Search results for: action based method
39154 Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes
Authors: Zahra Khan
Abstract:
Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications.Keywords: gelatin, hydrogels, flexible materials, SERS
Procedia PDF Downloads 11239153 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 12639152 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study
Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier
Abstract:
Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.Keywords: eating disorders, risk factors, physical activity, machine learning
Procedia PDF Downloads 8339151 Edge Detection in Low Contrast Images
Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey
Abstract:
The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial
Procedia PDF Downloads 63639150 Rational Memory Therapy: The Counselling Technique to Control Psychological and Psychosomatic Illnesses
Authors: Sachin Deshmukh
Abstract:
Mind and body synchronization occurs through memory and sensation production. Sensations are the guiding language of subconscious mind for conscious mind to take a proper action. Mind-mechanism is based upon memories collected so far since intrauterine life. There are three universal triggers for memory creation; they are persons, situations and objects. Memory is created as sensations experienced by special senses. Based upon experiencing comfort or discomfort, the triggers are categorized as safe or unsafe triggers. A memory comprises of ‘safe or unsafe feeling for triggers, and actions taken for that feeling’. Memories for triggers are created slowly, thoughtfully and consciously by the conscious mind, and archived in the subconscious mind for future references. Later on, similar triggers can come in contact with the individual. Subconscious mind uses these stored feelings to decide whether these triggers are safe or unsafe. It produces comfort or discomfort sensations as emotions accordingly and reacts in the same way as has been recorded in memory. Speed of sensing and processing the triggers, and reacting by subconscious mind is that of the speed of bioelectricity. Hence, formula for human emotions has been designed in this paper as follows: Emotion (Stress or Peace) = Trigger (Person or Situation or object) x Mass of feelings (stressful or peaceful) associated with the Trigger x Speed of Light². We also establish modern medical scientific facts about relationship between reflex activity and memory. This research further develops the ‘Rational Memory Therapy’ focusing on therapeutic feelings conversion techniques, for stress prevention and management.Keywords: memory, sensations, feelings, emotions, rational memory therapy
Procedia PDF Downloads 25539149 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries
Authors: Fatma Abdedayem
Abstract:
We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW
Procedia PDF Downloads 29739148 Destination Decision Model for Cruising Taxis Based on Embedding Model
Authors: Kazuki Kamada, Haruka Yamashita
Abstract:
In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.Keywords: taxi industry, decision making, recommendation system, embedding model
Procedia PDF Downloads 13839147 Optimization of Surface Roughness by Taguchi’s Method for Turning Process
Authors: Ashish Ankus Yerunkar, Ravi Terkar
Abstract:
Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer
Procedia PDF Downloads 36739146 Predicting Child Attachment Style Based on Positive and Safe Parenting Components and Mediating Maternal Attachment Style in Children With ADHD
Authors: Alireza Monzavi Chaleshtari, Maryam Aliakbari
Abstract:
Objective: The aim of this study was to investigate the prediction of child attachment style based on a positive and safe combination parenting method mediated by maternal attachment styles in children with attention deficit hyperactivity disorder. Method: The design of the present study was descriptive of correlation and structural equations and applied in terms of purpose. The population of this study includes all children with attention deficit hyperactivity disorder living in Chaharmahal and Bakhtiari province and their mothers. The sample size of the above study includes 165children with attention deficit hyperactivity disorder in Chaharmahal and Bakhtiari province with their mothers, who were selected by purposive sampling method based on the inclusion criteria. The obtained data were analyzed in two sections of descriptive and inferential statistics. In the descriptive statistics section, statistical indices of mean, standard deviation, frequency distribution table and graph were used. In the inferential section, according to the nature of the hypotheses and objectives of the research, the data were analyzed using Pearson correlation coefficient tests, Bootstrap test and structural equation model. findings:The results of structural equation modeling showed that the research models fit and showed a positive and safe combination parenting style mediated by the mother attachment style has an indirect effect on the child attachment style. Also, a positive and safe combined parenting style has a direct relationship with child attachment style, and She has a mother attachment style. Conclusion:The results and findings of the present study show that there is a significant relationship between positive and safe combination parenting methods and attachment styles of children with attention deficit hyperactivity disorder with maternal attachment style mediation. Therefore, it can be expected that parents using a positive and safe combination232 parenting method can effectively lead to secure attachment in children with attention deficit hyperactivity disorder.Keywords: child attachment style, positive and safe parenting, maternal attachment style, ADHD
Procedia PDF Downloads 6639145 Heterogeneity, Asymmetry and Extreme Risk Perception; Dynamic Evolution Detection From Implied Risk Neutral Density
Authors: Abderrahmen Aloulou, Younes Boujelbene
Abstract:
The current paper displays a new method of extracting information content from options prices by eliminating biases caused by daily variation of contract maturity. Based on Kernel regression tool, this non-parametric technique serves to obtain a spectrum of interpolated options with constant maturity horizons from negotiated optional contracts on the S&P TSX 60 index. This method makes it plausible to compare daily risk neutral densities from which extracting time continuous indicators allows the detection traders attitudes’ evolution, such as, belief homogeneity, asymmetry and extreme Risk Perception. Our findings indicate that the applied method contribute to develop effective trading strategies and to adjust monetary policies through controlling trader’s reactions to economic and monetary news.Keywords: risk neutral densities, kernel, constant maturity horizons, homogeneity, asymmetry and extreme risk perception
Procedia PDF Downloads 48539144 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method
Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain
Abstract:
The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR
Procedia PDF Downloads 31839143 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction
Authors: Alsaidi M. Altaher, Mohd Tahir Ismail
Abstract:
Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.Keywords: boundary correction, median filter, simulation, wavelet thresholding
Procedia PDF Downloads 42839142 Asymmetrical Informative Estimation for Macroeconomic Model: Special Case in the Tourism Sector of Thailand
Authors: Chukiat Chaiboonsri, Satawat Wannapan
Abstract:
This paper used an asymmetric informative concept to apply in the macroeconomic model estimation of the tourism sector in Thailand. The variables used to statistically analyze are Thailand international and domestic tourism revenues, the expenditures of foreign and domestic tourists, service investments by private sectors, service investments by the government of Thailand, Thailand service imports and exports, and net service income transfers. All of data is a time-series index which was observed between 2002 and 2015. Empirically, the tourism multiplier and accelerator were estimated by two statistical approaches. The first was the result of the Generalized Method of Moments model (GMM) based on the assumption which the tourism market in Thailand had perfect information (Symmetrical data). The second was the result of the Maximum Entropy Bootstrapping approach (MEboot) based on the process that attempted to deal with imperfect information and reduced uncertainty in data observations (Asymmetrical data). In addition, the tourism leakages were investigated by a simple model based on the injections and leakages concept. The empirical findings represented the parameters computed from the MEboot approach which is different from the GMM method. However, both of the MEboot estimation and GMM model suggests that Thailand’s tourism sectors are in a period capable of stimulating the economy.Keywords: TThailand tourism, Maximum Entropy Bootstrapping approach, macroeconomic model, asymmetric information
Procedia PDF Downloads 29439141 A Quality Improvement Approach for Reducing Stigma and Discrimination against Young Key Populations in the Delivery of Sexual Reproductive Health and Rights Services
Authors: Atucungwiire Rwebiita
Abstract:
Introduction: In Uganda, provision of adolescent sexual reproductive health and rights (SRHR) services for key population is still hindered by negative attitudes, stigma and discrimination (S&D) at both the community and facility levels. To address this barrier, Integrated Community Based Initiatives (ICOBI) with support from SIDA is currently implementing a quality improvement (QI) innovative approach for strengthening the capacity of key population (KP) peer leaders and health workers to deliver friendly SRHR services without S&D. Methods: Our innovative approach involves continuous mentorship and coaching of 8 QI teams at 8 health facilities and their catchment areas. Each of the 8 teams (comprised of 5 health workers and 5 KP peer leaders) are facilitated twice a month by two QI Mentors in a 2-hour mentorship session over a period of 4 months. The QI mentors were provided a 2-weeks training on QI approaches for reducing S&D against young key populations in the delivery of SRHR Services. The mentorship sessions are guided by a manual where teams base to analyse root causes of S&D and develop key performance indicators (KPIs) in the 1st and 2nd second sessions respectively. The teams then develop action plans in the 3rd session and review implementation progress on KPIs at the end of subsequent sessions. The KPIs capture information on the attitude of health workers and peer leaders and the general service delivery setting as well as clients’ experience. A dashboard is developed to routinely track the KPIs for S&D across all the supported health facilities and catchment areas. After 4 months, QI teams share documented QI best practices and tested change packages on S&D in a learning and exchange session involving all the teams. Findings: The implementation of this approach is showing positive results. So far, QI teams have already identified the root causes of S&D against key populations including: poor information among health workers, fear of a perceived risk of infection, perceived links between HIV and disreputable behaviour. Others are perceptions that HIV & STIs are divine punishment, sex work and homosexuality are against religion and cultural values. They have also noted the perception that MSM are mentally sick and a danger to everyone. Eight QI teams have developed action plans to address the root causes of S&D. Conclusion: This approach is promising, offers a novel and scalable means to implement stigma-reduction interventions in facility and community settings.Keywords: key populations, sexual reproductive health and rights, stigma and discrimination , quality improvement approach
Procedia PDF Downloads 17339140 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis
Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model
Procedia PDF Downloads 36839139 Implementation-Oriented Discussion for Historical and Cultural Villages’ Conservation Planning
Authors: Xing Zhang
Abstract:
Since the State Council of China issued the Regulations on the Conservation of Historical Cultural Towns and Villages in 2008, formulation of conservation planning has been carried out in national, provincial and municipal historical and cultural villages for protection needs, which provides a legal basis for inheritance of historical culture and protection of historical resources. Although the quantity and content of the conservation planning are continually increasing, the implementation and application are still ambiguous. To solve the aforementioned problems, this paper explores methods to enhance the implementation of conservation planning from the perspective of planning formulation. Specifically, the technical framework of "overall objectives planning - sub-objectives planning - zoning guidelines - implementation by stages" is proposed to implement the planning objectives in different classifications and stages. Then combined with details of the Qiqiao historical and cultural village conservation planning project in Ningbo, five sub-objectives are set, which are implemented through the village zoning guidelines. At the same time, the key points and specific projects in the near-term, medium-term and long-term work are clarified, and the spatial planning is transformed into the action plan with time scale. The proposed framework and method provide a reference for the implementation and management of the conservation planning of historical and cultural villages in the future.Keywords: conservation planning, planning by stages, planning implementation, zoning guidelines
Procedia PDF Downloads 24039138 Permanent Magnet Machine Can Be a Vibration Sensor for Itself
Authors: M. Barański
Abstract:
The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle
Procedia PDF Downloads 36639137 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile
Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali
Abstract:
Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile
Procedia PDF Downloads 45439136 Evaluation of the Role of Theatre for Development in Combating Climate Change in South Africa
Authors: Isaiah Phillip Smith, Sam Erevbenagie Usadolo, Pamela Theresa Tancsik
Abstract:
This paper is part of ongoing doctoral research that examines the role of Theatre for Development (TfD) in addressing climate change in the Mosuthu community in Reservoir Hills, Durban, South Africa. The context of the research underscores the pressing challenges facing South Africa, including drought, water shortages, deterioration of land, and civil unrest that require innovative approaches to the mitigation of climate change. TfD, described as a dialogical form of theatre that allows communities to express and contribute to development, emerges as a strategic medium for engaging communities in the process. The research problem focused on the unexamined potential of TfD in promoting community involvement and critical awareness of climate change. The study objectives included assessing the community's understanding of climate change, exploring TfD's potential as a participatory tool, examining its role in community mobilization, and developing recommendations for its effective implementation. A review of relevant literature and preliminary investigations in the research community indicates that TfD is an effective medium for promoting societal transformation and engaging marginalized communities. Through culturally resonant narratives, TfD can instill a deeper understanding of environmental challenges, fostering empathy and motivating behavioural changes. By integrating community voices and cultural elements, TfD serves as a powerful catalyst for promoting climate change awareness and inspiring collective action within the South African context. This research contributes to the global discourse on innovative approaches to climate change awareness and action.Keywords: TfD, climate change, community involvement, societal transformation, culture
Procedia PDF Downloads 5739135 Preparation and Characterization of Cellulose Based Antimicrobial Food Packaging Materials
Authors: Memet Vezir Kahraman, Ferhat Sen
Abstract:
This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier Transform Infrared, carbon and proton Nuclear Magnetic Resonance spectroscopy. Its nitrogen content was determined by the Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by scanning electron microscope. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.Keywords: antimicrobial food packaging, cationic hydroxyethyl cellulose, polyelectrolyte, sodium alginate
Procedia PDF Downloads 16039134 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 6839133 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation
Procedia PDF Downloads 30039132 Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari
Abstract:
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry
Procedia PDF Downloads 56239131 Facility Layout Improvement: Based on Safety and Health at Work and Standards of Food Production Facility
Authors: Asifa Fitriani, Galih Prakoso
Abstract:
This study aims to improve the design layout of a Micro, Small and Medium Enterprises (SMEs) to minimize material handling and redesigning the layout of production facilities based on the safety and health and standards of food production facilities. Problems layout in the one of chip making industry mushrooms in Indonesia is cross movement between work stations, work accidents, and the standard of facilities that do not conform with the standards of the food industry. Improvement layout design using CORELAP and 5S method to give recommendation and implementation of occupational health and safety standards of food production facilities. From the analysis, improved layout using CORELAP provide a smaller displacement distance is 155.84 meters from the initial displacement distance of 335.9 meters, and providing a shorter processing time than the original 112.726 seconds to 102.831 seconds. 5S method also has recommended the completion of occupational health and safety issues as well as the standard means of food production by changing the working environment better.Keywords: Layout Design, Corelap, 5S
Procedia PDF Downloads 53339130 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties
Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski
Abstract:
The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide
Procedia PDF Downloads 20039129 The Analysis of a Learning Media Prototype as Web Learning in Distance Education
Authors: Yudi Efendi, Hasanuddin
Abstract:
Web-based learning program is the complementary of Printed Teaching Material (BMP) that serves and helps students clarify the parts that require additional explanation or illustration. This research attempts to analyze a prototype of web-based learning program. A prototype of web-based learning program which is interactive is completed with exercises and formative tests. Using qualitative descriptive method, the research presents the analysis from the content expert and media expert. Besides, the interviews from tutors of Political and Social Sciences will be presented. The research also analyzes questionnaires from the students of English and literature program in Jakarta. The questionnaire deals with the display of the content, the audio video, the usability, and the navigation. In the long run, it is expected that the program could be recommended to use by the university as an ideal program.Keywords: web learning, prototype, content expert, media expert
Procedia PDF Downloads 24739128 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text
Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert
Abstract:
This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies
Procedia PDF Downloads 16839127 Application of a Modified Crank-Nicolson Method in Metallurgy
Authors: Kobamelo Mashaba
Abstract:
The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry.Keywords: delayed partial differential equation, modified Crank-Nicolson Method, molten slag, heat recovery, parabolic equation
Procedia PDF Downloads 10139126 Chemometric-Based Voltammetric Method for Analysis of Vitamins and Heavy Metals in Honey Samples
Authors: Marwa A. A. Ragab, Amira F. El-Yazbi, Amr El-Hawiet
Abstract:
The analysis of heavy metals in honey samples is crucial. When found in honey, they denote environmental pollution. Some of these heavy metals as lead either present at low or high concentrations are considered to be toxic. Other heavy metals, for example, copper and zinc, if present at low concentrations, they considered safe even vital minerals. On the contrary, if they present at high concentrations, they are toxic. Their voltammetric determination in honey represents a challenge due to the presence of other electro-active components as vitamins, which may overlap with the peaks of the metal, hindering their accurate and precise determination. The simultaneous analysis of some vitamins: nicotinic acid (B3) and riboflavin (B2), and heavy metals: lead, cadmium, and zinc, in honey samples, was addressed. The analysis was done in 0.1 M Potassium Chloride (KCl) using a hanging mercury drop electrode (HMDE), followed by chemometric manipulation of the voltammetric data using the derivative method. Then the derivative data were convoluted using discrete Fourier functions. The proposed method allowed the simultaneous analysis of vitamins and metals though their varied responses and sensitivities. Although their peaks were overlapped, the proposed chemometric method allowed their accurate and precise analysis. After the chemometric treatment of the data, metals were successfully quantified at low levels in the presence of vitamins (1: 2000). The heavy metals limit of detection (LOD) values after the chemometric treatment of data decreased by more than 60% than those obtained from the direct voltammetric method. The method applicability was tested by analyzing the selected metals and vitamins in real honey samples obtained from different botanical origins.Keywords: chemometrics, overlapped voltammetric peaks, derivative and convoluted derivative methods, metals and vitamins
Procedia PDF Downloads 15039125 Simulation of a Pressure Driven Based Subsonic Steady Gaseous Flow inside a Micro Channel Using Direct Simulation Monte-Carlo Method
Authors: Asghar Ebrahimi, Elyas Lakzian
Abstract:
For the analysis of flow inside micro geometries, classical CFD methods can not accurately predict the behavior of flow. Alternatively, the gas flow through micro geometries can be investigated precisely using the direct simulation Monte Carlo (DSMC) method. In the present paper, a pressure boundary condition is utilized to simulate a gaseous flow inside a micro channel using the DSMC method. Accuracy of simulation is guaranteed by choosing proper cell dimension and number of particle per cell analysis. Also, results of simulation are compared with the results of reliable references. Good agreement with results certifies the correctness of new boundary condition implemented on the micro channel.Keywords: pressure boundary condition, DSMC, micro channel, cell dimension, particle per cell
Procedia PDF Downloads 478