Search results for: artificial intelligence in semiconductor manufacturing
3023 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 1633022 A Framework for Auditing Multilevel Models Using Explainability Methods
Authors: Debarati Bhaumik, Diptish Dey
Abstract:
Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics
Procedia PDF Downloads 943021 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 3943020 The Impact of Formulate and Implementation Strategy for an Organization to Better Financial Consequences in Malaysian Private Hospital
Authors: Naser Zouri
Abstract:
Purpose: Measures of formulate and implementation strategy shows amount of product rate-market based strategic management category such as courtesy, competence, and compliance to reach the high loyalty of financial ecosystem. Despite, it solves the market place error intention to fair trade organization. Finding: Finding shows the ability of executives’ level of management to motivate and better decision-making to solve the treatments in business organization. However, it made ideal level of each interposition policy for a hypothetical household. Methodology/design. Style of questionnaire about the data collection was selected to survey of both pilot test and real research. Also, divide of questionnaire and using of Free Scale Semiconductor`s between the finance employee was famous of this instrument. Respondent`s nominated basic on non-probability sampling such as convenience sampling to answer the questionnaire. The way of realization costs to performed the questionnaire divide among the respondent`s approximately was suitable as a spend the expenditure to reach the answer but very difficult to collect data from hospital. However, items of research survey was formed of implement strategy, environment, supply chain, employee from impact of implementation strategy on reach to better financial consequences and also formulate strategy, comprehensiveness strategic design, organization performance from impression on formulate strategy and financial consequences. Practical Implication: Dynamic capability approach of formulate and implement strategy focuses on the firm-specific processes through which firms integrate, build, or reconfigure resources valuable for making a theoretical contribution. Originality/ value of research: Going beyond the current discussion, we show that case studies have the potential to extend and refine theory. We present new light on how dynamic capabilities can benefit from case study research by discovering the qualifications that shape the development of capabilities and determining the boundary conditions of the dynamic capabilities approach. Limitation of the study :Present study also relies on survey of methodology for data collection and the response perhaps connection by financial employee was difficult to responds the question because of limitation work place.Keywords: financial ecosystem, loyalty, Malaysian market error, dynamic capability approach, rate-market, optimization intelligence strategy, courtesy, competence, compliance
Procedia PDF Downloads 3043019 Modular Data and Calculation Framework for a Technology-based Mapping of the Manufacturing Process According to the Value Stream Management Approach
Authors: Tim Wollert, Fabian Behrendt
Abstract:
Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.Keywords: lean management 4.0, value stream management (VSM) 4.0, dynamic value stream mapping, enterprise resource planning (ERP)
Procedia PDF Downloads 1503018 A Method of Manufacturing Low Cost Utility Robots and Vehicles
Authors: Gregory E. Ofili
Abstract:
Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.Keywords: automation, robotics, utility robot, small-hold farm, robot operating system
Procedia PDF Downloads 703017 Implementing 3D Printed Structures as the Newest Textile Form
Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın
Abstract:
From the oldest production methods with yarns used to weave, knit, braid and knot to the newest production methods with fibres used to stitch, bond or structures of innovative technologies, laminates, nanoparticles, composites or 3D printing systems, textile industry advanced through materials, processes and context mostly within the last five decades. The creative momentum of fabric like 3D printed structures have come to the point of transforming as for the newest form of textile applications. Moreover, pioneering studies on the applications of 3D Printing Technology and Additive Manufacturing have been focusing on fashion and apparel sector from the last two decades beginning with fashion designers. After the advent of chain-mail like structures and flexible micro or meso structures created by SLS rapid manufacturing a more textile-like behavior is achieved. Thus, the primary aim of this paper is to discuss the most important properties of traditional fabrics that are to be expected of future fabrics. For this reason, this study deals primarily with the physical properties like softness, hand, flexibility, drapability and wearability of 3D Printed structures necessary to identify the possible ways in which it can be used instead of contemporary textile structures, namely knitted and woven fabrics. The aim of this study is to compare the physical properties of 3D printed fabrics regarding different rapid manufacturing methods (FDM and SLS). The implemented method was Material Driven Design (MDD), which comprise the use of innovative materials according to the production techniques such as 3D printing system. As a result, advanced textile processes and materials enable to the creation of new types of fabric structures and rapid solutions in the field of textiles and 3D fabrics on the other hand, are to be used in this regard.Keywords: 3D printing technology, FDM, SLS, textile structure
Procedia PDF Downloads 3393016 Hybrid-Nanoengineering™: A New Platform for Nanomedicine
Authors: Mewa Singh
Abstract:
Nanomedicine, a fusion of nanotechnology and medicine, is an emerging technology ideally suited to the targeted therapies. Nanoparticles overcome the low selectivity of anti-cancer drugs toward the tumor as compared to normal tissue and hence result-in less severe side-effects. Our new technology, HYBRID-NANOENGINEERING™, uses a new molecule (MR007) in the creation of nanoparticles that not only helps in nanonizing the medicine but also provides synergy to the medicine. The simplified manufacturing process will result in reduced manufacturing costs. Treatment is made more convenient because hybrid nanomedicines can be produced in oral, injectable or transdermal formulations. The manufacturing process uses no protein, oil or detergents. The particle size is below 180 nm with a narrow distribution of size. Importantly, these properties confer great stability of the structure. The formulation does not aggregate in plasma and is stable over a wide range of pH. The final hybrid formulation is stable for at least 18 months as a powder. More than 97 drugs, including paclitaxel, docetaxel, tamoxifen, doxorubicinm prednisone, and artemisinin have been nanonized in water soluble formulations. Preclinical studies on cell cultures of tumors show promising results. Our HYBRID-NANOENGINEERING™ platform enables the design and development of hybrid nano-pharmaceuticals that combine efficacy with tolerability, giving patients hope for both extended overall survival and improved quality of life. This study would discuss or present this new discovery of HYBRID-NANOENGINEERING™ which targets drug delivery, synergistic, and potentiating effects, and barriers of drug delivery and advanced drug delivery systems.Keywords: nano-medicine, nano-particles, drug delivery system, pharmaceuticals
Procedia PDF Downloads 4863015 Outcome of Induction of Labour by Cervical Ripening with an Osmotic Dilator in a District General Hospital
Authors: A. Wahid Uddin
Abstract:
Osmotic dilator for cervical ripening bypasses the initial hormonal exposure necessary for a routine method of induction. The study was a clinical intervention with an osmotic dilator followed by prospective observation. The aim was to calculate the percentage of women who had successful cervical ripening using modified BISHOP score as evidenced by artificial rupture of membrane. The study also estimated the delivery interval following a single administration of osmotic dilators. Randomly selected patients booked for induction of labour accepting the intervention were included in the study. The study population comprised singleton term pregnancy, cephalic presentation, intact membranes with a modified BISHOP score of less than 6. Initial sample recruited was 30, but 6 patients left the study and the study was concluded on 24 patients. The data were collected in a pre-designed questionnaire and analysis were expressed in percentages along with using mean value for continuous variables. In 70 % of cases, artificial rupture of the membrane was possible and the mean time from insertion of the osmotic dilator to the delivery interval was 30 hours. The study concluded that an osmotic dilator could be a suitable alternative for hormone-based induction of labour.Keywords: dilator, induction, labour, osmotic
Procedia PDF Downloads 1383014 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice
Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha
Abstract:
Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability
Procedia PDF Downloads 1173013 Identification of Rice Quality Using Gas Sensors and Neural Networks
Authors: Moh Hanif Mubarok, Muhammad Rivai
Abstract:
The public's response to quality rice is very high. So it is necessary to set minimum standards in checking the quality of rice. Most rice quality measurements still use manual methods, which are prone to errors due to limited human vision and the subjectivity of testers. So, a gas detection system can be a solution that has high effectiveness and subjectivity for solving current problems. The use of gas sensors in testing rice quality must pay attention to several parameters. The parameters measured in this research are the percentage of rice water content, gas concentration, output voltage, and measurement time. Therefore, this research was carried out to identify carbon dioxide (CO₂), nitrous oxide (N₂O) and methane (CH₄) gases in rice quality using a series of gas sensors using the Neural Network method.Keywords: carbon dioxide, dinitrogen oxide, methane, semiconductor gas sensor, neural network
Procedia PDF Downloads 483012 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1963011 The Effect of Outsourcing Strategies on Performance of Manufacturing Firms: A Study of Selected Firms in Kaduna State, Nigeria
Authors: Hyacinth Dawam Dakwang
Abstract:
Outsourcing is growing at a rapid rate throughout the world because organizations view it as a way to achieve strategic goals, improve customer satisfaction and provide other efficiency and effectiveness improvements. With the increasing globalization, outsourcing has become an important business approach, and a competitive advantage may be gained as products or services are produced more effectively and efficiently by outside suppliers. Several organizations have embarked on outsourcing strategies over the years but many still suffer in terms of their goal achievement; some have experienced low productivity both in terms of quality and quantity, their profitability has not been stable, and their capacities are grossly underutilized. This research work determined the effect of outsourcing strategies on the performance of manufacturing firms in Kaduna State. The study adopted descriptive research design. The questionnaire for the study was subjected to test- re-test reliability assessment. The data collected was analysed using the Statistical Package for Social Sciences (SPSS 20). Results were presented on frequency distribution tables and graphs. The findings reveal that firms that outsourcing strategy reduce average cost, increased productivity and profitability improved quality, improves customer satisfaction and save time for core activities. This study therefore recommended that firms should embark more on outsourcing strategies to attain the benefits of cost savings/restructuring which results in better customer service at profit; also, outsourcing strategy should come from the workers themselves. Also, organisations should ensure that, the costs of managing the outsourcing process is not greater than the benefits generated by the outsourcing program.Keywords: Manufacturing Firms, Outsourcing , Performance, Strategies
Procedia PDF Downloads 1503010 Multi-Objective Optimization of Assembly Manufacturing Factory Setups
Authors: Andreas Lind, Aitor Iriondo Pascual, Dan Hogberg, Lars Hanson
Abstract:
Factory setup lifecycles are most often described and prepared in CAD environments; the preparation is based on experience and inputs from several cross-disciplinary processes. Early in the factory setup preparation, a so-called block layout is created. The intention is to describe a high-level view of the intended factory setup and to claim area reservations and allocations. Factory areas are then blocked, i.e., targeted to be used for specific intended resources and processes, later redefined with detailed factory setup layouts. Each detailed layout is based on the block layout and inputs from cross-disciplinary preparation processes, such as manufacturing sequence, productivity, workers’ workplace requirements, and resource setup preparation. However, this activity is often not carried out with all variables considered simultaneously, which might entail a risk of sub-optimizing the detailed layout based on manual decisions. Therefore, this work aims to realize a digital method for assembly manufacturing layout planning where productivity, area utilization, and ergonomics can be considered simultaneously in a cross-disciplinary manner. The purpose of the digital method is to support engineers in finding optimized designs of detailed layouts for assembly manufacturing factories, thereby facilitating better decisions regarding setups of future factories. Input datasets are company-specific descriptions of required dimensions for specific area reservations, such as defined dimensions of a worker’s workplace, material façades, aisles, and the sequence to realize the product assembly manufacturing process. To test and iteratively develop the digital method, a demonstrator has been developed with an adaptation of existing software that simulates and proposes optimized designs of detailed layouts. Since the method is to consider productivity, ergonomics, area utilization, and constraints from the automatically generated block layout, a multi-objective optimization approach is utilized. In the demonstrator, the input data are sent to the simulation software industrial path solutions (IPS). Based on the input and Lua scripts, the IPS software generates a block layout in compliance with the company’s defined dimensions of area reservations. Communication is then established between the IPS and the software EPP (Ergonomics in Productivity Platform), including intended resource descriptions, assembly manufacturing process, and manikin (digital human) resources. Using multi-objective optimization approaches, the EPP software then calculates layout proposals that are sent iteratively and simulated and rendered in IPS, following the rules and regulations defined in the block layout as well as productivity and ergonomics constraints and objectives. The software demonstrator is promising. The software can handle several parameters to optimize the detailed layout simultaneously and can put forward several proposals. It can optimize multiple parameters or weight the parameters to fine-tune the optimal result of the detailed layout. The intention of the demonstrator is to make the preparation between cross-disciplinary silos transparent and achieve a common preparation of the assembly manufacturing factory setup, thereby facilitating better decisions.Keywords: factory setup, multi-objective, optimization, simulation
Procedia PDF Downloads 1513009 Parametric Screening and Design Refinement of Ceiling Fan Blades
Authors: Shamraiz Ahmad, Riaz Ahmad, Adnan Maqsood
Abstract:
This paper describes the application of 2k-design of experiment in order to screen the geometric parameters and experimental refinement of ceiling fan blades. The ratio of the air delivery to the power consumed is commonly known as service value (SV) in ceiling fan designer’s community. Service value was considered as the response for 56 inch ceiling fan and four geometric parameters (bend position at root, bend position at tip, bent angle at root and bent angle at tip) of blade were analyzed. With two levels, the 4-design parameters along with their eleven interactions were studied and design of experiment was employed for experimental arrangement. Blade manufacturing and testing were done in a medium scale enterprise. The objective was achieved and service value of ceiling fan was increased by 10.4 % without increasing the cost of production and manufacturing system. Experiments were designed and results were analyzed using Minitab® 16 software package.Keywords: parametric screening, 2k-design of experiment, ceiling fan, service value, performance improvement
Procedia PDF Downloads 5643008 3D Medical Printing the Key Component in Future of Medical Applications
Authors: Zahra Asgharpour, Eric Renteria, Sebastian De Boodt
Abstract:
There is a growing trend towards personalization of medical care, as evidenced by the emphasis on outcomes based medicine, the latest developments in CT and MR imaging and personalized treatment in a variety of surgical disciplines. 3D Printing has been introduced and applied in the medical field since 2000. The first applications were in the field of dental implants and custom prosthetics. According to recent publications, 3D printing in the medical field has been used in a wide range of applications which can be organized into several categories including implants, prosthetics, anatomical models and tissue bioprinting. Some of these categories are still in their infancy stage of the concept of proof while others are in application phase such as the design and manufacturing of customized implants and prosthesis. The approach of 3D printing in this category has been successfully used in the health care sector to make both standard and complex implants within a reasonable amount of time. In this study, some of the clinical applications of 3D printing in design and manufacturing of a patient-specific hip implant would be explained. In cases where patients have complex bone geometries or are undergoing a complex revision on hip replacement, the traditional surgical methods are not efficient, and hence these patients require patient-specific approaches. There are major advantages in using this new technology for medical applications, however, in order to get this technology widely accepted in medical device industry, there is a need for gaining more acceptance from the medical device regulatory offices. This is a challenge that is moving onward and will help the technology find its way at the end as an accepted manufacturing method for medical device industry in an international scale. The discussion will conclude with some examples describing the future directions of 3D Medical Printing.Keywords: CT/MRI, image processing, 3D printing, medical devices, patient specific implants
Procedia PDF Downloads 2983007 3D Writing on Photosensitive Glass-Ceramics
Authors: C. Busuioc, S. Jinga, E. Pavel
Abstract:
Optical lithography is a key technique in the development of sub-5 nm patterns for the semiconductor industry. We have already reported that the best results obtained with respect to direct laser writing process on active media, such as glass-ceramics, are achieved only when the energy of the laser radiation is absorbed in discrete quantities. Further, we need to clarify the role of active centers concentration in silver nanocrystals natural generation, as well as in fluorescent rare-earth nanostructures formation. As a consequence, samples with different compositions were prepared. SEM, AFM, TEM and STEM investigations were employed in order to demonstrate that few nm width lines can be written on fluorescent photosensitive glass-ceramics, these being efficient absorbers. Moreover, we believe that the experimental data will lead to the best choice in terms of active centers amount, laser power and glass-ceramic matrix.Keywords: glass-ceramics, 3D laser writing, optical disks, data storage
Procedia PDF Downloads 2983006 Relationship between Structure of Some Nitroaromatic Pollutants and Their Degradation Kinetic Parameters in UV-VIS/TIO2 System
Authors: I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin, I. Cristea
Abstract:
Hazardous organic compounds like nitroaromatics are frequently found in chemical and petroleum industries discharged effluents. Due to their bio-refractory character and high chemical stability cannot be efficiently removed by classical biological or physical-chemical treatment processes. In the past decades, semiconductor photocatalysis has been frequently applied for the advanced degradation of toxic pollutants. Among various semiconductors titania was a widely studied photocatalyst, due to its chemical inertness, low cost, photostability and nontoxicity. In order to improve optical absorption and photocatalytic activity of TiO2 many attempts have been made, one feasible approach consists of doping oxide semiconductor with metal. The degradation of dinitrobenzene (DNB) and dinitrotoluene (DNT) from aqueous solution under UVA-VIS irradiation using heavy metal (0.5% Fe, 1%Co, 1%Ni ) doped titania was investigated. The photodegradation experiments were carried out using a Heraeus laboratory scale UV-VIS reactor equipped with a medium-pressure mercury lamp which emits in the range: 320-500 nm. Solutions with (0.34-3.14) x 10-4 M pollutant content were photo-oxidized in the following working conditions: pH = 5-9; photocatalyst dose = 200 mg/L; irradiation time = 30 – 240 minutes. Prior to irradiation, the photocatalyst powder was added to the samples, and solutions were bubbled with air (50 L/hour), in the dark, for 30 min. Dopant type, pH, structure and initial pollutant concentration influence on the degradation efficiency were evaluated in order to set up the optimal working conditions which assure substrate advanced degradation. The kinetics of nitroaromatics degradation and organic nitrogen mineralization was assessed and pseudo-first order rate constants were calculated. Fe doped photocatalyst with lowest metal content (0.5 wt.%) showed a considerable better behaviour in respect to pollutant degradation than Co and Ni (1wt.%) doped titania catalysts. For the same working conditions, degradation efficiency was higher for DNT than DNB in accordance with their calculated adsobance constants (Kad), taking into account that degradation process occurs on catalyst surface following a Langmuir-Hinshalwood model. The presence of methyl group in the structure of DNT allows its degradation by oxidative and reductive pathways, while DNB is converted only by reductive route, which also explain the highest DNT degradation efficiency. For highest pollutant concentration tested (3 x 10-4 M), optimum working conditions (0.5 wt.% Fe doped –TiO2 loading of 200 mg/L, pH=7 and 240 min. irradiation time) assures advanced nitroaromatics degradation (ηDNB=89%, ηDNT=94%) and organic nitrogen mineralization (ηDNB=44%, ηDNT=47%).Keywords: hazardous organic compounds, irradiation, nitroaromatics, photocatalysis
Procedia PDF Downloads 3173005 ZVZCT PWM Boost DC-DC Converter
Authors: Ismail Aksoy, Haci Bodur, Nihan Altintaş
Abstract:
This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.Keywords: active snubber cell, boost converter, zero current switching, zero voltage switching
Procedia PDF Downloads 10263004 Intelligent Scaffolding Diagnostic Tutoring Systems to Enhance Students’ Academic Reading Skills
Authors: A.Chayaporn Kaoropthai, B. Onjaree Natakuatoong, C. Nagul Cooharojananone
Abstract:
The first year is usually the most critical year for university students. Generally, a considerable number of first-year students worldwide drop out of university every year. One of the major reasons for dropping out is failing. Although they are supposed to have mastered sufficient English proficiency upon completing their high school education, most first-year students are still novices in academic reading. Due to their lack of experience in academic reading, first-year students need significant support from teachers to help develop their academic reading skills. Reading strategies training is thus a necessity and plays a crucial role in classroom instruction. However, individual differences in both students, as well as teachers, are the main factors contributing to the failure in not responding to each individual student’s needs. For this reason, reading strategies training inevitably needs a diagnosis of students’ academic reading skills levels before, during, and after learning, in order to respond to their different needs. To further support reading strategies training, scaffolding is proposed to facilitate students in understanding and practicing using reading strategies under the teachers’ guidance. The use of the Intelligent Tutoring Systems (ITSs) as a tool for diagnosing students’ reading problems will be very beneficial to both students and their teachers. The ITSs consist of four major modules: the Expert module, the Student module, the Diagnostic module, and the User Interface module. The application of Artificial Intelligence (AI) enables the systems to perform diagnosis consistently and appropriately for each individual student. Thus, it is essential to develop the Intelligent Scaffolding Diagnostic Reading Strategies Tutoring Systems to enhance first-year students’ academic reading skills. The systems proposed will contribute to resolving classroom reading strategies training problems, developing students’ academic reading skills, and facilitating teachers.Keywords: academic reading, intelligent tutoring systems, scaffolding, university students
Procedia PDF Downloads 3903003 Teachers' Perceptions of Their Principals' Interpersonal Emotionally Intelligent Behaviours Affecting Their Job Satisfaction
Authors: Prakash Singh
Abstract:
For schools to be desirable places in which to work, it is necessary for principals to recognise their teachers’ emotions, and be sensitive to their needs. This necessitates that principals are capable to correctly identify their emotionally intelligent behaviours (EIBs) they need to use in order to be successful leaders. They also need to have knowledge of their emotional intelligence and be able to identify the factors and situations that evoke emotion at an interpersonal level. If a principal is able to do this, then the control and understanding of emotions and behaviours of oneself and others could improve vastly. This study focuses on the interpersonal EIBS of principals affecting the job satisfaction of teachers. The correlation coefficients in this quantitative study strongly indicate that there is a statistical significance between the respondents’ level of job satisfaction, the rating of their principals’ EIBs and how they believe their principals’ EIBs will affect their sense of job satisfaction. It can be concluded from the data obtained in this study that there is a significant correlation between the sense of job satisfaction of teachers and their principals’ interpersonal EIBs. This means that the more satisfied a teacher is at school, the more appropriate and meaningful a principal’s EIBs will be. Conversely, the more dissatisfied a teacher is at school the less appropriate and less meaningful a principal’s interpersonal EIBs will be. This implies that the leaders’ EIBs can be construed as one of the major factors affecting the job satisfaction of employees.Keywords: emotional intelligence, teachers' emotions, teachers' job satisfaction, principals' emotionally intelligent behaviours
Procedia PDF Downloads 4723002 Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device
Authors: Tomotaka Aoki, Isao Tomita
Abstract:
We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation.Keywords: electrical conduction, electron interference, frequency spectrum, on-off ratio
Procedia PDF Downloads 1213001 Analysis of the Cutting Force with Ultrasonic Assisted Manufacturing of Steel (S235JR)
Authors: Philipp Zopf, Franz Haas
Abstract:
Manufacturing of very hard and refractory materials like ceramics, glass or carbide poses particular challenges on tools and machines. The company Sauer GmbH developed especially for this application area ultrasonic tool holders working in a frequency range from 15 to 60 kHz and superimpose the common tool movement in the vertical axis. This technique causes a structural weakening in the contact area and facilitates the machining. The possibility of the force reduction for these special materials especially in drilling of carbide with diamond tools up to 30 percent made the authors try to expand the application range of this method. To make the results evaluable, the authors decide to start with existing processes in which the positive influence of the ultrasonic assistance is proven to understand the mechanism. The comparison of a grinding process the Institute use to machine materials mentioned in the beginning and steel could not be more different. In the first case, the authors use tools with geometrically undefined edges. In the second case, the edges are geometrically defined. To get valid results of the tests, the authors decide to investigate two manufacturing methods, drilling and milling. The main target of the investigation is to reduce the cutting force measured with a force measurement platform underneath the workpiece. Concerning to the direction of the ultrasonic assistance, the authors expect lower cutting forces and longer endurance of the tool in the drilling process. To verify the frequencies and the amplitudes an FFT-analysis is performed. It shows the increasing damping depending on the infeed rate of the tool. The reducing of amplitude of the cutting force comes along.Keywords: drilling, machining, milling, ultrasonic
Procedia PDF Downloads 2743000 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.Keywords: soft jar test, jar test, water treatment plant process, artificial neural network
Procedia PDF Downloads 1662999 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace
Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali
Abstract:
The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.Keywords: induction furnaces, amorphous silica, carbon microstructure, silicon
Procedia PDF Downloads 4042998 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2632997 Optimizing University Administration in a Globalized World: Leveraging AI and ICT for Enhanced Governance and Sustainability in Higher Education
Authors: Ikechukwu Ogeze Ukeje, Chinyere Ori Elom, Chukwudum Collins Umoke
Abstract:
This study explores the challenges in the integration of Artificial Intelligence (AI) and Information and Communication Technology (ICT) practices in enhancing governance and sustainable solution modeling in higher education, focusing on Alex Ekwueme Federal University Ndufu-Alike (AE-FUNAI), Nigeria. In the context of a developing country like Nigeria, leveraging AI and ICT tools presents a unique opportunity to improve teaching, learning, administrative processes, and governance. The research aims to evaluate how AI and ICT technologies can contribute to sustainable educational practices, enhance decision-making processes, and improve engagement among key stakeholders: students, lecturers, and administrative staff. Students are involved to provide insights into their interactions with AI and ICT tools, particularly in learning and participation in governance. Lecturers’ perspectives will offer a view into how these technologies influence teaching, research, and curriculum development. Administrative staff will provide a crucial understanding of how AI and ICT tools can streamline operations, support data-driven governance, and enhance institutional efficiency. This study will use a mixed-method approach to collect both qualitative and quantitative data. The finding of this study is geared towards shaping the future of education in Nigeria and beyond by developing an Inclusive AI-governance Integration Framework (I-AIGiF) for enhanced performance in the system. Examining the roles of these stakeholder groups, this research could guide the development of policies for more effective AI and ICT integration, leading to sustainable educational innovation and governance.Keywords: university administration, AI, higher education governance, education sustainability, ICT challenges
Procedia PDF Downloads 202996 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network
Authors: Gajaanuja Megalathan, Banuka Athuraliya
Abstract:
Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.Keywords: arima model, ANN, crime prediction, data analysis
Procedia PDF Downloads 1312995 A Greener Approach towards the Synthesis of an Antimalarial Drug Lumefantrine
Authors: Luphumlo Ncanywa, Paul Watts
Abstract:
Malaria is a disease that kills approximately one million people annually. Children and pregnant women in sub-Saharan Africa lost their lives due to malaria. Malaria continues to be one of the major causes of death, especially in poor countries in Africa. Decrease the burden of malaria and save lives is very essential. There is a major concern about malaria parasites being able to develop resistance towards antimalarial drugs. People are still dying due to lack of medicine affordability in less well-off countries in the world. If more people could receive treatment by reducing the cost of drugs, the number of deaths in Africa could be massively reduced. There is a shortage of pharmaceutical manufacturing capability within many of the countries in Africa. However one has to question how Africa would actually manufacture drugs, active pharmaceutical ingredients or medicines developed within these research programs. It is quite likely that such manufacturing would be outsourced overseas, hence increasing the cost of production and potentially limiting the full benefit of the original research. As a result the last few years has seen major interest in developing more effective and cheaper technology for manufacturing generic pharmaceutical products. Micro-reactor technology (MRT) is an emerging technique that enables those working in research and development to rapidly screen reactions utilizing continuous flow, leading to the identification of reaction conditions that are suitable for usage at a production level. This emerging technique will be used to develop antimalarial drugs. It is this system flexibility that has the potential to reduce both the time was taken and risk associated with transferring reaction methodology from research to production. Using an approach referred to as scale-out or numbering up, a reaction is first optimized within the laboratory using a single micro-reactor, and in order to increase production volume, the number of reactors employed is simply increased. The overall aim of this research project is to develop and optimize synthetic process of antimalarial drugs in the continuous processing. This will provide a step change in pharmaceutical manufacturing technology that will increase the availability and affordability of antimalarial drugs on a worldwide scale, with a particular emphasis on Africa in the first instance. The research will determine the best chemistry and technology to define the lowest cost manufacturing route to pharmaceutical products. We are currently developing a method to synthesize Lumefantrine in continuous flow using batch process as bench mark. Lumefantrine is a dichlorobenzylidine derivative effective for the treatment of various types of malaria. Lumefantrine is an antimalarial drug used with artemether for the treatment of uncomplicated malaria. The results obtained when synthesizing Lumefantrine in a batch process are transferred into a continuous flow process in order to develop an even better and reproducible process. Therefore, development of an appropriate synthetic route for Lumefantrine is significant in pharmaceutical industry. Consequently, if better (and cheaper) manufacturing routes to antimalarial drugs could be developed and implemented where needed, it is far more likely to enable antimalarial drugs to be available to those in need.Keywords: antimalarial, flow, lumefantrine, synthesis
Procedia PDF Downloads 2032994 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model
Authors: Catherine Maware, Olufemi Adetunji
Abstract:
The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance
Procedia PDF Downloads 485