Search results for: climacteric produce
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2867

Search results for: climacteric produce

977 Experimental Study of Near Wake of Wind Turbines

Authors: Ramin Rezaei, Terry Ng, Abdollah Afjeh

Abstract:

Near wake development of a wind turbine affects the aerodynamic loads on the tower and the wind turbine. Design considerations of both isolated wind turbines and wind farms must include unsteady wake flow conditions under which the turbines must operate. The consequent aerodynamic loads could lead to over design of wind turbines and adversely affect the cost of wind turbines and, in turn, the cost of energy produced by wind turbines. Reducing the weight of turbine rotors is particularly desirable since larger wind turbine rotors can be utilized without significantly increasing the cost of the supporting structure. Larger rotor diameters produce larger swept areas and consequently greater energy production from the wind thereby reducing the levelized cost of wind energy. To understand the development and structure of the near tower wake of a wind turbine, an experimental study was conducted to describe the flow field of the near wake for both upwind and downwind turbines. The study was conducted under controlled environment of a wind tunnel using a scaled model of a turbine. The NREL 5 MW reference wind turbine was used as a baseline design and was modified as necessary to design and build upwind and downwind scaled wind turbine models. This paper presents the results of the wind tunnel study using turbine models to quantify the near wake of upwind and downwind wind turbine configurations for various lengths of tower-to-turbine spacing. The variations of mean velocity and turbulence are measured using a computer-controlled, traversing hot wire probe. Additionally, smoke flow visualizations were conducted to qualitatively study the wake. The results show a more rapid dissipation of the near wake for an upwind configuration. The results can readily be incorporated into low fidelity system level turbine simulation tools to more accurately account for the wake on the aerodynamic loads of a upwind and downwind turbines.

Keywords: hot wire anemometry, near wake, upwind and downwind turbine. Hot wire anemometry, near wake, upwind and downwind turbine

Procedia PDF Downloads 667
976 Systematic Analysis of Immune Response to Biomaterial Surface Characteristics

Authors: Florian Billing, Soren Segan, Meike Jakobi, Elsa Arefaine, Aliki Jerch, Xin Xiong, Matthias Becker, Thomas Joos, Burkhard Schlosshauer, Ulrich Rothbauer, Nicole Schneiderhan-Marra, Hanna Hartmann, Christopher Shipp

Abstract:

The immune response plays a major role in implant biocompatibility, but an understanding of how to design biomaterials for specific immune responses is yet to be achieved. We aimed to better understand how changing certain material properties can drive immune responses. To this end, we tested immune response to experimental implant coatings that vary in specific characteristics. A layer-by-layer approach was employed to vary surface charge and wettability. Human-based in vitro models (THP-1 macrophages and primary peripheral blood mononuclear cells (PBMCS)) were used to assess immune responses using multiplex cytokine analysis, flow cytometry (CD molecule expression) and microscopy (cell morphology). We observed dramatic differences in immune response due to specific alterations in coating properties. For example altering the surface charge of coating A from anionic to cationic resulted in the substantial elevation of the pro-inflammatory molecules IL-1beta, IL-6, TNF-alpha and MIP-1beta, while the pro-wound healing factor VEGF was significantly down-regulated. We also observed changes in cell surface marker expression in relation to altered coating properties, such as CD16 on NK Cells and HLA-DR on monocytes. We furthermore observed changes in the morphology of THP-1 macrophages following cultivation on different coatings. A correlation between these morphological changes and the cytokine expression profile is ongoing. Targeted changes in biomaterial properties can produce vast differences in immune response. The properties of the coatings examined here may, therefore, be a method to direct specific biological responses in order to improve implant biocompatibility.

Keywords: biomaterials, coatings, immune system, implants

Procedia PDF Downloads 189
975 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures

Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar

Abstract:

Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.

Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses

Procedia PDF Downloads 528
974 A Relationship Model That Illustrates the Effect of Humorous Packaging Designs on Brand Awareness and Brand Attitude

Authors: Shu-Yuan Lin, Tung-Chin Chou

Abstract:

As products become increasingly similar in competitive markets, achieving product segmentation and differentiation through packaging design has become the primary task when designing retail product packaging. When the main focus of brand marketing is no longer the product itself, emotional marketing, such as the use of humorous packaging designs, may be employed to successfully promote the brand. Such efforts will capture the hearts of consumers, generate discussions, and allow the brand to leave a deep impression in consumers. In this study, snack packaging was used to develop a relationship model that illustrated the effect of humorous packaging designs on brand awareness and brand attitude. The study was divided into three stages: In the first stage, in-depth interviews and focus group interviews were conducted with experts to construct 24 indicators for assessing humorous packaging designs. In the second stage, survey questionnaires were distributed to a young consumer group; the results showed that the group had a high and low product involvement with chocolate and dried shredded squid, respectively. Humorous packaging designs were subsequently created for two snack types to produce a study sample of 12 different packaging. In the third stage, packaging designs were evaluated by obtaining scores for the consumers’ brand awareness, brand attitude, and perceived effects of the packaging designs. Finally, a relationship model was developed to show the effect of humorous packaging designs on brand awareness and brand attitude, confirming that two perceived effects of humorous packaging designs (i.e., ‘pleasant and emotionally healing’ and ‘connected to people’s daily life’) exhibited a significant and positive effect on ‘perceived brand value,’ where the effect of ‘pleasant and emotionally healing’ was the most significant. In addition, ‘pleasant and emotionally healing’ exerted a significant and positive effect on ‘brand purchase intention.’ Furthermore, packaging designs with humorous elements helped foster brand awareness.

Keywords: brand awareness, brand attitude, humorous design, packaging design

Procedia PDF Downloads 226
973 Antibacterial Property of ZnO Nanoparticles: Effect of Intrinsic Defects

Authors: Suresh Kumar Verma, Jugal Kishore Das, Ealisha Jha, Mrutyunjay Suar, SKS Parashar

Abstract:

In recent years nanoforms of inorganic metallic oxides has attracted a lot of interest due to their small size and significantly improved physical, chemical and biological properties compared to their molecular precursor. Some of the inorganic materials such as TiO2, ZnO, MgO, CaO, Al2O3 have been extensively used in biological applications. Zinc Oxide is a Wurtzite-type semiconductor and piezo-electric material exhibiting excellent electrical, optical and chemical properties with a band energy gap of 3.1-3.4 eV. Nanoforms of Zinc Oxide (ZnO) are increasingly recognised for their utility in biological application. The significant physical parameters such as surface area, particle size, surface charge and Zeta potential of Zinc Oxide (ZnO) nanoparticles makes it suitable for the uptake, persistance, biological, and chemical activities inside the living cells. The present study shows the effect of intrinsic defects of ZnO nanocrystals synthesized by high energy ball milling (HEBM) technique in their antibacterial activities. Bulk Zinc oxide purchased from market were ball milled for 7 h, 10 h, and 15 h respectively to produce nanosized Zinc Oxide. The structural and optical modification of such synthesized particles were determined by X-ray diffraction (XRD), Scanning Electron Microscopy and Electron Paramagnetic Resonance (EPR). The antibacterial property of synthesized Zinc Oxide nanoparticles was tested using well diffusion, minimum inhibitory Concentration, minimum bacteriocidal concentration, reactive oxygen species (ROS) estimation and membrane potential determination methods. In this study we observed that antibacterial activity of ZnO nanoparticles is because of the intrinsic defects that exist as a function of difference in size and milling time.

Keywords: high energy ball milling, ZnO nanoparticles, EPR, Antibacterial properties

Procedia PDF Downloads 428
972 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking

Authors: Sneha Kumari, Ravi Krishnan Elangovan

Abstract:

This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chip

Keywords: actin, cargo, IVMA, myosin motors and single-molecule system

Procedia PDF Downloads 87
971 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 316
970 Parameter Estimation of Additive Genetic and Unique Environment (AE) Model on Diabetes Mellitus Type 2 Using Bayesian Method

Authors: Andi Darmawan, Dewi Retno Sari Saputro, Purnami Widyaningsih

Abstract:

Diabetes mellitus (DM) is a chronic disease in human that occurred if pancreas cannot produce enough of insulin hormone or the body uses ineffectively insulin hormone which causes increasing level of glucose in the blood, or it was called hyperglycemia. In Indonesia, DM is a serious disease on health because it can cause blindness, kidney disease, diabetic feet (gangrene), and stroke. The type of DM criteria can also be divided based on the main causes; they are DM type 1, type 2, and gestational. Diabetes type 1 or previously known as insulin-independent diabetes is due to a lack of production of insulin hormone. Diabetes type 2 or previously known as non-insulin dependent diabetes is due to ineffective use of insulin while gestational diabetes is a hyperglycemia that found during pregnancy. The most one type commonly found in patient is DM type 2. The main factors of this disease are genetic (A) and life style (E). Those disease with 2 factors can be constructed with additive genetic and unique environment (AE) model. In this article was discussed parameter estimation of AE model using Bayesian method and the inheritance character simulation on parent-offspring. On the AE model, there are response variable, predictor variables, and parameters were capable of representing the number of population on research. The population can be measured through a taken random sample. The response and predictor variables can be determined by sample while the parameters are unknown, so it was required to estimate the parameters based on the sample. Estimation of AE model parameters was obtained based on a joint posterior distribution. The simulation was conducted to get the value of genetic variance and life style variance. The results of simulation are 0.3600 for genetic variance and 0.0899 for life style variance. Therefore, the variance of genetic factor in DM type 2 is greater than life style.

Keywords: AE model, Bayesian method, diabetes mellitus type 2, genetic, life style

Procedia PDF Downloads 284
969 Safety Assessment of Tuberous Roots of Boerhaavia diffusa Root Extract: Acute and Sub-Acute Toxicity Studies

Authors: Surender Singh, Yogendra Kumar Gupta

Abstract:

Boerhaavia diffusa (BD) Linn. belonging to family Nyctaginaceae is a herbaceous plant and known as ‘punarnava’ in Hindi, used as herbal medicine for pain relief and various ailments. It is widely used as a green leafy vegetable in many Asian and African countries. The objective of present study was to investigate potential adverse effects, if any, of standardized root extract of Boerhaavia diffusa in rats following subchronic administration. In acute toxicity study, no mortality was found at a dose of 2000mg/kg which indicates that oral LD50 of Boerhaavia diffusa root extract is more than 2000mg/kg. The chronic administration of Boerhaavia diffusa for 28 days at a dose of 1000mg/kg body weight did not produce any significant changes in hematological (RBC, WBC, platelets, hemoglobin, bleeding time, clotting time) and biochemical (triglycerides, blood glucose, high density lipoprotein, serum creatinine, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase) parameters of male and female rats as compared to normal control group. All the animals survived until the scheduled necropsy, and their physical and behavioral examinations did not reveal any treatment-related adverse effects. No pathological changes were observed in histological section of heart, kidney, liver, testis, ovaries and brain of Boerhaavia diffusa treated male and female rats as compared to normal control animals.These observations from oral acute toxicitystudy suggest that the extract is practically non-toxic. Thus, it can be inferred that the Boerhaavia diffusa root extract at levels up to 1000 mg/kg/day was found to be safe and does not cause adverse effects in rats. So, the no-observed effect level (NOAEL) of the extract was found to be 1000mg/kg/day.

Keywords: Boerhaavia diffusa, histology, toxicity, sub-acute

Procedia PDF Downloads 271
968 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing

Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup

Abstract:

In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.

Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety

Procedia PDF Downloads 77
967 Using the Weakest Precondition to Achieve Self-Stabilization in Critical Networks

Authors: Antonio Pizzarello, Oris Friesen

Abstract:

Networks, such as the electric power grid, must demonstrate exemplary performance and integrity. Integrity depends on the quality of both the system design model and the deployed software. Integrity of the deployed software is key, for both the original versions and the many that occur throughout numerous maintenance activity. Current software engineering technology and practice do not produce adequate integrity. Distributed systems utilize networks where each node is an independent computer system. The connections between them is realized via a network that is normally redundantly connected to guarantee the presence of a path between two nodes in the case of failure of some branch. Furthermore, at each node, there is software which may fail. Self-stabilizing protocols are usually present that recognize failure in the network and perform a repair action that will bring the node back to a correct state. These protocols first introduced by E. W. Dijkstra are currently present in almost all Ethernets. Super stabilization protocols capable of reacting to a change in the network topology due to the removal or addition of a branch in the network are less common but are theoretically defined and available. This paper describes how to use the Software Integrity Assessment (SIA) methodology to analyze self-stabilizing software. SIA is based on the UNITY formalism for parallel and distributed programming, which allows the analysis of code for verifying the progress property p leads-to q that describes the progress of all computations starting in a state satisfying p to a state satisfying q via the execution of one or more system modules. As opposed to demonstrably inadequate test and evaluation methods SIA allows the analysis and verification of any network self-stabilizing software as well as any other software that is designed to recover from failure without external intervention of maintenance personnel. The model to be analyzed is obtained by automatic translation of the system code to a transition system that is based on the use of the weakest precondition.

Keywords: network, power grid, self-stabilization, software integrity assessment, UNITY, weakest precondition

Procedia PDF Downloads 223
966 Sustainable Crop Mechanization among Small Scale Rural Farmers in Nigeria: The Hurdles

Authors: Charles Iledun Oyewole

Abstract:

The daunting challenge that the ‘man with the hoe’ is going to face in the coming decades will be complex and interwoven. With global population already above 7 billion people, it has been estimated that food (crop) production must more than double by 2050 to meet up with the world’s food requirements. Nigeria population is also expected to reach over 240 million people by 2050, at the current annual population growth of 2.61 per cent. The country’s farming population is estimated at over 65 per cent, but the country still depends on food importation to complement production. The small scale farmer, who depends on simple hand tools: hoes and cutlasses, remains the centre of agricultural production, accounting for 90 per cent of the total agricultural output and 80 per cent of the market flow. While the hoe may have been a tool for sustainable development at a time in human history, this role has been smothered by population growth, which has brought too many mouths to be fed (over 170 million), as well as many industries to fuel with raw materials. It may then be argued that the hoe is unfortunately not a tool for the coming challenges and that agricultural mechanization should be the focus. However, agriculture as an enterprise is a ‘complete wheel’ which does not work when broken, particularly, in respect to mechanization. Generally, mechanization will prompt increase production, where land is readily available; increase production, will require post-harvest handling mechanisms, crop processing and subsequent storage. An important aspect of this is readily available and favourable markets for such produce; fuel by good agricultural policies. A break in this wheel will lead to the process of mechanization crashing back to subsistence production, and probably reversal to the hoe. The focus of any agricultural policy should be to chart a course for sustainable mechanization that is environmentally friendly, that may ameliorate Nigeria’s food and raw material gaps. This is the focal point of this article.

Keywords: Crop production, Farmer, Hoes, Mechanization, Policy framework, Population, Growth, Rural areas

Procedia PDF Downloads 221
965 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer

Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma

Abstract:

Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.

Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material

Procedia PDF Downloads 71
964 Phytoremediation of Textile Wastewater Laden with 1,4-Dioxane Using Eichhornia crassipes: A Sustainable Development Approach

Authors: Hadeer Ibrahiem, Mahmoud Nasr, Masarrat M. M. Migahid, Mohamed A. Ghazy

Abstract:

The release of textile wastewater loaded with 1,4 dioxane into aquatic ecosystems has been associated with various human health risks and adverse environmental impacts. In parallel, phytoremediation has been recently employed to treat highly polluted wastewater because various plant species tend to produce certain enzymes as a defense mechanism against a toxic environment. To our best knowledge, this study is the first to investigate the ability of phytoremediation using Eichhornia crassipes for the removal of various pollutants, including 1,4 dioxane, from textile wastewater. A phytoremediation system composed of Eichhornia crassipes was acclimatized for 10 d, and then operated in four lab-scale hydroponic systems, viz., negative control, positive control, and two different 1,4 dioxane concentration (400 and 500 mg/L). After 11 d of operation, the phytoremediation system achieved removal efficiencies of 67.5±3.4%, 89.4±4.4%, 83.6±3.8% for 1,4 dioxane (at initial concentration 400 mg/L), chemical oxygen demand (COD) (at initial concentration 679 mg/L), and cumulative heavy metals, respectively. The removal of these pollutants was mainly supported by the phyto-sorption and phytodegradation mechanisms. The economic feasibility of this phytoremediation system was validated by estimating the capital and operating costs, requiring 4.6 USD for the treatment of 1 m3 textile wastewater. The study concluded that the phytoremediation process could be used as a practical and economical approach to treat textile wastewater laden with various organic and inorganic pollutants. Due to the observed pollution reduction and human health protection, the study objectives would fulfill the targets of SDG 3 “Good Health and Well-being” and SDG 6 “Clean Water and Sanitation”. Further studies are required to (i) investigate the ability of plant species to withstand higher concentrations of 1,4 dioxane for an extended operation time and (ii) understand the biochemical pathways for the degradation of 1,4 dioxane via the action of plant enzymes and the associated microbial community.

Keywords: 1, 4 dioxane concentrations, hydrophytes, Eichhornia crassipes, phytoremediation effectiveness, SDGs, textile industrial effluent

Procedia PDF Downloads 101
963 Greenhouse Gas Mitigation by Promoting Renewable Energy in Algeria

Authors: F. Sahnoune

Abstract:

The study focuses on the analysis of the Algerian greenhouse gase emissions. In Algeria, as in other countries, the issue of greenhouse gas (GHG) emissions and climate change is the subject of great concern. As climate change is a global problem and taking into consideration the principle of 'common but differentiated responsibilities' as mentioned in the Rio Declaration in 1992, Algeria has initiated a broad program of voluntary reduction of GHG emissions and climate change adaptation. Thus although the contribution of Algeria on global warming is minimal (less than 0.5% of global GHG emissions), the country is, because its geographical position and climatic characteristics, very vulnerable and should integrate mitigation and adaptation into its development policy. Even a small rise in temperature would lead to various socio-economic problems that hinder the development of the country. The models predict that rainfall events are less frequent but more intense, while droughts are more common and longer. The decrease of water resources, declining agricultural yields, encroaching desert, the challenge of planning and the energy consumption for air conditioning are only the initial impacts to which Algeria must find answers supportable economically and socially. The study examines to what extent, Algeria can significantly reduce greenhouse gas emissions. We present an analysis of the current situation, trends in CO2 emissions, footprint of Algeria, national climate plan and especially what will be the impact on GHG emissions of the new strategy for promoting renewable energy adopted in 2011 and expects to produce 40% of electricity needs from solar energy. The results show that in 2012 the GHG emissions totaled 153 MT CO2 eq and growing at a rate of over 3%. The Introduction of solar energy in electricity production and implementation of energy efficiency allow to reduce by 2030 more than 300 MT CO2 eq. Avenues of consideration relating to a combination of policies and improved technologies that are able to reduce CO2 emissions and mitigate the impacts caused by climate change in the medium term will also be presented.

Keywords: climate change, co2 mitigation, greenhouse gases, renewable energy, sustainable development

Procedia PDF Downloads 286
962 Challenges in Implementing the Inculcation of Noble Values During Teaching by Primary Schools Teachers in Peninsular Malaysia

Authors: Mohamad Khairi Haji Othman, Mohd Zailani Mohd Yusoff, Rozalina Khalid

Abstract:

The inculcation of noble values in teaching and learning is very important, especially to build students with good characters and values. Therefore, the purpose of this research is to identify the challenges of implementing the inculcation of noble values in teaching in primary schools. This study was conducted at four North Zone Peninsular Malaysia schools. This study was used a qualitative approach in the form of case studies. The qualitative approach aims at gaining meaning and a deep understanding of the phenomenon studied from the perspectives of the study participants and not intended to make the generalization. The sample in this study consists of eight teachers who teach in four types of schools that have been chosen purposively. The method of data collection is through semi-structured interviews used in this study. The comparative method is continuously used in this study to analyze the primary data collected. The study found that the main challenges faced by teachers were students' problems and class control so that teachers felt difficult to the inculcation of noble values in teaching. In addition, the language challenge is difficult for students to understand. Similarly, peers are also challenging because students are more easily influenced by friends rather than listening to teachers' instructions. The last challenge was the influence of technology and mass media electronic more widespread. The findings suggest that teachers need to innovate in order to assist the school in inculcating religious and moral education towards the students. The school through guidance and counseling teachers can also plan some activities that are appropriate to the student's present condition. Through this study, teachers and the school should work together to develop the values of students in line with the needs of the National Education Philosophy that wishes to produce intelligent, emotional, spiritual, intellectual and social human capital.

Keywords: challenges, implementation, inculcation, noble values

Procedia PDF Downloads 184
961 The Effect of Visual Access to Greenspace and Urban Space on a False Memory Learning Task

Authors: Bryony Pound

Abstract:

This study investigated how views of green or urban space affect learning performance. It provides evidence of the value of visual access to greenspace in work and learning environments, and builds on the extensive research into the cognitive and learning-related benefits of access to green and natural spaces, particularly in learning environments. It demonstrates that benefits of visual access to natural spaces whilst learning can produce statistically significant faster responses than those facing urban views after only 5 minutes. The primary hypothesis of this research was that a greenspace view would improve short-term learning. Participants were randomly assigned to either a view of parkland or of urban buildings from the same room. They completed a psychological test of two stages. The first stage consisted of a presentation of words from eight different categories (four manmade and four natural). Following this a 2.5 minute break was given; participants were not prompted to look out of the window, but all were observed doing so. The second stage of the test involved a word recognition/false memory test of three types. Type 1 was presented words from each category; Type 2 was non-presented words from those same categories; and Type 3 was non-presented words from different categories. Participants were asked to respond with whether they thought they had seen the words before or not. Accuracy of responses and reaction times were recorded. The key finding was that reaction times for Type 2 words (highest difficulty) were significantly different between urban and green view conditions. Those with an urban view had slower reaction times for these words, so a view of greenspace resulted in better information retrieval for word and false memory recognition. Importantly, this difference was found after only 5 minutes of exposure to either view, during winter, and with a sample size of only 26. Greenspace views improve performance in a learning task. This provides a case for better visual access to greenspace in work and learning environments.

Keywords: benefits, greenspace, learning, restoration

Procedia PDF Downloads 127
960 The Association of Slope Failure and Lineament Density along the Ranau-Tambunan Road, Sabah, Malaysia

Authors: Norbert Simon, Rodeano Roslee, Abdul Ghani Rafek, Goh Thian Lai, Azimah Hussein, Lee Khai Ern

Abstract:

The 54 km stretch of Ranau-Tambunan (RTM) road in Sabah is subjected to slope failures almost every year. This study is focusing on identifying section of roads that are susceptible to failure based on temporal landslide density and lineament density analyses. In addition to the analyses, the rock slopes in several sections of the road were assessed using the geological strength index (GSI) technique. The analysis involved 148 landslides that were obtained in 1978, 1994, 2009 and 2011. The landslides were digitized as points and the point density was calculated based on every 1km2 of the road. The lineaments of the area was interpreted from Landsat 7 15m panchromatic band. The lineament density was later calculated based on every 1km2 of the area using similar technique with the slope failure density calculation. The landslide and lineament densities were classified into three different classes that indicate the level of susceptibility (low, moderate, high). Subsequently, the two density maps were overlap to produce the final susceptibility map. The combination of both high susceptibility classes from these maps signifies the high potential of slope failure in those locations in the future. The final susceptibility map indicates that there are 22 sections of the road that are highly susceptible. Seven rock slopes were assessed along the RTM road using the GSI technique. It was found from the assessment that rock slopes along this road are highly fractured, weathered and can be classified into fair to poor categories. The poor condition of the rock slope can be attributed to the high lineament density that presence in the study area. Six of the rock slopes are located in the high susceptibility zones. A detailed investigation on the 22 high susceptibility sections of the RTM road should be conducted due to their higher susceptibility to failure, in order to prevent untoward incident to road users in the future.

Keywords: GSI, landslide, landslide density, landslide susceptibility, lineament density

Procedia PDF Downloads 398
959 Analysis of Chemical Composition of Raw Milk in Some Farms Animals in El Khoms, Libya

Authors: Dukali Abujnah

Abstract:

This study was undertaken to knowledge the chemical composition of some farm animals (cows ) by using ultrasonic milk analyzer. This method was used first time in our country in the field of milk hygiene to determine and comparison the composition percent of raw milk for farm animals as attempt to protect the health of consumers 240 raw milk samples for each species of animals included in this study for two different season of year first (Novembe 2014 - January 2015) , second from (May – Novembe2015) .The chemical analysis. In this way, a range of building suitable to put in the Libyan market product structures, and milk, for use as a new product or exposure to treatment such as pasteurized milk and long-life may be wider study project..Controls have been implemented in operating in Libya, companies which are part of the business created by the Libyan state. It was created only after the companies that made many of the studies and research carried out on areas of Libya which it was possible to intervene. Although troops spent in recent years, companies have not yet found their balance and milk production has not yet come to those set forth in the action plans, due to problems of various types that will be discussed in this study. We believe that these data have been taken in four years if analyzed properly, can provide more accurate information to farmers in their companies want to take dairy cattle breeding. The total bacterial count was 76 and 38 cfu/ml for locally produced and imported UHT milk respectively. Coliforms were negative for all examined locally produce and imported samples. E. coli were not isolated from any of the examined UHT samples. Aerobic spore-formers count mean count was 49 and 27 cfu/ml for both examined samples respectively. Obtained results show that most of the locally produced UHT milk does not satisfy the suggested Libyan Standards for UHT milk for fat% as well as total bacterial count/ml. Economical and public health importance of the obtained results were discussed, and control measures for improving the quality of UHT locally made milk were also discussed.

Keywords: locally, UHT milks, farms animals, raw milk analysis milk

Procedia PDF Downloads 285
958 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 83
957 Systems Engineering and Project Management Process Modeling in the Aeronautics Context: Case Study of SMEs

Authors: S. Lemoussu, J. C. Chaudemar, R. A. Vingerhoeds

Abstract:

The aeronautics sector is currently living an unprecedented growth largely due to innovative projects. In several cases, such innovative developments are being carried out by Small and Medium sized-Enterprises (SMEs). For instance, in Europe, a handful of SMEs are leading projects like airships, large civil drones, or flying cars. These SMEs have all limited resources, must make strategic decisions, take considerable financial risks and in the same time must take into account the constraints of safety, cost, time and performance as any commercial organization in this industry. Moreover, today, no international regulations fully exist for the development and certification of this kind of projects. The absence of such a precise and sufficiently detailed regulatory framework requires a very close contact with regulatory instances. But, SMEs do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses additional challenges for those SMEs that have system integration responsibilities and that must provide all the necessary means of compliance to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The final objective of our research is thus to provide a methodological framework supporting SMEs in their development taking into account recent innovation and institutional rules of the sector. We aim to provide a contribution to the problematic by developing a specific Model-Based Systems Engineering (MBSE) approach. Airspace regulation, aeronautics standards and international norms on systems engineering are taken on board to be formalized in a set of models. This paper presents the on-going research project combining Systems Engineering and Project Management process modeling and taking into account the metamodeling problematic.

Keywords: aeronautics, certification, process modeling, project management, SME, systems engineering

Procedia PDF Downloads 165
956 DNA Polymorphism Studies of β-Lactoglobulin Gene in Native Saudi Goat Breeds

Authors: Amr A. El Hanafy, Muhammad I. Qureshi, Jamal Sabir, Mohamed Mutawakil, Mohamed M. Ahmed, Hassan El Ashmaoui, Hassan Ramadan, Mohamed Abou-Alsoud, Mahmoud Abdel Sadek

Abstract:

β-Lactoglobulin (β-LG) is the dominant non-casein whey protein found in bovine milk and of most ruminants. The amino acid sequence of β-LG along with its 3-dimensional structure illustrates linkage with the lipocalin superfamily. Preliminary studies in goats indicated that milk yield can be influenced by polymorphism in genes coding for whey proteins. The aim of this study is to identify and evaluate the incidence of functional polymorphisms in the exonic and intronic portions of β-LG gene in native Saudi goat breeds (Ardi, Habsi, and Harri). Blood samples were collected from 300 animals (100 for each breed) and genomic DNA was extracted using QIAamp DNA extraction Kit. A fragment of the β-LG gene from exon 7 to 3’ flanking region was amplified with pairs of specific primers. Subsequent digestion with Sac II restriction endonuclease revealed two alleles (A and B) and three different banding patterns or genotypes i.e. AA, AB and BB. The statistical analysis showed that β-LG AA genotype had higher milk yield than β-LG AB and β-LG BB genotypes. Nucleotide sequencing of the selected β-LG fragments was done and submitted to GenBank NCBI (Accession No. KJ544248, KJ588275, KJ588276, KJ783455, KJ783456 and KJ874959). Two already established SNPs in exon 7 (+4601 and +4603) and one fresh SNP in the 3’ UTR region were detected in the β-LG fragments with designated AA genotype. The polymorphisms in exon 7 did not produce any amino acid change. Phylogenetic analysis on the basis of nucleotide sequences of native Saudi goats indicated evolutional similarity with the GenBank reference sequences of goat, Bubalus bubalis and Bos taurus.

Keywords: β-Lactoglobulin, Saudi goats, PCR-RFLP, functional polymorphism, nucleotide sequencing, phylogenetic analysis

Procedia PDF Downloads 501
955 Application of Digital Technologies as Tools for Transformative Agricultural Science Instructional Delivery in Secondary Schools

Authors: Cajethan U. Ugwuoke

Abstract:

Agriculture is taught in secondary schools to develop skills in students which will empower them to contribute to national economic development. Unfortunately, our educational system emphasizes the application of conventional teaching methods in delivering instructions, which fails to produce students competent enough to carry out agricultural production. This study was therefore aimed at examining the application of digital technologies as tools for transformative instructional delivery. Four specific purposes, research questions and hypotheses guided the study. The study adopted a descriptive survey research design where 80 subjects representing 64 teachers of agriculture and 16 principals in the Udenu local government area of Enugu State, Nigeria, participated in the study. A structured questionnaire was used to collect data. The assumption of normality was ascertained by subjecting the data collected to a normality test. Data collected were later subjected to mean, Pearson product-moment correlation, ANOVA and t-test to answer the research questions and test the hypotheses at a 5% significant level. The result shows that the application of digital technologies helps to reduce learners’ boredom (3.52.75), improves learners’ performance (3.63.51), and is used as a visual aid for learners (3.56.61), among others. There was a positive, strong and significant relationship between the application of digital technologies and effective instructional delivery (+.895, p=.001<.05, F=17.73), competency of teachers to the application of digital technologies and effective instructional delivery (+998, p=.001<0.5, F=16263.45), and frequency of the application of digital technologies and effective instructional delivery (+.999, p=.001<.05, F=31436.14). There was no evidence of autocorrelation and multicollinearity in the regression models between the application of digital technologies and effective instructional delivery (2.03, Tolerance=1.00, VIF=1.00), competency of teachers in the application of digital technologies and effective instructional delivery (2.38, Tolerance=1.00, VIF=1.00) and frequency of the application of digital technologies and effective instructional delivery (2.00, Tolerance=1.00, VIF=1.00). Digital technologies should be therefore applied in teaching to facilitate effective instructional delivery in agriculture.

Keywords: agricultural science, digital technologies, instructional delivery, learning

Procedia PDF Downloads 72
954 Kinetics of Sugar Losses in Hot Water Blanching of Water Yam (Dioscorea alata)

Authors: Ayobami Solomon Popoola

Abstract:

Yam is majorly a carbohydrate food grown in most parts of the world. It could be boiled, fried or roasted for consumption in a variety of ways. Blanching is an established heat pre-treatment given to fruits and vegetables prior to further processing such as dehydration, canning, freezing etc. Losses of soluble solids during blanching has been a great problem because a reasonable quantity of the water-soluble nutrients are inevitably leached into the blanching water. Without blanching, the high residual levels of reducing sugars after extended storage produce a dark, bitter-tasting product because of the Maillard reactions of reducing sugars at frying temperature. Measurement and prediction of such losses are necessary for economic efficiency in production and to establish the level of effluent treatment of the blanching water. This paper aims at resolving this problem by investigating the effects of cube size and temperature on the rate of diffusional losses of reducing sugars and total sugars during hot water blanching of water-yam. The study was carried out using four temperature levels (65, 70, 80 and 90 °C) and two cubes sizes (0.02 m³ and 0.03 m³) at 4 times intervals (5, 10, 15 and 20 mins) respectively. Obtained data were fitted into Fick’s non-steady equation from which diffusion coefficients (Da) were obtained. The Da values were subsequently fitted into Arrhenius plot to obtain activation energies (Ea-values) for diffusional losses. The diffusion co-efficient were independent of cube size and time but highly temperature dependent. The diffusion coefficients were ≥ 1.0 ×10⁻⁹ m²s⁻¹ for reducing sugars and ≥ 5.0 × 10⁻⁹ m²s⁻¹ for total sugars. The Ea values ranged between 68.2 to 73.9 KJmol⁻¹ and 7.2 to 14.30 KJmol⁻¹ for reducing sugars and total sugars losses respectively. Predictive equations for estimating amount of reducing sugars and total sugars with blanching time of water-yam at various temperatures were also presented. The equation could be valuable in process design and optimization. However, amount of other soluble solids that might have leached into the water along with reducing and total sugars during blanching was not investigated in the study.

Keywords: blanching, kinetics, sugar losses, water yam

Procedia PDF Downloads 165
953 Utilization of Silicon for Sustainable Rice Yield Improvement in Acid Sulfate Soil

Authors: Bunjirtluk Jintaridth

Abstract:

Utilization of silicon for sustainable rice cultivation in acid sulfate soils was studied for 2 years. The study was conducted on Rungsit soils in Amphoe Tanyaburi, Pathumtani Province. The objectives of this study were to assess the effect of high quality organic fertilizer in combination with silicon and chemical fertilizer on rice yield, chemical soil properties after using soil amendments, and also to assess the economic return. A Randomized Complete Block Design (RCBD) with 10 treatments and 3 replications were employed. The treatments were as follows: 1) control 2) chemical fertilizer (recommended by Land Development Department, LDD 3) silicon 312 kg/ha 4) high quality organic fertilizer at 1875 kg/ha (the recommendation rate by LDD) 5) silicon 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 6) silicon at the 312 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 7) silicon 156 kg/ha in combination with chemical fertilizer 8) silicon at the 312 kg/ha in combination with chemical fertilizer 9) silicon 156 kg/ha in combination with ½ chemical fertilizer rate, and 10) silicon 312 kg/ha in combination with ½ chemical fertilizer rate. The results of 2 years indicated the treatment tended to increase soil pH (from 5.1 to 4.7-5.5), percentage of organic matter (from 2.43 to 2.54 - 2.94%); avail. P (from 7.5 to 7-21 mg kg-1 P; ext. K (from 616 to 451-572 mg kg-1 K), ext Ca (from 1962 to 2042.3-4339.7 mg kg-1 Ca); ext Mg (from 1586 to 808.7-900 mg kg-1 Mg); but decrease the ext. Al (from 2.56 to 0.89-2.54 cmol kg-1 Al. Two years average of rice yield, the highest yield was obtained from silicon 156 kg/ha application in combination with high quality organic fertilizer 300 kg/rai (3770 kg/ha), or using silicon at the 312 kg/ha combination with high quality organic fertilizer 300 kg/rai. (3,750 kg/ha). It was noted that chemical fertilizer application with 156 and 312 kg/ha silicon gave only 3,260 และ 3,133 kg/ha, respectively. On the other hand, half rate of chemical fertilizer with 156 and 312 kg/ha with silicon gave the yield of 2,934 และ 3,218 kg/ha, respectively. While high quality organic fertilizer only can produce 3,318 kg/ha as compare to rice yield of 2,812 kg/ha from control. It was noted that the highest economic return was obtained from chemical fertilizer treated plots (886 dollars/ha). Silicon application at the rate of 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha gave the economic return of 846 dollars/ha, while 312 kg/ha of silicon with chemical fertilizer gave the lowest economic return (697 dollars/ha).

Keywords: rice, high quality organic fertilizer, acid sulfate soil, silicon

Procedia PDF Downloads 164
952 Effect of Agricultural Extension Services on Technical Efficiency of Smallholder Cassava Farmers in Ghana: A Stochastic Meta-Frontier Analysis

Authors: Arnold Missiame

Abstract:

In Ghana, rural dwellers who depend primarily on agriculture for their livelihood constitute about 60% of the country’s population. This shows the critical role and potentials of the agricultural sector in helping to achieve Ghana’s vision 2030. With the current threat of climate change and advancements in technology, agricultural extension is not just about technology transfer and improvements in productivity, but it is also about improving the managerial and technical skills of farmers. In Ghana, the government of Ghana as well as other players in the sector like; non-governmental organizations, NGOs, local and international funding agencies, for decades now, have made capacity-building-investments in smallholder farmers by way of extension services delivery. This study sought to compare the technical efficiency of farmers who have access to agricultural extension and farmers who do not in Ghana. The study employed the stochastic meta-frontier model to analyze household survey data comprising 300 smallholder cassava farmers from the Fanteakwa district of Ghana. The farmers were selected through a two-stage sampling technique where 5 communities were purposively selected in the first stage and then 60 smallholder cassava farmers were randomly selected from each of the 5 communities. Semi-structured questionnaires were used to collect data on farmers’ socioeconomic and farm-level characteristics. The results showed that farmers who have access to agricultural extensions services have higher technical efficiencies (TE) and produce much closer to their meta-production frontiers (higher technology gap ratios (TGR) than farmers who do not have access to such extension services. Furthermore, experience in cassava cultivation and formal education significantly improves the technical efficiencies of farmers. The study recommends that the mode and scope of agricultural extension service delivery in the country should be enhanced to ensure that smallholder farmers have easy access to extension agents.

Keywords: agricultural extension, Ghana, smallholder farmers, stochastic meta-frontier model, technical efficiency

Procedia PDF Downloads 108
951 Multi-Functional Metal Oxides as Gas Sensors, Photo-Catalysts and Bactericides

Authors: Koyar Rane

Abstract:

Nano- to submicron size particles of narrow particle size distribution of semi-conducting TiO₂, ZnO, NiO, CuO, Fe₂O₃ have been synthesized by novel hydrazine method and tested for their gas sensing, photocatalytic and bactericidal activities and the behavior found to be enhanced when the oxides in the thin film forms, that obtained in a specially built spray pyrolysis reactor. Hydrazine method is novel in the sense, say, the UV absorption edge of the white pigment grade wide band gap (~3.2eV) TiO₂ and ZnO shifted to the visible region turning into yellowish particles, indicating modification occurring the band structure. The absorption in the visible region makes these oxides visible light sensitive photocatalysis in degrading pollutants, especially the organic dyes which otherwise increase the chemical oxygen demand of the drinking water, enabling the process feasible not under the harsh energetic UV radiation regime. The electromagnetic radiations on irradiation produce electron-hole pairs Semiconductor + hν → e⁻ + h⁺ The electron-hole pairs thus produced form Reactive Oxygen Species, ROS, on the surface of the semiconductors, O₂(adsorbed)+e⁻ → O₂• - superoxide ion OH-(surface)+h⁺ →•OH - Hydroxyl radical The ROS attack the organic material and micro-organisms. Our antibacterial studies indicate the metal oxides control the Biological Oxygen Demand (BOD) of drinking water which had beyond the safe level normally found in the municipal supply. Metal oxides in the thin film form show overall enhanced properties and the films are reusable. The results of the photodegradation and antibactericidal studies are discussed. Gas sensing studies too have been done to find the versatility of the multifunctional metal oxides.

Keywords: hydrazine method, visible light sensitive, photo-degradation of dyes, water/airborne pollutant

Procedia PDF Downloads 163
950 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania

Authors: Walter M. Millanzi, Stephen M. Kibusi

Abstract:

Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.

Keywords: facilitation, metacognition, motivation, self-directed

Procedia PDF Downloads 188
949 Reactivation of Hydrated Cement and Recycled Concrete Powder by Thermal Treatment for Partial Replacement of Virgin Cement

Authors: Gustave Semugaza, Anne Zora Gierth, Tommy Mielke, Marianela Escobar Castillo, Nat Doru C. Lupascu

Abstract:

The generation of Construction and Demolition Waste (CDW) has globally increased enormously due to the enhanced need in construction, renovation, and demolition of construction structures. Several studies investigated the use of CDW materials in the production of new concrete and indicated the lower mechanical properties of the resulting concrete. Many other researchers considered the possibility of using the Hydrated Cement Powder (HCP) to replace a part of Ordinary Portland Cement (OPC), but only very few investigated the use of Recycled Concrete Powder (RCP) from CDW. The partial replacement of OPC for making new concrete intends to decrease the CO₂ emissions associated with OPC production. However, the RCP and HCP need treatment to produce the new concrete of required mechanical properties. The thermal treatment method has proven to improve HCP properties before their use. Previous research has stated that for using HCP in concrete, the optimum results are achievable by heating HCP between 400°C and 800°C. The optimum heating temperature depends on the type of cement used to make the Hydrated Cement Specimens (HCS), the crushing and heating method of HCP, and the curing method of the Rehydrated Cement Specimens (RCS). This research assessed the quality of recycled materials by using different techniques such as X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetry (TG), Scanning electron Microscopy (SEM), and X-ray Fluorescence (XRF). These recycled materials were thermally pretreated at different temperatures from 200°C to 1000°C. Additionally, the research investigated to what extent the thermally treated recycled cement could partially replace the OPC and if the new concrete produced would achieve the required mechanical properties. The mechanical properties were evaluated on the RCS, obtained by mixing the Dehydrated Cement Powder and Recycled Powder (DCP and DRP) with water (w/c = 0.6 and w/c = 0.45). The research used the compressive testing machine for compressive strength testing, and the three-point bending test was used to assess the flexural strength.

Keywords: hydrated cement powder, dehydrated cement powder, recycled concrete powder, thermal treatment, reactivation, mechanical performance

Procedia PDF Downloads 153
948 Waste Heat Recovery System

Authors: A. Ramkumar, Anvesh Sagar, Preetham P. Karkera

Abstract:

Globalization in the modern era is dependent on the International logistics, the economic and reliable means is provided by the ocean going merchant vessel. The propulsion system which drives this massive vessels has gone through leaps and bounds of evolution. Most reliable system of propulsion adopted by the majority of vessels is by marine diesel engine. Since the first oil crisis of 1973, there is demand in increment of efficiency of main engine. Due to increase in the oil prices ship-operators explores for reduction in the operational cost of ship. And newly adopted IMO’s EEDI & SEEMP rules calls for the effective measures taken in this regard. The main engine of a ship suffers a lot of thermal losses, they mainly occur due to exhaust gas waste heat, radiation and cooling. So to increase the overall efficiency of system, we have to look into the solution to harnessing this waste energy of main engine to increase the fuel economy. During the course of research, engine manufacturers have developed many waste heat recovery systems. In our paper we see about additional options to harness this waste heat. The exhaust gas of engine coming out from the turbocharger still holds enough heat to go to the exhaust gas economiser to produce steam. This heat of exhaust gas can be used to heat a liquid of less boiling point after coming out from the turbocharger. The vapour of this secondary liquid can be superheated by a bypass exhaust or exhaust of turbocharger. This vapour can be utilized to rotate the turbine which is coupled to a generator. And the electric power for ship service can be produced with proper configuration of system. This can be included in PMS of ship. In this paper we seek to concentrate on power generation with use of exhaust gas. Thereby taking out the load on the main generator and increasing the efficiency of the system. This will help us to comply with the new rules of IMO. Our method helps to develop clean energy.

Keywords: EEDI–energy efficiency design index, IMO–international maritime organization PMS-power management system, SEEMP–ship energy efficiency management plan

Procedia PDF Downloads 381