryKeywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments
Procedia PDF Downloads 17879 Cost Based Analysis of Risk Stratification Tool for Prediction and Management of High Risk Choledocholithiasis Patients
Authors: Shreya Saxena
Abstract:
Background: Choledocholithiasis is a common complication of gallstone disease. Risk scoring systems exist to guide the need for further imaging or endoscopy in managing choledocholithiasis. We completed an audit to review the American Society for Gastrointestinal Endoscopy (ASGE) scoring system for prediction and management of choledocholithiasis against the current practice at a tertiary hospital to assess its utility in resource optimisation. We have now conducted a cost focused sub-analysis on patients categorized high-risk for choledocholithiasis according to the guidelines to determine any associated cost benefits. Method: Data collection from our prior audit was used to retrospectively identify thirteen patients considered high-risk for choledocholithiasis. Their ongoing management was mapped against the guidelines. Individual costs for the key investigations were obtained from our hospital financial data. Total cost for the different management pathways identified in clinical practice were calculated and compared against predicted costs associated with recommendations in the guidelines. We excluded the cost of laparoscopic cholecystectomy and considered a set figure for per day hospital admission related expenses. Results: Based on our previous audit data, we identified a77% positive predictive value for the ASGE risk stratification tool to determine patients at high-risk of choledocholithiasis. 47% (6/13) had an magnetic resonance cholangiopancreatography (MRCP) prior to endoscopic retrograde cholangiopancreatography (ERCP), whilst 53% (7/13) went straight for ERCP. The average length of stay in the hospital was 7 days, with an additional day and cost of £328.00 (£117 for ERCP) for patients awaiting an MRCP prior to ERCP. Per day hospital admission was valued at £838.69. When calculating total cost, we assumed all patients had admission bloods and ultrasound done as the gold standard. In doing an MRCP prior to ERCP, there was a 130% increase in cost incurred (£580.04 vs £252.04) per patient. When also considering hospital admission and the average length of stay, it was an additional £1166.69 per patient. We then calculated the exact costs incurred by the department, over a three-month period, for all patients, for key investigations or procedures done in the management of choledocholithiasis. This was compared to an estimate cost derived from the recommended pathways in the ASGE guidelines. Overall, 81% (£2048.45) saving was associated with following the guidelines compared to clinical practice. Conclusion: MRCP is the most expensive test associated with the diagnosis and management of choledocholithiasis. The ASGE guidelines recommend endoscopy without an MRCP in patients stratified as high-risk for choledocholithiasis. Our audit that focused on assessing the utility of the ASGE risk scoring system showed it to be relatively reliable for identifying high-risk patients. Our cost analysis has shown significant cost savings per patient and when considering the average length of stay associated with direct endoscopy rather than an additional MRCP. Part of this is also because of an increased average length of stay associated with waiting for an MRCP. The above data supports the ASGE guidelines for the management of high-risk for choledocholithiasis patients from a cost perspective. The only caveat is our small data set that may impact the validity of our average length of hospital stay figures and hence total cost calculations.Keywords: cost-analysis, choledocholithiasis, risk stratification tool, general surgery
Procedia PDF Downloads 9878 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States
Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss
Abstract:
Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.Keywords: Alzheimer’s disease, budget, dementia, diagnosis.
Procedia PDF Downloads 13977 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization
Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon
Abstract:
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization
Procedia PDF Downloads 44776 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 21375 External Validation of Established Pre-Operative Scoring Systems in Predicting Response to Microvascular Decompression for Trigeminal Neuralgia
Authors: Kantha Siddhanth Gujjari, Shaani Singhal, Robert Andrew Danks, Adrian Praeger
Abstract:
Background: Trigeminal neuralgia (TN) is a heterogenous pain syndrome characterised by short paroxysms of lancinating facial pain in the distribution of the trigeminal nerve, often triggered by usually innocuous stimuli. TN has a low prevalence of less than 0.1%, of which 80% to 90% is caused by compression of the trigeminal nerve from an adjacent artery or vein. The root entry zone of the trigeminal nerve is most sensitive to neurovascular conflict (NVC), causing dysmyelination. Whilst microvascular decompression (MVD) is an effective treatment for TN with NVC, all patients do not achieve long-term pain relief. Pre-operative scoring systems by Panczykowski and Hardaway have been proposed but have not been externally validated. These pre-operative scoring systems are composite scores calculated according to a subtype of TN, presence and degree of neurovascular conflict, and response to medical treatments. There is discordance in the assessment of NVC identified on pre-operative magnetic resonance imaging (MRI) between neurosurgeons and radiologists. To our best knowledge, the prognostic impact for MVD of this difference of interpretation has not previously been investigated in the form of a composite scoring system such as those suggested by Panczykowski and Hardaway. Aims: This study aims to identify prognostic factors and externally validate the proposed scoring systems by Panczykowski and Hardaway for TN. A secondary aim is to investigate the prognostic difference between a neurosurgeon's interpretation of NVC on MRI compared with a radiologist’s. Methods: This retrospective cohort study included 95 patients who underwent de novo MVD in a single neurosurgical unit in Melbourne. Data was recorded from patients’ hospital records and neurosurgeon’s correspondence from perioperative clinic reviews. Patient demographics, type of TN, distribution of TN, response to carbamazepine, neurosurgeon, and radiologist interpretation of NVC on MRI, were clearly described prospectively and preoperatively in the correspondence. Scoring systems published by Panczykowski et al. and Hardaway et al. were used to determine composite scores, which were compared with the recurrence of TN recorded during follow-up over 1-year. Categorical data analysed using Pearson chi-square testing. Independent numerical and nominal data analysed with logistical regression. Results: Logistical regression showed that a Panczykowski composite score of greater than 3 points was associated with a higher likelihood of pain-free outcome 1-year post-MVD with an OR 1.81 (95%CI 1.41-2.61, p=0.032). The composite score using neurosurgeon’s impression of NVC had an OR 2.96 (95%CI 2.28-3.31, p=0.048). A Hardaway composite score of greater than 2 points was associated with a higher likelihood of pain-free outcome 1 year post-MVD with an OR 3.41 (95%CI 2.58-4.37, p=0.028). The composite score using neurosurgeon’s impression of NVC had an OR 3.96 (95%CI 3.01-4.65, p=0.042). Conclusion: Composite scores developed by Panczykowski and Hardaway were validated for the prediction of response to MVD in TN. A composite score based on the neurosurgeon’s interpretation of NVC on MRI, when compared with the radiologist’s had a greater correlation with pain-free outcomes 1 year post-MVD.Keywords: de novo microvascular decompression, neurovascular conflict, prognosis, trigeminal neuralgia
Procedia PDF Downloads 7474 Prevalence and Associated Risk Factors of Age-Related Macular Degeneration in the Retina Clinic at a Tertiary Center in Makkah Province, Saudi Arabia: A Retrospective Record Review
Authors: Rahaf Mandura, Fatmah Abusharkh, Layan Kurdi, Rahaf Shigdar, Khadijah Alattas
Abstract:
Introduction: Age-related macular degeneration (AMD) in older individuals are serious health issues that severely impact the quality of life of millions globally. In 2020, the fourth leading cause of blindness worldwide was AMD. The global prevalence of AMD is estimated to be around 8.7%. AMD is a progressive disease involving the macular region of the retina, and it has a complex pathophysiology. RPE cell dysfunction plays a crucial step in the pathway leading to irreversible degeneration of photoreceptors with yellowish lipid-rich, protein-containing drusen deposits accumulating between Bruch's membrane and the RPE. Furthermore, lipofuscinogenesis, drusogenesis, inflammation, and neovascularization are four main processes responsible for the formation of the two types of AMD: the wet (exudative, neovascular) and dry (non-exudative, geographic atrophy) types. We retrospectively evaluated the prevalence of AMD among patients visiting the retina clinic at King Abdulaziz University Hospital (Jeddah, Makkah Province, Saudi Arabia) to identify the commonly associated risk factors of AMD. Methods: The records of 3,067 individuals from 2017 to 2021 were reviewed. Of these, 1,935 satisfied the inclusion criteria and were included in this study. We excluded all patient below 18 years, and those who did not undergo fundus imaging or attend their booked appointments, follow-ups, treatments, and referrals were excluded. Results: The prevalence of AMD among the patients was 4%. The age of patients with AMD was significantly greater than those without AMD (72.4 ± 9.8 years vs. 57.2 ± 15.5 years; p < 0.001). Participants with a family history of AMD tended to have the disease more than those without such a history (85.7% vs. 45%; p = 0.043). Ex- and current smokers were more likely to have AMD than non-smokers (34% and 18.6% vs. 7.2%; p < 0.001). Patients with hypertension and those without type 1 diabetes were at a higher risk of developing AMD than those without hypertension (5.5% vs. 2.8%; p = 0.002) and those with type 1 diabetes (4.2% vs. 0.8%; p = 0.040). In contrast, sex, nationality, type 2 diabetes, and abnormal lipid profile were not significantly associated with AMD. Regarding the clinical characteristics of AMD cases, most cases (70.4%) were of the dry type and affected both eyes (77.2%). The disease duration was ≥5 years in 43.1% of the patients. The most frequent chronic diseases associated with AMD were type 2 diabetes (69.1%), hypertension (61.7%), and dyslipidemia (18.5%). Conclusion: In summary, our single tertiary center study showed that AMD is widely prevalent in Jeddah, Saudi Arabia (4%) and linked to a wide range of risk factors. Some of these are modifiable risk factors that can be adjusted to help reduce AMD occurrence. Furthermore, this study has shown the importance of screening and follow-up of family members of patients with AMD to promote early detection and intervention of AMD. We recommend conducting further research on AMD in Saudi Arabia. Concerning the study design, a community-based cross-sectional study would be more helpful for assessing the disease's prevalence. Finally, recruiting a larger sample size is required for more accurate estimation.Keywords: age related macular degeneration, prevelence, risk factor, dry AMD
Procedia PDF Downloads 4473 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology
Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco
Abstract:
Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning
Procedia PDF Downloads 7372 Ankle Fracture Management: A Unique Cross Departmental Quality Improvement Project
Authors: Langhit Kurar, Loren Charles
Abstract:
Introduction: In light of recent BOAST 12 (August 2016) published guidance on management of ankle fractures, the project aimed to highlight key discrepancies throughout the care trajectory from admission to point of discharge at a district general hospital. Wide breadth of data covering three key domains: accident and emergency, radiology, and orthopaedic surgery were subsequently stratified and recommendations on note documentation, and outpatient follow up were made. Methods: A retrospective twelve month audit was conducted reviewing results of ankle fracture management in 37 patients. Inclusion criterion involved all patients seen at Darent Valley Hospital (DVH) emergency department with radiographic evidence of an ankle fracture. Exclusion criterion involved all patients managed solely by nursing staff or having sustained purely ligamentous injury. Medical notes, including discharge summaries and the PACS online radiographic tool were used for data extraction. Results: Cross-examination of the A & E domain revealed limited awareness of the BOAST 12 recent publication including requirements to document skin integrity and neurovascular assessment. This had direct implications as this would have changed the surgical plan for acutely compromised patients. The majority of results obtained from the radiographic domain were satisfactory with appropriate X-rays taken in over 95% of cases. However, due to time pressures within A & E, patients were often left without a post manipulation XRAY in a backslab. Poorly reduced fractures were subsequently left for a long period resulting in swollen ankles and a time-dependent lag to surgical intervention. This had knocked on implications for prolonged inpatient stay resulting in hospital-acquired co-morbidity including pressure sores. Discussion: The audit has highlighted several areas of improvement throughout the disease trajectory from review in the emergency department to follow up as an outpatient. This has prompted the creation of an algorithm to ensure patients with significant fractures presenting to the emergency department are seen promptly and treatment expedited as per recent guidance. This includes timing for X-rays taken in A & E. Re-audit has shown significant improvement in both documentation at time of presentation and appropriate follow-up strategies. Within the orthopedic domain, we are in the process of creating an ankle fracture pathway to ensure imaging and weight bearing status are made clear to the consulting clinicians in an outpatient setting. Significance/Clinical Relevance: As a result of the ankle fracture algorithm we have adapted the BOAST 12 guidance to shape an intrinsic pathway to not only improve patient management within the emergency department but also create a standardised format for follow up.Keywords: ankle, fracture, BOAST, radiology
Procedia PDF Downloads 18071 Intriguing Modulations in the Excited State Intramolecular Proton Transfer Process of Chrysazine Governed by Host-Guest Interactions with Macrocyclic Molecules
Authors: Poojan Gharat, Haridas Pal, Sharmistha Dutta Choudhury
Abstract:
Tuning photophysical properties of guest dyes through host-guest interactions involving macrocyclic hosts are the attractive research areas since past few decades, as these changes can directly be implemented in chemical sensing, molecular recognition, fluorescence imaging and dye laser applications. Excited state intramolecular proton transfer (ESIPT) is an intramolecular prototautomerization process display by some specific dyes. The process is quite amenable to tunability by the presence of different macrocyclic hosts. The present study explores the interesting effect of p-sulfonatocalix[n]arene (SCXn) and cyclodextrin (CD) hosts on the excited-state prototautomeric equilibrium of Chrysazine (CZ), a model antitumour drug. CZ exists exclusively in its normal form (N) in the ground state. However, in the excited state, the excited N* form undergoes ESIPT along with its pre-existing intramolecular hydrogen bonds, giving the excited state prototautomer (T*). Accordingly, CZ shows a single absorption band due to N form, but two emission bands due to N* and T* forms. Facile prototautomerization of CZ is considerably inhibited when the dye gets bound to SCXn hosts. However, in spite of lower binding affinity, the inhibition is more profound with SCX6 host as compared to SCX4 host. For CD-CZ system, while prototautomerization process is hindered by the presence of β-CD, it remains unaffected in the presence of γCD. Reduction in the prototautomerization process of CZ by SCXn and βCD hosts is unusual, because T* form is less dipolar in nature than the N*, hence binding of CZ within relatively hydrophobic hosts cavities should have enhanced the prototautomerization process. At the same time, considering the similar chemical nature of two CD hosts, their effect on prototautomerization process of CZ would have also been similar. The atypical effects on the prototautomerization process of CZ by the studied hosts are suggested to arise due to the partial inclusion or external binding of CZ with the hosts. As a result, there is a strong possibility of intermolecular H-bonding interaction between CZ dye and the functional groups present at the portals of SCXn and βCD hosts. Formation of these intermolecular H-bonds effectively causes the pre-existing intramolecular H-bonding network within CZ molecule to become weak, and this consequently reduces the prototautomerization process for the dye. Our results suggest that rather than the binding affinity between the dye and host, it is the orientation of CZ in the case of SCXn-CZ complexes and the binding stoichiometry in the case of CD-CZ complexes that play the predominant role in influencing the prototautomeric equilibrium of the dye CZ. In the case of SCXn-CZ complexes, the results obtained through experimental findings are well supported by quantum chemical calculations. Similarly for CD-CZ systems, binding stoichiometries obtained through geometry optimization studies on the complexes between CZ and CD hosts correlate nicely with the experimental results. Formation of βCD-CZ complexes with 1:1 stoichiometry while formation of γCD-CZ complexes with 1:1, 1:2 and 2:2 stoichiometries are revealed from geometry optimization studies and these results are in good accordance with the observed effects by the βCD and γCD hosts on the ESIPT process of CZ dye.Keywords: intermolecular proton transfer, macrocyclic hosts, quantum chemical studies, photophysical studies
Procedia PDF Downloads 12170 Two-wavelength High-energy Cr:LiCaAlF6 MOPA Laser System for Medical Multispectral Optoacoustic Tomography
Authors: Radik D. Aglyamov, Alexander K. Naumov, Alexey A. Shavelev, Oleg A. Morozov, Arsenij D. Shishkin, Yury P.Brodnikovsky, Alexander A.Karabutov, Alexander A. Oraevsky, Vadim V. Semashko
Abstract:
The development of medical optoacoustic tomography with the using human blood as endogenic contrast agent is constrained by the lack of reliable, easy-to-use and inexpensive sources of high-power pulsed laser radiation in the spectral region of 750-900 nm [1-2]. Currently used titanium-sapphire, alexandrite lasers or optical parametric light oscillators do not provide the required and stable output characteristics, they are structurally complex, and their cost is up to half the price of diagnostic optoacoustic systems. Here we are developing the lasers based on Cr:LiCaAlF6 crystals which are free of abovementioned disadvantages and provides intensive ten’s ns-range tunable laser radiation at specific absorption bands of oxy- (~840 nm) and -deoxyhemoglobin (~757 nm) in the blood. Cr:LiCAF (с=3 at.%) crystals were grown in Kazan Federal University by the vertical directional crystallization (Bridgman technique) in graphite crucibles in a fluorinating atmosphere at argon overpressure (P=1500 hPa) [3]. The laser elements have cylinder shape with the diameter of 8 mm and 90 mm in length. The direction of the optical axis of the crystal was normal to the cylinder generatrix, which provides the π-polarized laser action correspondent to maximal stimulated emission cross-section. The flat working surfaces of the active elements were polished and parallel to each other with an error less than 10”. No any antireflection coating was applied. The Q-switched master oscillator-power amplifiers laser system (MOPA) with the dual-Xenon flashlamp pumping scheme in diffuse-reflectivity close-coupled head were realized. A specially designed laser cavity, consisting of dielectric highly reflective reflectors with a 2 m-curvature radius, a flat output mirror, a polarizer and Q-switch sell, makes it possible to operate sequentially in a circle (50 ns - laser one pulse after another) at wavelengths of 757 and 840 nm. The programmable pumping system from Tomowave Laser LLC (Russia) provided independent to each pulses (up to 250 J at 180 μs) pumping to equalize the laser radiation intensity at these wavelengths. The MOPA laser operates at 10 Hz pulse repetition rate with the output energy up to 210 mJ. Taking into account the limitations associated with physiological movements and other characteristics of patient tissues, the duration of laser pulses and their energy allows molecular and functional high-contrast imaging to depths of 5-6 cm with a spatial resolution of at least 1 mm. Highly likely the further comprehensive design of laser allows improving the output properties and realizing better spatial resolution of medical multispectral optoacoustic tomography systems.Keywords: medical optoacoustic, endogenic contrast agent, multiwavelength tunable pulse lasers, MOPA laser system
Procedia PDF Downloads 10169 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion
Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong
Abstract:
The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor
Procedia PDF Downloads 23368 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics
Authors: Animesh Pan, Geoffrey D. Bothun
Abstract:
With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting
Procedia PDF Downloads 12867 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India
Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit
Abstract:
Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique
Procedia PDF Downloads 12966 Advancing Dialysis Care Access and Health Information Management: A Blueprint for Nairobi Hospital
Authors: Kimberly Winnie Achieng Otieno
Abstract:
The Nairobi Hospital plays a pivotal role in healthcare provision in East and Central Africa, yet it faces challenges in providing accessible dialysis care. This paper explores strategic interventions to enhance dialysis care, improve access and streamline health information management, with an aim of fostering an integrated and patient-centered healthcare system in our region. Challenges at The Nairobi Hospital The Nairobi Hospital currently grapples with insufficient dialysis machines which results in extended turn around times. This issue stems from both staffing bottle necks and infrastructural limitations given our growing demand for renal care services. Our Paper-based record keeping system and fragmented flow of information downstream hinders the hospital’s ability to manage health data effectively. There is also a need for investment in expanding The Nairobi Hospital dialysis facilities to far reaching communities. Setting up satellite clinics that are closer to people who live in areas far from the main hospital will ensure better access to underserved areas. Community Outreach and Education Implementing education programs on kidney health within local communities is vital for early detection and prevention. Collaborating with local leaders and organizations can establish a proactive approach to renal health hence reducing the demand for acute dialysis interventions. We can amplify this effort by expanding The Nairobi Hospital’s corporate social responsibility outreach program with weekend engagement activities such as walks, awareness classes and fund drives. Enhancing Efficiency in Dialysis Care Demand for dialysis services continues to rise due to an aging Kenyan population and the increasing prevalence of chronic kidney disease (CKD). Present at this years International Nursing Conference are a diverse group of caregivers from around the world who can share with us their process optimization strategies, patient engagement techniques and resource utilization efficiencies to catapult The Nairobi Hospital to the 21st century and beyond. Plans are underway to offer ongoing education opportunities to keep staff updated on best practices and emerging technologies in addition to utilizing a patient feedback mechanisms to identify areas for improvement and enhance satisfaction. Staff empowerment and suggestion boxes address The Nairobi Hospital’s organizational challenges. Current financial constraints may limit a leapfrog in technology integration such as the acquisition of new dialysis machines and an investment in predictive analytics to forecast patient needs and optimize resource allocation. Streamlining Health Information Management Fully embracing a shift to 100% Electronic Health Records (EHRs) is a transformative step toward efficient health information management. Shared information promotes a holistic understanding of patients’ medical history, minimizing redundancies and enhancing overall care quality. To manage the transition to community-based care and EHRs effectively, a phased implementation approach is recommended. Conclusion By strategically enhancing dialysis care access and streamlining health information management, The Nairobi Hospital can strengthen its position as a leading healthcare institution in both East and Central Africa. This comprehensive approach aligns with the hospital’s commitment to providing high-quality, accessible, and patient-centered care in an evolving landscape of healthcare delivery.Keywords: Africa, urology, diaylsis, healthcare
Procedia PDF Downloads 5965 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium
Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte
Abstract:
The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation
Procedia PDF Downloads 26464 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 7463 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 6862 Exploring Bio-Inspired Catecholamine Chemistry to Design Durable Anti-Fungal Wound Dressings
Authors: Chetna Dhand, Venkatesh Mayandi, Silvia Marrero Diaz, Roger W. Beuerman, Seeram Ramakrishna, Rajamani Lakshminarayanan
Abstract:
Sturdy Insect Cuticle Sclerotization, Incredible Substrate independent Mussel’s bioadhesion, Tanning of Leather are some of catechol(amine)s mediated natural processes. Chemical contemplation spots toward a mechanism instigated with the formation of the quinone moieties from the respective catechol(amine)s, via oxidation, followed by the nucleophilic addition of the amino acids/proteins/peptides to this quinone leads to the development of highly strong, cross-linked and water-resistant proteinacious structures. Inspired with this remarkable catechol(amine)s chemistry towards amino acids/proteins/peptides, we attempted to design highly stable and water-resistant antifungal wound dressing mats with exceptional durability using collagen (protein), dopamine (catecholamine) and antifungal drugs (Amphotericin B and Caspofungin) as the key materials. Electrospinning technique has been used to fabricate desired nanofibrous mat including Collagen (COLL), COLL/Dopamine (COLL/DP) and calcium incorporated COLL/DP (COLL-DP-Ca2+). The prepared protein-based scaffolds have been studied for their microscopic investigations (SEM, TEM, and AFM), structural analysis (FT-IR), mechanical properties, water wettability characteristics and aqueous stability. Biocompatibility of these scaffolds has been analyzed for dermal fibroblast cells using MTS assay, Cell TrackerTM Green CMFDA and confocal imaging. Being the winner sample, COLL-DP-Ca2+ scaffold has been selected for incorporating two antifungal drugs namely Caspofungin (Peptide based) and Amphotericin B (Non-Peptide based). Antifungal efficiency of the designed mats has been evaluated for eight diverse fungal strains employing different microbial assays including disc diffusion, cell-viability assay, time kill kinetics etc. To confirm the durability of these mats, in term of their antifungal activity, drug leaching studies has been performed and monitored using disc diffusion assay each day. Ex-vivo fungal infection model has also been developed and utilized to validate the antifungal efficacy of the designed wound dressings. Results clearly reveal dopamine mediated crosslinking within COLL-antifungal scaffolds that leads to the generation of highly stable, mechanical tough, biocompatible wound dressings having the zone of inhabitation of ≥ 2 cm for almost all the investigated fungal strains. Leaching studies and Ex-vivo model has confirmed the durability of these wound dressing for more than 3 weeks and certified their suitability for commercialization. A model has also been proposed to enlighten the chemical mechanism involved for the development of these antifungal wound dressings with exceptional robustness.Keywords: catecholamine chemistry, electrospinning technique, antifungals, wound dressings, collagen
Procedia PDF Downloads 37861 Functionalizing Gold Nanostars with Ninhydrin as Vehicle Molecule for Biomedical Applications
Authors: Swati Mishra
Abstract:
In recent years, there has been an explosion in Gold NanoParticle (GNP) research, with a rapid increase in publications in diverse fields, including imaging, bioengineering, and molecular biology. GNPs exhibit unique physicochemical properties, including surface plasmon resonance (SPR) and bind amine and thiol groups, allowing surface modification and use in biomedical applications. Nanoparticle functionalization is the subject of intense research at present, with rapid progress being made towards developing biocompatible, multi-functional particles. In the present study, the photochemical method has been done to functionalize various-shaped GNPs like nanostars by the molecules like ninhydrin. Ninhydrin is bactericidal, virucidal, fungicidal, antigen-antibody reactive, and used in fingerprint technology in forensics. The GNPs functionalized with ninhydrin efficiently will bind to the amino acids on the target protein, which is of eminent importance during the pandemic, especially where long-term treatments of COVID- 19 bring many side effects of the drugs. The photochemical method is adopted as it provides low thermal load, selective reactivity, selective activation, and controlled radiation in time, space, and energy. The GNPs exhibit their characteristic spectrum, but a distinctly blue or redshift in the peak will be observed after UV irradiation, ensuring efficient ninhydrin binding. Now, the bound ninhydrin in the GNP carrier, upon chemically reacting with any amino acid, will lead to the formation of Rhumann purple. A common method of GNP production includes citrate reduction of Au [III] derivatives such as aurochloric acid (HAuCl4) in water to Au [0] through a one-step synthesis of size-tunable GNPs. The following reagents are prepared to validate the approach. Reagent A solution 1 is0.0175 grams ninhydrin in 5 ml Millipore water Reagent B 30 µl of HAuCl₄.3H₂O in 3 ml of solution 1 Reagent C 1 µl of gold nanostars in 3 ml of solution 1 Reagent D 6 µl of cetrimonium bromide (CTAB) in 3 ml of solution1 ReagentE 1 µl of gold nanostars in 3 ml of ethanol ReagentF 30 µl of HAuCl₄.₃H₂O in 3 ml of ethanol ReagentG 30 µl of HAuCl₄.₃H₂O in 3 ml of solution 2 ReagentH solution 2 is0.0087 grams ninhydrin in 5 ml Millipore water ReagentI 30 µl of HAuCl₄.₃H₂O in 3 ml of water The reagents were irradiated at 254 nm for 15 minutes, followed by their UV Visible spectroscopy. The wavelength was selected based on the one reported for excitation of a similar molecule Pthalimide. It was observed that the solution B and G deviate around 600 nm, while C peaks distinctively at 567.25 nm and 983.9 nm. Though it is tough to say about the chemical reaction happening, butATR-FTIR of reagents will ensure that ninhydrin is not forming Rhumann purple in the absence of amino acids. Therefore, these experiments, we achieved the functionalization of gold nanostars with ninhydrin corroborated by the deviation in the spectrum obtained in a mixture of GNPs and ninhydrin irradiated with UV light. It prepares them as a carrier molecule totake up amino acids for targeted delivery or germicidal action.Keywords: gold nanostars, ninhydrin, photochemical method, UV visible specgtroscopy
Procedia PDF Downloads 14960 Fort Conger: A Virtual Museum and Virtual Interactive World for Exploring Science in the 19th Century
Authors: Richard Levy, Peter Dawson
Abstract:
Ft. Conger, located in the Canadian Arctic was one of the most remote 19th-century scientific stations. Established in 1881 on Ellesmere Island, a wood framed structure established a permanent base from which to conduct scientific research. Under the charge of Lt. Greely, Ft. Conger was one of 14 expeditions conducted during the First International Polar Year (FIPY). Our research project “From Science to Survival: Using Virtual Exhibits to Communicate the Significance of Polar Heritage Sites in the Canadian Arctic” focused on the creation of a virtual museum website dedicated to one of the most important polar heritage site in the Canadian Arctic. This website was developed under a grant from Virtual Museum of Canada and enables visitors to explore the fort’s site from 1875 to the present, http://fortconger.org. Heritage sites are often viewed as static places. A goal of this project was to present the change that occurred over time as each new group of explorers adapted the site to their needs. The site was first visited by British explorer George Nares in 1875 – 76. Only later did the United States government select this site for the Lady Franklin Bay Expedition (1881-84) with research to be conducted under the FIPY (1882 – 83). Still later Robert Peary and Matthew Henson attempted to reach the North Pole from Ft. Conger in 1899, 1905 and 1908. A central focus of this research is on the virtual reconstruction of the Ft. Conger. In the summer of 2010, a Zoller+Fröhlich Imager 5006i and Minolta Vivid 910 laser scanner were used to scan terrain and artifacts. Once the scanning was completed, the point clouds were registered and edited to form the basis of a virtual reconstruction. A goal of this project has been to allow visitors to step back in time and explore the interior of these buildings with all of its artifacts. Links to text, historic documents, animations, panorama images, computer games and virtual labs provide explanations of how science was conducted during the 19th century. A major feature of this virtual world is the timeline. Visitors to the website can begin to explore the site when George Nares, in his ship the HMS Discovery, appeared in the harbor in 1875. With the emergence of Lt Greely’s expedition in 1881, we can track the progress made in establishing a scientific outpost. Still later in 1901, with Peary’s presence, the site is transformed again, with the huts having been built from materials salvaged from Greely’s main building. Still later in 2010, we can visit the site during its present state of deterioration and learn about the laser scanning technology which was used to document the site. The Science and Survival at Fort Conger project represents one of the first attempts to use virtual worlds to communicate the historical and scientific significance of polar heritage sites where opportunities for first-hand visitor experiences are not possible because of remote location.Keywords: 3D imaging, multimedia, virtual reality, arctic
Procedia PDF Downloads 42159 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics
Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose
Abstract:
Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium
Procedia PDF Downloads 151