Search results for: glass fiber composite
1800 The Relationship of Fast Food Consumption Preference with Macro and Micro Nutrient Adequacy Students of SMP Negeri 5 Padang
Authors: Widari
Abstract:
This study aims to determine the relationship of fast food consumption preferences with macro and micro nutrient adequacy students of SMP Negeri 5 Padang. This study used a cross sectional study conducted on 100 students of SMP Negeri 5 Padang. The variables studied were fast food preferences, nutrition adequacy macronutrients (carbohydrate, protein, fat, fiber) and micro nutrients (sodium, calcium, iron). Confounding factor in this study was the physical activity level because it was considered quite affecting food consumption of students. Data collected by using a questionnaire food recall as many as 2 x 24 hours to see the history of the respondents eat at school day and on holidays. Then, data processed using software Nutrisurvey and Microsoft Excel 2010. The analysis was performed on samples that have low and medium category on physical activity. The physical activity was not analyzed with another variable to see the strength of the relationship between independent and dependent variables. So that, do restrictions on physical activity variables in an attempt to get rid of confounding in design. Univariate and bivariate analyzes performed using SPSS 16.0 for Windows with Kolmogrov-Smirnov statistical tests, confidence level = 95% (α = 0,05). Results of univariate analysis showed that more than 70% of respondents liked fast food. On average, respondents were malnourished macro; malnourished fiber (100%), carbohydrates (72%), and protein (56%), whereas for fat, excess intake of the respondents (41%). Furthermor, many respondents who have micronutrient deficiencies; 98% for sodium, 96% for iron, and 91% for calcium. The results of the bivariate analysis showed no significant association between fast food consumption preferences with macro and micro nutrient adequacy (p > 0,05). This happens because in the fact not all students who have a preference for fast food actually eat them. To study better in the future, it is expected sampling really like and eat fast food in order to obtain better analysis results.Keywords: fast food, nutritional adequacy, preferences, students
Procedia PDF Downloads 3741799 Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells
Authors: G. Balaji, R. Balasundaraprabhu, S. Prasanna, M. D. Kannan, K. Sivakumaran, David Mcilroy
Abstract:
Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured.Keywords: earth-abundant, Kesterite, RF sputtering, thin film solar cells
Procedia PDF Downloads 2801798 Dietary Intake and the Risk of Hypertriglyceridemia in Adults: Tehran Lipid and Glucose Study
Authors: Parvin Mirmiran, Zahra Bahadoran, Sahar Mirzae, Fereidoun Azizi
Abstract:
Background and aim: Lifestyle factors, especially dietary intakes play an important role in metabolism of lipids and lipoproteins. In this study, we assessed the association between dietary factors and 3-year changes of serum triglycerides (TG), HDL-C and the atherogenic index of plasma among Iranian adults. This longitudinal study was conducted on 1938 subjects, aged 19-70 years, who participated in the Tehran Lipid and Glucose Study. Demographics, anthropometrics and biochemical measurements including serum TG were assessed at baseline (2006-2008) and after a 3-year follow-up (2009-2011). Dietary data were collected by using a 168-food item, validated semi-quantitative food frequency questionnaire at baseline. The risk of hypertriglyceridemia in the quartiles of dietary factors was evaluated using logistic regression models with adjustment for age, gender, body mass index, smoking, physical activity and energy intakes. Results: Mean age of the participants at baseline was 41.0±13.0 y. Mean TG and HDL-C at baseline was 143±86 and 42.2±10.0 mg/dl, respectively. Three-year change of serum TG were inversely related energy intake from phytochemical rich foods, whole grains, and legumes (P<0.05). Higher intakes compared to lower ones of dietary fiber and phytochemical-rich foods had similar impact on decreased risk of hyper-triglyceridemia (OR=0.58, 95% CI=0.34-1.00). Higher- compared to lower-dietary sodium to potassium ratios (Na/K ratio) increased the risk of hypertriglyceridemia by 63% (OR=0.1.63, 95% CI= 0.34-1.00). Conclusion: Findings showed that higher intakes of fiber and phytochemical rich foods especially whole grain and legumes could have protective effects against lipid disorders; in contrast higher sodium to potassium ratio had undesirable effect on triglycerides.Keywords: lipid disorders, hypertriglyceridemia, diet, food science
Procedia PDF Downloads 4681797 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics
Authors: C. S. Saini
Abstract:
The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.Keywords: black gram, corn flour, extrusion, physical characteristics
Procedia PDF Downloads 4791796 An Advanced Numerical Tool for the Design of Through-Thickness Reinforced Composites for Electrical Applications
Authors: Bing Zhang, Jingyi Zhang, Mudan Chen
Abstract:
Fibre-reinforced polymer (FRP) composites have been extensively utilised in various industries due to their high specific strength, e.g., aerospace, renewable energy, automotive, and marine. However, they have relatively low electrical conductivity than metals, especially in the out-of-plane direction. Conductive metal strips or meshes are typically employed to protect composites when designing lightweight structures that may be subjected to lightning strikes, such as composite wings. Unfortunately, this approach downplays the lightweight advantages of FRP composites, thereby limiting their potential applications. Extensive studies have been undertaken to improve the electrical conductivity of FRP composites. The authors are amongst the pioneers who use through-thickness reinforcement (TTR) to tailor the electrical conductivity of composites. Compared to the conventional approaches using conductive fillers, the through-thickness reinforcement approach has been proven to be able to offer a much larger improvement to the through-thickness conductivity of composites. In this study, an advanced high-fidelity numerical modelling strategy is presented to investigate the effects of through-thickness reinforcement on both the in-plane and out-of-plane electrical conductivities of FRP composites. The critical micro-structural features of through-thickness reinforced composites incorporated in the modelling framework are 1) the fibre waviness formed due to TTR insertion; 2) the resin-rich pockets formed due to resin flow in the curing process following TTR insertion; 3) the fibre crimp, i.e., fibre distortion in the thickness direction of composites caused by TTR insertion forces. In addition, each interlaminar interface is described separately. An IMA/M21 composite laminate with a quasi-isotropic stacking sequence is employed to calibrate and verify the modelling framework. The modelling results agree well with experimental measurements for bothering in-plane and out-plane conductivities. It has been found that the presence of conductive TTR can increase the out-of-plane conductivity by around one order, but there is less improvement in the in-plane conductivity, even at the TTR areal density of 0.1%. This numerical tool provides valuable references as a design tool for through-thickness reinforced composites when exploring their electrical applications. Parametric studies are undertaken using the numerical tool to investigate critical parameters that affect the electrical conductivities of composites, including TTR material, TTR areal density, stacking sequence, and interlaminar conductivity. Suggestions regarding the design of electrical through-thickness reinforced composites are derived from the numerical modelling campaign.Keywords: composite structures, design, electrical conductivity, numerical modelling, through-thickness reinforcement
Procedia PDF Downloads 881795 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material
Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy
Abstract:
Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength
Procedia PDF Downloads 3171794 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator
Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li
Abstract:
A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator
Procedia PDF Downloads 1541793 Quadriceps Muscle Activity in Response to Slow and Fast Perturbations following Fatiguing Exercise
Authors: Nosratollah Hedayatpour, Hamid Reza Taheri, Mehrdad Fathi
Abstract:
Introduction: Quadriceps femoris muscle is frequently involved in various movements e.g., jumping, landing) during sport and/or daily activities. During ballistic movement when individuals are faced with unexpected knee perturbation, fast twitch muscle fibers contribute to force production to stabilize knee joint. Fast twitch muscle fiber is more susceptible to fatigue and therefor may reduce the ability of the quadriceps muscle to stabilize knee joint during fast perturbation. Aim: The aim of this study was to investigate the effect of fatigue on postural response of the knee extensor muscles to fast and slow perturbations. Methods: Fatigue was induced to the quadriceps muscle using a KinCom Isokinetic Dynamometer (Chattanooga, TN). Bipolar surface electromyography (EMG) signals were simultaneously recorded from quadriceps components (vastus medialis, rectus femoris, and vastus lateralis) during pre- and post-fatigue postural perturbation performed at two different velocities of 120 ms and 250 mes. Results: One-way ANOVA showed that maximal voluntary knee extension force and time to task failure, and associated EMG activities were significantly reduced after fatiguing knee exercise (P< 0.05). Two-ways ANOVA also showed that ARV of EMG during backward direction was significantly larger than forward direction (P< 0.05), and during fast-perturbation it was significantly higher than slow-perturbation (P< 0.05). Moreover, ARV of EMG was significantly reduced during post fatigue perturbation, with the largest reduction identified for fast-perturbation compared with slow perturbation (P< 0.05). Conclusion: A larger reduction in muscle activity of the quadriceps muscle was observed during post fatigue fast-perturbation to stabilize knee joint, most likely due to preferential recruitment of fast twitch muscle fiber which are more susceptible to fatigue. This may partly explain that why knee injuries is common after fast ballistic movement.Keywords: electromyography, fast-slow perturbations, fatigue, quadriceps femoris muscle
Procedia PDF Downloads 5251792 Protecting Physicochemical Properties of Black Cumin Seed (Nigella sativa) Oil and Developing Value Added Products
Authors: Zeliha Ustun, Mustafa Ersoz
Abstract:
In the study, a traditional herbal supplement black cumin seed (Nigella sativa) oil properties has been studied to protect the main quality parameters by a new supplement application. Black cumin seed and its oil is used as a dietary supplement and preferred traditional remedy in Africa, Asia and Middle East for centuries. Now it has been consuming by millions of people in America and Europe as natural supplements and/or phytotherapeutic agents to support immune system, asthma, allergic rinnitis etc. by the scientists’ advices. With the study, it is aimed to prove that soft gelatin capsules are a new and more practical way of usage for Nigella sativa oil that has a longer stability. With the study soft gelatin capsules formulation has been developed to protect cold pressed black cumin seed oil physicochemical properties for a longer period. The product design has been developed in laboratory and implemented in pilot scale soft gelatin capsule manufacturing. Physicochemical properties (peroxide value, free fatty acids, fatty acid composition, refractive index, iodine value, saponification value, unsaponifiable matters) of Nigella sativa oil soft gelatin capsules and Nigella sativa oil in liquid form in amber glass bottles have been compared and followed for 8 months. The main parameters for capsules and liquid form found that for free fatty acids 2.29±0.03, 3.92±0.11 % oleic acid, peroxide 23.11±1.18, 27.85±2.50 meqO2/kg, refractive index at 20 0C 1.4738±0.00, 1.4737±0.00, soap 0 ppm, moisture and volatility 0.32±0.01, 0.36±0.01 %, iodine value 123.00±0.00, 122.00±0.00 wijs, saponification value 196.25±0.46, 194.13±0.35 mg KOH/g and unsaponifiable matter 7.72±0.13, 6.88±0.36 g/kg respectively. The main fatty acids are found that linoleic acid 56.17%, oleic acid 24.64%, palmitic acid 11,94 %. As a result, it is found that cold pressed Nigella sativa oil soft gelatin capsules physicochemical properties are more stable than the Nigella sativa oil stored in glass bottles.Keywords: black cumin seed (Nigella sativa) oil, cold press, nutritional supplements, soft gelatin capsule
Procedia PDF Downloads 3771791 Carbon Nanotubes and Novel Applications for Textile
Authors: Ezgi Ismar
Abstract:
Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products.Keywords: carbon nanotubes, conductive textiles, nanotechnology, nanotextiles
Procedia PDF Downloads 3821790 A Composite Indicator to Monitoring European Water Policies Using a Flexible Sustainability Approach
Authors: De Castro-Pardo M., Cabello J. M., Martin J. M., Ruiz F.
Abstract:
In this paper, we propose a new Water Sustainability Indicator based on a Multi-Reference methodology that permits modeling compensation between the analysed criteria and provides a participative approach. The proposed indicator provides results based on 19 variables grouped into 5 dimensions: availability, access, resilience, good governance and economic capacity. The indicator was applied to assess water sustainability in 27 European countries. The results showed that Finland, the Netherlands, Sweden and the United Kingdom obtained the best global results in terms of weak water (compensatory) sustainability. In terms of strong water (non-compensatory) sustainability, no country gained acceptable results in terms of strong sustainability. Climate change and the state of freshwater resources were detected as especially vulnerable in all the analysed countries. The results identified some eastern European countries with low GDP and good performance of availability and cost of water, with bad results in terms of governance and water productivity. These results could jeopardize water sustainability in the event of a potential economic development if these limitations are not addressed. In a context of economic and political instability due to the current armed conflict in nearby countries such as Ukraine, it is especially important to pay attention to these countries, whose good governance indicators could worsen even more. The proposed indicator allowed to the identification of warning signs and could contribute to the improvement in decision-making processes. Moreover, it could improve the monitoring of international water policies.Keywords: water sustainability, composite indicators, compensatory approach, sustainability European policies
Procedia PDF Downloads 881789 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products
Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis
Abstract:
About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products
Procedia PDF Downloads 4271788 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation
Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E.A. Awad
Abstract:
Numerous attempts are being performed in order to formulate suitable packaging materials for meat products. However, to the best of our knowledge, the incorporation of free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for meats is seldom reported. Therefore, this study aims at protection of the aqueous crude extract of hibiscus flowers utilizing spry drying encapsulation technique. Fourier transform infrared (FTIR), scanning electron microscope (SEM), and zetasizer results confirmed the successful formation of assembled capsules via strong interactions, spherical rough microparticles, and ~ 235 nm of particle size, respectively. Also, the obtained microcapsules enjoy high thermal stability, unlike the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to PVA. Application of the prepared films on the real meat samples displayed low bacterial growth with a slight increase in the pH over the storage time up to 10 days at 4 oC which further proved the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of prepared composite films pave the way towards combined active/smart food packaging applications. This would play a vital role in the food hygiene, including also quality control and assurance.Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage
Procedia PDF Downloads 821787 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites
Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga
Abstract:
One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design
Procedia PDF Downloads 2571786 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates
Authors: Dhiraj Biswas, Chaitali Ray
Abstract:
A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect
Procedia PDF Downloads 2221785 Flow Performance of Hybrid Cement Based Mortars
Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal
Abstract:
The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow
Procedia PDF Downloads 3071784 Interfacial Reactions between Aromatic Polyamide Fibers and Epoxy Matrix
Authors: Khodzhaberdi Allaberdiev
Abstract:
In order to understand the interactions on the interface polyamide fibers and epoxy matrix in fiber- reinforced composites were investigated industrial aramid fibers: armos, svm, terlon using individual epoxy matrix components, epoxies: diglycidyl ether of bisphenol A (DGEBA), three- and diglycidyl derivatives of m, p-amino-, m, p-oxy-, o, m,p-carboxybenzoic acids, the models: curing agent, aniline and the compound, that depict of the structure the primary addition reaction the amine to the epoxy resin, N-di (oxyethylphenoxy) aniline. The chemical structure of the surface of untreated and treated polyamide fibers analyzed using Fourier transform infrared spectroscopy (FTIR). The impregnation of fibers with epoxy matrix components and N-di (oxyethylphenoxy) aniline has been carried out by heating 150˚C (6h). The optimum fiber loading is at 65%.The result a thermal treatment is the covalent bonds formation , derived from a combined of homopolymerization and crosslinking mechanisms in the interfacial region between the epoxy resin and the surface of fibers. The reactivity of epoxy resins on interface in microcomposites (MC) also depends from processing aids treated on surface of fiber and the absorbance moisture. The influences these factors as evidenced by the conversion of epoxy groups values in impregnated with DGEBA of the terlons: industrial, dried (in vacuum) and purified samples: 5.20 %, 4.65% and 14.10%, respectively. The same tendency for svm and armos fibers is observed. The changes in surface composition of these MC were monitored by X-ray photoelectron spectroscopy (XPS). In the case of the purified fibers, functional groups of fibers act as well as a catalyst and curing agent of epoxy resin. It is found that the value of the epoxy groups conversion for reinforced formulations depends on aromatic polyamides nature and decreases in the order: armos >svm> terlon. This difference is due of the structural characteristics of fibers. The interfacial interactions also examined between polyglycidyl esters substituted benzoic acids and polyamide fibers in the MC. It is found that on interfacial interactions these systems influences as well as the structure and the isomerism of epoxides. The IR-spectrum impregnated fibers with aniline showed that the polyamide fibers appreciably with aniline do not react. FTIR results of treated fibers with N-di (oxyethylphenoxy) aniline fibers revealed dramatically changes IR-characteristic of the OH groups of the amino alcohol. These observations indicated hydrogen bondings and covalent interactions between amino alcohol and functional groups of fibers. This result also confirms appearance of the exo peak on Differential Scanning Calorimetry (DSC) curve of the MC. Finally, the theoretical evaluation non-covalent interactions between individual epoxy matrix components and fibers has been performed using the benzanilide and its derivative contaning the benzimidazole moiety as a models of terlon and svm,armos, respectively. Quantum-topological analysis also demonstrated the existence hydrogen bond between amide group of models and epoxy matrix components.All the results indicated that on the interface polyamide fibers and epoxy matrix exist not only covalent, but and non-covalent the interactions during the preparation of MC.Keywords: epoxies, interface, modeling, polyamide fibers
Procedia PDF Downloads 2661783 Elaboration and Investigation of the New Ecologically Clean Friction Composite Materials on the Basis of Nanoporous Raw Materials
Authors: Lia Gventsadze, Elguja Kutelia, David Gventsadze
Abstract:
The purpose of the article is to show the possibility for the development of a new generation, eco-friendly (asbestos free) nano-porous friction materials on the basis of Georgian raw materials, along with the determination of technological parameters for their production, as well as the optimization of tribological properties and the investigation of structural aspects of wear peculiarities of elaborated materials using the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) methods. The study investigated the tribological properties of the polymer friction materials on the basis of the phenol-formaldehyde resin using the porous diatomite filler modified by silane with the aim to improve the thermal stability, while the composition was modified by iron phosphate, technical carbon and basalt fibre. As a result of testing the stable values of friction factor (0.3-0,45) were reached, both in dry and wet friction conditions, the friction working parameters (friction factor and wear stability) remained stable up to 500 OC temperatures, the wear stability of gray cast-iron disk increased 3-4 times, the soundless operation of materials without squeaking were achieved. Herewith it was proved that small amount of ingredients (5-6) are enough to compose the nano-porous friction materials. The study explains the mechanism of the action of nano-porous composition base brake lining materials and its tribological efficiency on the basis of the triple phase model of the tribo-pair.Keywords: brake lining, friction coefficient, wear, nanoporous composite, phenolic resin
Procedia PDF Downloads 3931782 Monitoring the Railways by Means of C-OTDR Technology
Authors: Andrey V. Timofeev
Abstract:
This paper presents development results of the method of seismoacoustic activity monitoring based on usage vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes, which take place due to microscopic seismoacoustic impacts on the optical fiber, allows to determine seismoacoustic emission sources positions and to identify their types. Results of using this approach are successful for complex monitoring of railways.Keywords: C-OTDR systems, monitoring of railways, Rayleigh backscattering, eismoacoustic activity
Procedia PDF Downloads 3951781 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser
Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay
Abstract:
The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction
Procedia PDF Downloads 2951780 Production, Characterisation, and in vitro Degradation and Biocompatibility of a Solvent-Free Polylactic-Acid/Hydroxyapatite Composite for 3D-Printed Maxillofacial Bone-Regeneration Implants
Authors: Carlos Amnael Orozco-Diaz, Robert David Moorehead, Gwendolen Reilly, Fiona Gilchrist, Cheryl Ann Miller
Abstract:
The current gold-standard for maxillofacial reconstruction surgery (MRS) utilizes auto-grafted cancellous bone as a filler. This study was aimed towards developing a polylactic-acid/hydroxyapatite (PLA-HA) composite suitable for fused-deposition 3D printing. Functionalization of the polymer through the addition of HA was directed to promoting bone-regeneration properties so that the material can rival the performance of cancellous bone grafts in terms of bone-lesion repair. This kind of composite enables the production of MRS implants based off 3D-reconstructions from image studies – namely computed tomography – for anatomically-correct fitting. The present study encompassed in-vitro degradation and in-vitro biocompatibility profiling for 3D-printed PLA and PLA-HA composites. PLA filament (Verbatim Co.) and Captal S hydroxyapatite micro-scale HA powder (Plasma Biotal Ltd) were used to produce PLA-HA composites at 5, 10, and 20%-by-weight HA concentration. These were extruded into 3D-printing filament, and processed in a BFB-3000 3D-Printer (3D Systems Co.) into tensile specimens, and were mechanically challenged as per ASTM D638-03. Furthermore, tensile specimens were subjected to accelerated degradation in phosphate-buffered saline solution at 70°C for 23 days, as per ISO-10993-13-2010. This included monitoring of mass loss (through dry-weighing), crystallinity (through thermogravimetric analysis/differential thermal analysis), molecular weight (through gel-permeation chromatography), and tensile strength. In-vitro biocompatibility analysis included cell-viability and extracellular matrix deposition, which were performed both on flat surfaces and on 3D-constructs – both produced through 3D-printing. Discs of 1 cm in diameter and cubic 3D-meshes of 1 cm3 were 3D printed in PLA and PLA-HA composites (n = 6). The samples were seeded with 5000 MG-63 osteosarcoma-like cells, with cell viability extrapolated throughout 21 days via resazurin reduction assays. As evidence of osteogenicity, collagen and calcium deposition were indirectly estimated through Sirius Red staining and Alizarin Red staining respectively. Results have shown that 3D printed PLA loses structural integrity as early as the first day of accelerated degradation, which was significantly faster than the literature suggests. This was reflected in the loss of tensile strength down to untestable brittleness. During degradation, mass loss, molecular weight, and crystallinity behaved similarly to results found in similar studies for PLA. All composite versions and pure PLA were found to perform equivalent to tissue-culture plastic (TCP) in supporting the seeded-cell population. Significant differences (p = 0.05) were found on collagen deposition for higher HA concentrations, with composite samples performing better than pure PLA and TCP. Additionally, per-cell-calcium deposition on the 3D-meshes was significantly lower when comparing 3D-meshes to discs of the same material (p = 0.05). These results support the idea that 3D-printable PLA-HA composites are a viable resorbable material for artificial grafts for bone-regeneration. Degradation data suggests that 3D-printing of these materials – as opposed to other manufacturing methods – might result in faster resorption than currently-used PLA implants.Keywords: bone regeneration implants, 3D-printing, in vitro testing, biocompatibility, polymer degradation, polymer-ceramic composites
Procedia PDF Downloads 1551779 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate
Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon
Abstract:
The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.Keywords: encapsulation, flexible, low melting point alloy, OLED
Procedia PDF Downloads 5991778 Plastic Deformation Behavior of a Pre-Bored Pile Filler Material Due to Lateral Cyclic Loading in Sandy Soil
Authors: A. Y. Purnama, N. Yasufuku
Abstract:
The bridge structure is a building that has to be maintained, especially for the elastomeric bearing. The girder of the bridge needs to be lifted upward to maintain this elastomeric bearing, that needs high cost. Nowadays, integral abutment bridges are becoming popular. The integral abutment bridge is less costly because the elastomeric bearings are eliminated, which reduces the construction cost and maintenance costs. However, when this elastomeric bearing removed, the girder movement due to environmental thermal forces directly support by pile foundation, and it needs to be considered in the design. In case of pile foundation in a stiff soil, in the top area of the pile cannot move freely due to the fixed condition by soil stiffness. Pre-bored pile system can be used to increase the flexibility of pile foundation using a pre-bored hole that filled with elastic materials, but the behavior of soil-pile interaction and soil response due to this system is still rarely explained. In this paper, an experimental study using small-scale laboratory model test conducted in a half size model. Single flexible pile model embedded in sandy soil with the pre-bored ring, which filled with the filler material. The testing box made from an acrylic glass panel as observation area of the pile shaft to monitor the displacement of the pile during the lateral loading. The failure behavior of the soil inside the pre-bored ring and around the pile shaft was investigated to determine the point of pile rotation and the movement of this point due to the pre-bored ring system along the pile shaft. Digital images were used to capture the deformations of the soil and pile foundation during the loading from the acrylic glass on the side of the testing box. The results were presented in the form of lateral load resistance charts against the pile shaft displacement. The failure pattern result also established due to the cyclic lateral loading. The movement of the rotational point was measured due to the pre-bored system filled with appropriate filler material. Based on the findings, design considerations for pre-bored pile system due to cyclic lateral loading can be introduced.Keywords: failure behavior, pre-bored pile system, cyclic lateral loading, sandy soil
Procedia PDF Downloads 2331777 Phosphate Bonded Hemp (Cannabis sativa) Fibre Composites
Authors: Stephen O. Amiandamhen, Martina Meinken, Luvuyo Tyhoda
Abstract:
The properties of Hemp (Cannabis sativa) in phosphate bonded composites were investigated in this research. Hemp hurds were collected from the Hemporium institute for research, South Africa. The hurds were air-dried and shredded using a hammer mill. The shives were screened into different particle sizes and were treated separately with 5% solution of acetic anhydride and sodium hydroxide. The binding matrix was prepared using a reactive magnesia, phosphoric acid, class S fly ash and unslaked lime. The treated and untreated hemp fibers were mixed thoroughly in different ratios with the inorganic matrix. Boric acid and excess water were used to retard and control the rate of the reaction and the setting of the binder. The Hemp composite was formed in a rectangular mold and compressed at room temperature at a pressure of 100KPa. After de-molding the composites, they were cured in a conditioning room for 96 h. Physical and mechanical tests were conducted to evaluate the properties of the composites. A central composite design (CCD) was used to determine the best conditions to optimize the performance of the composites. Thereafter, these combinations were applied in the production of the composites, and the properties were evaluated. Scanning electron microscopy (SEM) was used to carry out the advance examination of the behavior of the composites while X-ray diffractometry (XRD) was used to analyze the reaction pathway in the composites. The results revealed that all properties of phosphate bonded Hemp composites exceeded the LD-1 grade classification of particle boards. The proposed product can be used for ceiling, partitioning, wall claddings and underlayment.Keywords: CCD, fly ash, magnesia, phosphate bonded hemp composites, phosphoric acid, unslaked lime
Procedia PDF Downloads 4351776 Comparative Studies on Thin Film of ZnO Deposited by Spray Pyrolysis and Sputtering Technique
Authors: Musa Momoh, A. U. Moreh, A. M. Bayawa, Sanusi Abdullahi, I. Atiku
Abstract:
In this study, thin films of ZnO were synthesized by two techniques namely RF sputtering and spray pyrolysis. The films were deposited on corning glass. The primary materials used are 99.99% pure. The optical and structural properties of the samples were studied. It has been noted that the samples deposited by Spray pyrolysis have and average transmittance, refractive index and extinction coefficient as 80-90%, 1.33-1.44 and 13.11-27.52 respectively. Those deposited by sputtering method are 34-80%, 1.51-1.52 and 3.15-3.28. The XRD patterns of the samples show that they are polycrystalline.Keywords: zinc oxide, spray pyrolysis, rf sputtering, optical properties, electrical properties
Procedia PDF Downloads 2661775 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling
Authors: Moustafa Osman Mohammed
Abstract:
The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology
Procedia PDF Downloads 681774 Finite Element Molecular Modeling: A Structural Method for Large Deformations
Authors: A. Rezaei, M. Huisman, W. Van Paepegem
Abstract:
Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.Keywords: finite element, large deformation, molecular mechanics, structural method
Procedia PDF Downloads 1521773 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite
Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar
Abstract:
This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts Grey Relational Analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole.Keywords: metal matrix composite, drilling, optimization, step drill, surface roughness, burr height, hole diameter error
Procedia PDF Downloads 3191772 Experimental Investigation on Flexural Properties of Bamboo Fibres Polypropylene Composites
Authors: Tigist Girma Kidane, Yalew Dessalegn Asfaw
Abstract:
Abstract: The current investigation aims to measure the longitudinal and transversal three-point bending tests of bamboo fibres polypropylene composites (BFPPCs) for the application of the automobile industry. Research has not been done on the properties of Ethiopian bamboo fibres for the utilization of composite development. The samples of bamboo plants have been harvested in 3–groups of age, 2–harvesting seasons, and 3–regions of bamboo species. Roll milling machine used for the extraction of bamboo fibres which has been developed by the authors. Chemical constituents measured using gravimetric methods. Unidirectional bamboo fibres prepreg has been produced using PP and hot press machine, then BFPPCs were produced using 6 layers of prepregs at automatic hot press machine. Age, harvesting month, and bamboo species have a statistically significant effect on the longitudinal and transverse flexural strength (FS), modulus of elasticity (MOE), and failure strain at α = 0.05 as evaluated by one-way ANOVA. 2–yrs old of BFPPCs have the highest FS and MOE, whereas November has the highest value of flexural properties. The highest to the lowest FS and MOE of BFPPCs has measured in Injibara, Mekaneselam, and Kombolcha, respectively. The transverse 3-point bending test has a lower FS and MOE compared to the longitudinal direction. The chemical constituents of Injibara, Mekaneselam, and Kombolcha have the highest to the lowest, respectively. 2-years old of bamboo fibres has the highest chemical constituent. The chemical constituents improved the flexural properties. Bamboo fibres in Ethiopia can be relevant for composite development, which has been applied in the area of requiring higher flexural properties.Keywords: age, bamboo species, flexural properties, harvesting season, polypropylene
Procedia PDF Downloads 521771 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates
Authors: Babak Safaei, A. M. Fattahi
Abstract:
Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method
Procedia PDF Downloads 329