Search results for: Response Surface Method (RSM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26751

Search results for: Response Surface Method (RSM)

7671 How Obesity Sparks the Immune System and Lessons from the COVID-19 Pandemic

Authors: Husham Bayazed

Abstract:

Purpose of Presentation: Obesity and overweight are among the biggest health challenges of the 21st century, according to the WHO. Obviously, obese individuals suffer different courses of disease – from infections and allergies to cancer- and even respond differently to some treatment options. Of note, obesity often seems to predispose and triggers several secondary diseases such as diabetes, arteriosclerosis, or heart attacks. Since decades it seems that immunological signals gear inflammatory processes among obese individuals with the aforementioned conditions. This review aims to shed light how obesity sparks or rewire the immune system and predisposes to such unpleasant health outcomes. Moreover, lessons from the Covid-19 pandemic ascertain that people living with pre-existing conditions such as obesity can develop severe acute respiratory syndrome (SARS), which needs to be elucidated how obesity and its adjuvant inflammatory process distortion contribute to enhancing severe COVID-19 consequences. Recent Findings: In recent clinical studies, obesity was linked to alter and sparks the immune system in different ways. Adipose tissue (AT) is considered as a secondary immune organ, which is a reservoir of tissue-resident of different immune cells with mediator release, making it a secondary immune organ. Adipocytes per se secrete several pro-inflammatory cytokines (IL-6, IL-4, MCP-1, and TNF-α ) involved in activation of macrophages resulting in chronic low-grade inflammation. The correlation between obesity and T cells dysregulation is pivotal in rewiring the immune system. Of note, autophagy occurrence in adipose tissues further rewire the immune system due to flush and outburst of leptin and adiponectin, which are cytokines and influencing pro-inflammatory immune functions. These immune alterations among obese individuals are collectively incriminated in triggering several metabolic disorders and playing role in increasing cancers incidence and susceptibility to different infections. During COVID-19 pandemic, it was verified that patients with pre-existing obesity being at greater risk of suffering severe and fatal clinical outcomes. Beside obese people suffer from increased airway resistance and reduced lung volume, ACE2 expression in adipose tissue seems to be high and even higher than that in lungs, which spike infection incidence. In essence, obesity with pre-existence of pro-inflammatory cytokines such as LI-6 is a risk factor for cytokine storm and coagulopathy among COVID-19 patients. Summary: It is well documented that obesity is associated with chronic systemic low-grade inflammation, which sparks and alter different pillars of the immune system and triggers different metabolic disorders, and increases susceptibility of infections and cancer incidence. The pre-existing chronic inflammation in obese patients with the augmented inflammatory response against the viral infection seems to increase the susceptibility of these patients to developing severe COVID-19. Although the new weight loss drugs and bariatric surgery are considered as breakthrough news for obesity treatment, but preventing is easier than treating it once it has taken hold. However, obesity and immune system link new insights dispute the role of immunotherapy and regulating immune cells treating diet-induced obesity.

Keywords: immunity, metabolic disorders, cancer, COVID-19

Procedia PDF Downloads 54
7670 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 173
7669 Solid State Fermentation of Tamarind (Tamarindus indica) Seed to Produce Food Condiment

Authors: Olufunke O. Ezekiel, Adenike O. Ogunshe, Omotola F. Olagunju, Arinola O. Falola

Abstract:

Studies were conducted on fermentation of tamarind seed for production of food condiment. Fermentation followed the conventional traditional method of fermented locust bean (iru) production and was carried out over a period of three days (72 hours). Samples were withdrawn and analysed for proximate composition, pH, titratable acidity, tannin content, phytic acid content and trypsin inhibitor activity using standard methods. Effects of fermentation on proximate composition, anti-nutritional factors and sensory properties of the seed were evaluated. All data were analysed using ANOVA and means separated using Duncan multiple range test. Microbiological analysis to identify and characterize the microflora responsible for the fermentation of the seed was also carried out. Fermentation had significant effect on the proximate composition on the fermented seeds. As fermentation progressed, there was significant reduction in the anti-nutrient contents. Organisms isolated from the fermenting tamarind seeds were identified as non-pathogenic and common with fermented legumes.

Keywords: condiment, fermentation, legume, tamarind seed

Procedia PDF Downloads 319
7668 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 362
7667 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array

Procedia PDF Downloads 372
7666 Imaging Spectrum of Central Nervous System Tuberculosis on Magnetic Resonance Imaging: Correlation with Clinical and Microbiological Results

Authors: Vasundhara Arora, Anupam Jhobta, Suresh Thakur, Sanjiv Sharma

Abstract:

Aims and Objectives: Intracranial tuberculosis (TB) is one of the most devastating manifestations of TB and a challenging public health issue of considerable importance and magnitude world over. This study elaborates on the imaging spectrum of neurotuberculosis on magnetic resonance imaging (MRI) in 29 clinically suspected cases from a tertiary care hospital. Materials and Methods: The prospective hospital based evaluation of MR imaging features of neuro-tuberculosis in 29 clinically suspected cases was carried out in Department of Radio-diagnosis, Indira Gandhi Medical Hospital from July 2017 to August 2018. MR Images were obtained on a 1.5 T Magnetom Avanto machine and were analyzed to identify any abnormal meningeal enhancement or parenchymal lesions. Microbiological and Biochemical CSF analysis was performed in radio-logically suspected cases and the results were compared with the imaging data. Clinical follow up of the patients started on anti-tuberculous treatment was done to evaluate the response to treatment and clinical outcome. Results: Age range of patients in the study was between 1 year to 73 years. The mean age of presentation was 11.5 years. No significant difference in the distribution of cerebral tuberculosis was noted among the two genders. Imaging findings of neuro-tuberculosis obtained were varied and non specific ranging from lepto-meningeal enhancement, cerebritis to space occupying lesions such as tuberculomas and tubercular abscesses. Complications presenting as hydrocephalus (n= 7) and infarcts (n=9) was noted in few of these patients. 29 patients showed radiological suspicion of CNS tuberculosis with meningitis alone observed in 11 cases, tuberculomas alone were observed in 4 cases, meningitis with parenchymal tuberculomas in 11 cases. Tubercular abscess and cerebritis were observed in one case each. Tuberculous arachnoiditis was noted in one patient. Gene expert positivity was obtained in 11 out of 29 radiologically suspected patients; none of the patients showed culture positivity. Meningeal form of the disease alone showed higher positivity rate of gene Xpert (n=5) followed by combination of meningeal and parenchymal forms of disease (n=4). The parenchymal manifestation of disease alone showed least positivity rates (n= 3) with gene xpert testing. All 29 patients were started on anti tubercular treatment based on radiological suspicion of the disease with clinical improvement observed in 27 treated patients. Conclusions: In our study, higher incidence of neuro- tuberculosis was noted in paediatric population with predominance of the meningeal form of the disease. Gene Xpert positivity obtained was low due to paucibacillary nature of cerebrospinal fluid (CSF) with even lower positivity of CSF samples in parenchymal form of the manifestation. MRI showed high accuracy in detecting CNS lesions in neuro-tuberculosis. Hence, it can be concluded that MRI plays a crucial role in the diagnosis because of its inherent sensitivity and specificity and is an indispensible imaging modality. It caters to the need of early diagnosis owing to poor sensitivity of microbiological tests more so in the parenchymal manifestation of the disease.

Keywords: neurotuberculosis, tubercular abscess, tuberculoma, tuberculous meningitis

Procedia PDF Downloads 149
7665 Reflections on Economic Recession in the Early Period of Islam: Lessons for Nigeria

Authors: Khalid Ishola Bello

Abstract:

No condition is permanent in life. This phenomenon is more evident in the socio-economic and political life of man regardless of race, colour or religious affiliation. As the economy of an individual or nation stands to be favourable at one time, it may also experience decline and become unbearable at another time. Muslims, towards the third decade of Islam, experienced economic hardship due to some natural and artificial factors. The recession, which lasted for four years, was rescued by different approaches, and economic prosperity was later regained. Some years ago, Nigeria was drastically affected by an economic recession characterized by high rates of unemployment, illiquidity and inflation, which have caused depression to many individuals and organizations. It is the aim of this paper to look into the causes and remedies of the recession in that early period of Islam in order to suggest a way out of the unfriendly economic situation of Nigeria. An analytical method is adopted to draw some lessons from the situation of Muslims of that time to address the current economic challenges in Nigeria. Though Nigeria is not under any natural disaster, the causes seem to be a deliberate reaction of some Nigerians against the government's attempts to curb corruption at all costs and lapses in some government policies.

Keywords: recession, hardship, spiritual, lessons, early period of Islam

Procedia PDF Downloads 59
7664 The Effect of Ultrasound on Permeation Flux and Changes in Blocking Mechanisms during Dead-End Microfiltration of Carrot Juice

Authors: A. Hemmati, H. Mirsaeedghazi, M. Aboonajmi

Abstract:

Carrot juice is one of the most nutritious foods that are consumed around the world. Large particles in carrot juice causing turbid appearance make some problems in the concentration process such as off-flavor due to the large particles burnt on the walls of evaporators. Microfiltration (MF) is a pressure driven membrane separation method that can clarify fruit juices without enzymatic treatment. Fouling is the main problem in the membrane process causing reduction of permeate flux. Ultrasound as a cleaning technique was applied at 20 kHz to reduce fouling in membrane clarification of carrot juice using dead-end MF system with polyvinylidene fluoride (PVDF) membrane. Results showed that application of ultrasound waves reduce diphasic characteristic of carrot juice and permeate flux increased. Evaluation of different membrane fouling mechanisms showed that application of ultrasound waves changed creation time of each fouling mechanism. Also, its behavior was changed with varying transmembrane pressure.

Keywords: Carrot juice, Dead end, Microfiltration, Ultrasound

Procedia PDF Downloads 307
7663 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning

Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V

Abstract:

The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.

Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network

Procedia PDF Downloads 127
7662 The Impact of Low-Concentrated Acidic Electrolyzed Water on Foodborne Pathogens

Authors: Ewa Brychcy, Natalia Ulbin-Figlewicz, Dominika Kulig, Żaneta Król, Andrzej Jarmoluk

Abstract:

Acidic electrolyzed water (AEW) is an alternative with environmentally friendly broad spectrum microbial decontamination. It is produced by membrane electrolysis of a dilute NaCl solution in water ionizers. The aim of the study was to evaluate the effectiveness of low-concentrated AEW in reducing selected foodborne pathogens and to examine its bactericidal effect on cellular structures of Escherichia coli. E. coli and S. aureus cells were undetectable after 10 minutes of contact with electrolyzed salt solutions. Non-electrolyzed solutions did not inhibit the growth of bacteria. AE water was found to destroy the cellular structures of the E. coli. The use of more concentrated salt solutions and prolonged electrolysis time from 5 to 10 minutes resulted in a greater changes of rods shape as compared to the control and non-electrolyzed NaCl solutions. This research showed that low-concentrated acid electrolyzed water is an effective method to significantly reduce pathogenic microorganisms and indicated its potential application for decontamination of meat.

Keywords: acidic electrolyzed water, foodborne pathogens, meat decontamination, membrane electrolysis

Procedia PDF Downloads 478
7661 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 106
7660 Synthesis of Ce Impregnated on Functionalized Graphene Oxide Nanosheets for Transesterification of Propylene Carbonate and Ethanol to Produce Diethyl Carbonate

Authors: Kumar N., Verma S., Park J., Srivastava V. C.

Abstract:

Organic carbonates have the potential to be used as fuels and because of this, their production through non-phosgene routes is a thrust area of research. Di-ethyl carbonate (DEC) synthesis from propylene carbonate (PC) in the presence of alcohol is a green route. In this study, the use of reduced graphene oxide (rGO) based metal oxide catalysts [rGO-MO, where M = Ce] with different amounts of graphene oxide (0.2%, 0.5%, 1%, and 2%) has been investigated for the synthesis of DEC by using PC and ethanol as reactants. The GO sheets were synthesized by an electrochemical process and the catalysts were synthesized using an in-situ method. A theoretical study of the thermodynamics of the reaction was done, which revealed that the reaction is mildly endothermic. The theoretical value of optimum temperature was found to be 420 K. The synthesized catalysts were characterized for their morphological, structural and textural properties using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption, thermogravimetric analysis (TGA), and Raman spectroscopy. Optimization studies were carried out to study the effect of different reaction conditions like temperature (140 °C to 180 °C) and catalyst dosage (0.102 g to 0.255 g) on the yield of DEC. Amongst the various synthesized catalysts, 1% rGO-CeO2 gave the maximum yield of DEC.

Keywords: GO, DEC, propylene carbonate, transesterification, thermodynamics

Procedia PDF Downloads 62
7659 Knowledge and Attitude of Palliative Care Towards Work Performance of Nurses in Private Hospital

Authors: Novita Verayanti Manalu, Alvin Salim

Abstract:

Background: Palliative care is caring holistically for patients and families to improve their quality of life. Experts stated that palliative care could be applied not only for terminally ill cases but also for acute illnesses. Therefore, this study wants to find out the level of knowledge about palliative care of the nurses along with the relationship with attitude and performance. Method: This study applies a cross-sectional survey design and allows the respondents to fill two questionnaires to determine the level of knowledge and attitude toward palliative care, while one questionnaire is filled out by the head nurse to evaluate nurses’ performance. The relationship was analyzed by Spearman rho’s correlation in alpha < 0,05 by SPSS. Results: The majority of respondents were females, aged above 25 years old, and married. Most of the nurses are staff nurses and the ratio of education level is not significantly different. The knowledge level is poor, while the attitude and performance are at an adequate level. Knowledge may affect attitude, but it doesn’t happen toward performance. Conclusion: There is a need for increased knowledge about palliative care to improve attitude and work performance. Future researchers might use this finding as a reference to conduct further study in improving knowledge of palliative care.

Keywords: knowledge, attitude, work performance, palliative care

Procedia PDF Downloads 174
7658 Hydroxyapatite-Chitosan Composites for Tissue Engineering Applications

Authors: Georgeta Voicu, Cristina Daniela Ghitulica, Andreia Cucuruz, Cristina Busuioc

Abstract:

In the field of tissue engineering, the compositional and microstructural features of the employed materials play an important role, with implications on the mechanical and biological behaviour of the medical devices. In this context, the development of apatite - natural biopolymer composites represents a choice of many scientific groups. Thus, hydroxyapatite powders were synthesized by a wet method, namely co-precipitation, starting from high purity reagents (CaO, MgO, and H3PO4). Moreover, the substitution of calcium with magnesium have been approached, in the 5 - 10 wt.% range. Afterward, the phosphate powders were integrated in two types of composites with chitosan, different from morphological point of view. First, 3D porous scaffolds were obtained by a freeze-drying procedure. Second, uniform, compact films were achieved by film casting. The influence of chitosan molecular weight (low, medium and high), as well as apatite powder to polymer ratio (1:1 and 1:2) on the morphological properties, were analysed in detail. In conclusion, the reported biocomposites, prepared by a straightforward route are suitable for bone substitution or repairing applications.

Keywords: bone reconstruction, chitosan, composite scaffolds, hydroxyapatite

Procedia PDF Downloads 303
7657 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 213
7656 A Survey on Speech Emotion-Based Music Recommendation System

Authors: Chirag Kothawade, Gourie Jagtap, PreetKaur Relusinghani, Vedang Chavan, Smitha S. Bhosale

Abstract:

Psychological research has proven that music relieves stress, elevates mood, and is responsible for the release of “feel-good” chemicals like oxytocin, serotonin, and dopamine. It comes as no surprise that music has been a popular tool in rehabilitation centers and therapy for various disorders, thus with the interminably rising numbers of people facing mental health-related issues across the globe, addressing mental health concerns is more crucial than ever. Despite the existing music recommendation systems, there is a dearth of holistically curated algorithms that take care of the needs of users. Given that, an undeniable majority of people turn to music on a regular basis and that music has been proven to increase cognition, memory, and sleep quality while reducing anxiety, pain, and blood pressure, it is the need of the hour to fashion a product that extracts all the benefits of music in the most extensive and deployable method possible. Our project aims to ameliorate our users’ mental state by building a comprehensive mood-based music recommendation system called “Viby”.

Keywords: language, communication, speech recognition, interaction

Procedia PDF Downloads 43
7655 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3

Authors: Meriem Harmel, Houari Khachai

Abstract:

We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.

Keywords: DFT, fluoroperovskite, electronic structure, optical properties

Procedia PDF Downloads 443
7654 Investigation of Neutral Axis Shifting and Wall Thickness Distribution of Bent Tubes Produced by Rotary Draw Bending

Authors: Bernd Engel, Hassan Raheem Hassan

Abstract:

Rotary draw bending is a method used for tube forming. During the tube bending process, the neutral axis moves towards the inner arc and the wall thickness changes in the cross section of the tube. Wall thinning of the tube takes place at the extrados, whereas wall thickening of the tube occurs at the intrados. This paper investigates the tube bending with rotary draw bending process using thick-walled tubes and different material properties (16Mo3 and 10CrMo9-10). The experimental tests and finite element simulations are used to calculate the variable characteristics (wall thickness distribution, neutral axis shifting and longitudinal strain distribution). These results are compared with results of a plasto-mechanical model. Moreover, the cross section distortion is investigated in this study. This study helped to get bends with smaller wall factor for different material properties.

Keywords: rotary draw bending, thick wall tube, material properties, material influence

Procedia PDF Downloads 594
7653 Comparison of Antimicrobial Activity of Momordica cochinchinesis and Pinus kesiya Extracts

Authors: Pattaramon Pongjetpong

Abstract:

In recent years, infectious diseases have increased considerably, and they are amongst the most common leading causes of death all over the world. Several medicinal plants are well known to contain active constituents such as flavonoids, carotenoids, and phenolic compounds, which are plausible candidates for therapeutic purposes. This study aimed to examine the antimicrobial activities of M. cochinchinensis and P. kesiya extracts using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. In this study, Momordica cochinchinensis and Pinus kesiya extracts are investigated for antibacterial activity against Staphylococcus aureus. The results showed that S. aureus was susceptible to P. kesiya extracts with an MIC value of 62.5 µg/ml, while M. cochinchinensis showed MIC against S. aureus was greater than 2000 µg/ml. In summary, P. kesiya extract showed potent antibacterial activity against S. aureus, which could greatly value developing as adjuvant therapy for infectious diseases. However, further investigation regarding purification of the active constituents as well as a determination of the mechanism of antimicrobial action of P. kesiya active compound should be performed to identify the molecular target of the active compounds.

Keywords: antimicrobial activity, Momordica cochinchinensis, Pinus kesiya, Staphylococcus aureus

Procedia PDF Downloads 183
7652 A Low-Cost Experimental Approach for Teaching Energy Quantization: Determining the Planck Constant with Arduino and Led

Authors: Gastão Soares Ximenes de Oliveira, Richar Nicolás Durán, Romeo Micah Szmoski, Eloiza Aparecida Avila de Matos, Elano Gustavo Rein

Abstract:

This article aims to present an experimental method to determine Planck's constant by calculating the cutting potential V₀ from LEDs with different wavelengths. The experiment is designed using Arduino as a central tool in order to make the experimental activity more engaging and attractive for students with the use of digital technologies. From the characteristic curves of each LED, graphical analysis was used to obtain the cutting potential, and knowing the corresponding wavelength, it was possible to calculate Planck's constant. This constant was also obtained from the linear adjustment of the cutting potential graph by the frequency of each LED. Given the relevance of Planck's constant in physics, it is believed that this experiment can offer teachers the opportunity to approach concepts from modern physics, such as the quantization of energy, in a more accessible and applied way in the classroom. This will not only enrich students' understanding of the fundamental nature of matter but also encourage deeper engagement with the principles of quantum physics.

Keywords: physics teaching, educational technology, modern physics, Planck constant, Arduino

Procedia PDF Downloads 55
7651 Theoretical Study on the Visible-Light-Induced Radical Coupling Reactions Mediated by Charge Transfer Complex

Authors: Lishuang Ma

Abstract:

Charge transfer (CT) complex, also known as Electron donor-acceptor (EDA) complex, has received attentions increasingly in the field of synthetic chemistry community, due to the CT complex can absorb the visible light through the intermolecular charge transfer excited states, various of catalyst-free photochemical transformations under mild visible-light conditions. However, a number of fundamental questions are still ambiguous, such as the origin of visible light absorption, the photochemical and photophysical properties of the CT complex, as well as the detailed mechanism of the radical coupling pathways mediated by CT complex. Since these are critical factors for target-specific design and synthesis of more new-type CT complexes. To this end, theoretical investigations were performed in our group to answer these questions based on multiconfigurational perturbation theory. The photo-induced fluoroalkylation reactions are mediated by CT complexes, which are formed by the association of an acceptor of perfluoroalkyl halides RF−X (X = Br, I) and a suitable donor molecule such as β-naphtholate anion, were chosen as a paradigm example in this work. First, spectrum simulations were carried out by both CASPT2//CASSCF/PCM and TD-DFT/PCM methods. The computational results showed that the broadening spectra in visible light range (360-550nm) of the CT complexes originate from the 1(σπ*) excitation, accompanied by an intermolecular electron transfer, which was also found closely related to the aggregate states of the donor and acceptor. Moreover, from charge translocation analysis, the CT complex that showed larger charge transfer in the round state would exhibit smaller charge transfer in excited stated of 1(σπ*), causing blue shift relatively. Then, the excited-state potential energy surface (PES) was calculated at CASPT2//CASSCF(12,10)/ PCM level of theory to explore the photophysical properties of the CT complexes. The photo-induced C-X (X=I, Br) bond cleavage was found to occur in the triplet state, which is accessible through a fast intersystem crossing (ISC) process that is controlled by the strong spin-orbit coupling resulting from the heavy iodine and bromine atoms. Importantly, this rapid fragmentation process can compete and suppress the backward electron transfer (BET) event, facilitating the subsequent effective photochemical transformations. Finally, the reaction pathways of the radical coupling were also inspected, which showed that the radical chain propagation pathway could easy to accomplish with a small energy barrier no more than 3.0 kcal/mol, which is the key factor that promote the efficiency of the photochemical reactions induced by CT complexes. In conclusion, theoretical investigations were performed to explore the photophysical and photochemical properties of the CT complexes, as well as the mechanism of radical coupling reactions mediated by CT complex. The computational results and findings in this work can provide some critical insights into mechanism-based design for more new-type EDA complexes

Keywords: charge transfer complex, electron transfer, multiconfigurational perturbation theory, radical coupling

Procedia PDF Downloads 123
7650 Establishing Feedback Partnerships in Higher Education: A Discussion of Conceptual Framework and Implementation Strategies

Authors: Jessica To

Abstract:

Feedback is one of the powerful levers for enhancing students’ performance. However, some students are under-engaged with feedback because they lack responsibility for feedback uptake. To resolve this conundrum, recent literature proposes feedback partnerships in which students and teachers share the power and responsibilities to co-construct feedback. During feedback co-construction, students express feedback needs to teachers, and teachers respond to individuals’ needs in return. Though this approach can increase students’ feedback ownership, its application is lagging as the field lacks conceptual clarity and implementation guide. This presentation aims to discuss the conceptual framework of feedback partnerships and feedback co-construction strategies. It identifies the components of feedback partnerships and strategies which could facilitate feedback co-construction. A systematic literature review was conducted to answer the questions. The literature search was performed using ERIC, PsycINFO, and Google Scholar with the keywords “assessment partnership”, “student as partner,” and “feedback engagement”. No time limit was set for the search. The inclusion criteria encompassed (i) student-teacher partnerships in feedback, (ii) feedback engagement in higher education, (iii) peer-reviewed publications, and (iv) English as the language of publication. Those without addressing conceptual understanding and implementation strategies were excluded. Finally, 65 publications were identified and analysed using thematic analysis. For the procedure, the texts relating to the questions were first extracted. Then, codes were assigned to summarise the ideas of the texts. Upon subsuming similar codes into themes, four themes emerged: students’ responsibilities, teachers’ responsibilities, conditions for partnerships development, and strategies. Their interrelationships were examined iteratively for framework development. Establishing feedback partnerships required different responsibilities of students and teachers during feedback co-construction. Students needed to self-evaluate performance against task criteria, identify inadequacies and communicate their needs to teachers. During feedback exchanges, they interpreted teachers’ comments, generated self-feedback through reflection, and co-developed improvement plans with teachers. Teachers had to increase students’ understanding of criteria and evaluation skills and create opportunities for students’ expression of feedback needs. In feedback dialogue, teachers responded to students’ needs and advised on the improvement plans. Feedback partnerships would be best grounded in an environment with trust and psychological safety. Four strategies could facilitate feedback co-construction. First, students’ understanding of task criteria could be increased by rubrics explanation and exemplar analysis. Second, students could sharpen evaluation skills if they participated in peer review and received teacher feedback on the quality of peer feedback. Third, provision of self-evaluation checklists and prompts and teacher modeling of self-assessment process could aid students in articulating feedback needs. Fourth, the trust could be fostered when teachers explained the benefits of feedback co-construction, showed empathy, and provided personalised comments in dialogue. Some strategies were applied in interactive cover sheets in which students performed self-evaluation and made feedback requests on a cover sheet during assignment submission, followed by teachers’ response to individuals’ requests. The significance of this presentation lies in unpacking the conceptual framework of feedback partnerships and outlining feedback co-construction strategies. With a solid foundation in theory and practice, researchers and teachers could better enhance students’ engagement with feedback.

Keywords: conceptual framework, feedback co-construction, feedback partnerships, implementation strategies

Procedia PDF Downloads 68
7649 Progression Rate, Prevalence, Incidence of Black Band Disease on Stony (Scleractinia) in Barranglompo Island, South Sulawesi

Authors: Baso Hamdani, Arniati Massinai, Jamaluddin Jompa

Abstract:

Coral diseases are one of the factors affect reef degradation. This research had analysed the progression rate, incidence, and prevalence of Black Band Disease (BBD) on stony coral (Pachyseris sp.) in relation to the environmental parameters (pH, nitrate, phospate, Dissolved Organic Matter (DOM), and turbidity). The incidence of coral disease was measured weekly for 6 weeks using Belt Transect Method. The progression rate of BBD was measured manually. Furthermore, the prevalence and incidence of BBD were calculated each colonies infected. The relationship between environmental parameters and the progression rate, prevalence and incidence of BBD was analysed by Principal Component Analysis (PCA). The results showed the average of progression rate is 0,07 ± 0,02 cm/ hari. The prevalence of BBD increased from 0,92% - 19,73% in 7 weeks observation with the average incidence of new infected colonies coral 0,2 - 0,65 colony/day The environment factors which important were pH, Nitrate, Phospate, DOM, and Turbidity.

Keywords: progression rate, incidence, prevalence, Black Band Disease, Barranglompo

Procedia PDF Downloads 630
7648 N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)

Authors: Anil Kawan, Soon Jae Yu, Jong Min Park

Abstract:

GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching.

Keywords: extraction efficiency, light emitting diodes, n-GaN thinning, ultraviolet

Procedia PDF Downloads 403
7647 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: quantum semiconductors, nanostructures, quantum dots, spin polarization

Procedia PDF Downloads 247
7646 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook

Authors: Chien-Jen Liu, Shu Ching Yang

Abstract:

Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.

Keywords: technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness

Procedia PDF Downloads 328
7645 Analysis of Generated Biogas from Anaerobic Digestion of Piggery Dung

Authors: Babatope Alabadan, Adeyinka Adesanya, I. E. Afangideh

Abstract:

The use of energy is paramount to human existence. Every activity globally revolves round it. Over the years, different sources of energy (petroleum fuels predominantly) have been utilized. Animal waste treatment on the farm is a phenomenon that has called for rapt research attention. Generated wastes on farm pollute the environment in diverse ways. Waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. The objective of this work is to generate methane (CH4) gas from the anaerobic digestion of piggery dung. A retention time of 15 and 30 days and a mesophilic temperature range were selected. The generated biogas composition was methane (CH4), carbondioxide (CO2), hydrogen sulphide (H2S) and ammonia (NH3) using gas chromatography method. At 15 days retention time, 60% of (CH4) was collected while CO2 and traces of H2S and NH3 accounted for 40%. At 30 days retention time, 75% of CH4, 20% of CO2 was collected while traces of H2S and NH3 amounted to 5%. For on and off farm uses, biogas can be upgraded to biomethane by removing the CO2, NH3 and H2S. This product (CH4) can meet heating and power needs or serve as transportation fuels

Keywords: anaerobic digestion, biogas, methane, piggery dung

Procedia PDF Downloads 319
7644 Biometrics and Dietary Studies of Citharinus citharus in the Lower Niger River in Kogi State, Nigeria

Authors: Adeyemi, Samuel Olusegun

Abstract:

Biometrics and dietary habit of Citharinus citharus in the lower Niger River area of kogi state were studied between October and December, 2010. A total of 120 fish sampled were used for the study. The total length, standard length and weight were taken for each fish sample for the estimations of length-weight relationship using the formula W = aLb and transformed to Log W = Log a + b Log L. Stomach contents were analyzed by frequency of occurrence method. The standard length of males, females and combined sexes ranged between 6.8 - 16.5, 7.3 – 14.3 cm, 6.8 – 74.2 (cm) respectively, with b – values of 3.0963, 3.174 and 3.1382. The condition factor ranged from 2.04 – 2.80, 1.88 – 2.86 and 1.88 – 2.86 respectively. The food and feeding habits shows that the fish feeds mainly sand grain (25.83%), mud (24.16%), plant parts (12.50%), insect part (2.50%), algae (12.50%) and unidentified items (5.00%). C. citharus in the lower Niger area of kogi state could be termed to an omnivore. River Niger could be said to be suitable for growth and survival of the fish species C. citharus.

Keywords: length-weight, sexes, stomach content, feeding habits, plant materials

Procedia PDF Downloads 497
7643 Preliminary Study of Water-Oil Separation Process in Three-Phase Separators Using Factorial Experimental Designs and Simulation

Authors: Caroline M. B. De Araujo, Helenise A. Do Nascimento, Claudia J. Da S. Cavalcanti, Mauricio A. Da Motta Sobrinho, Maria F. Pimentel

Abstract:

Oil production is often followed by the joint production of water and gas. During the journey up to the surface, due to severe conditions of temperature and pressure, the mixing between these three components normally occurs. Thus, the three phases separation process must be one of the first steps to be performed after crude oil extraction, where the water-oil separation is the most complex and important step, since the presence of water into the process line can increase corrosion and hydrates formation. A wide range of methods can be applied in order to proceed with oil-water separation, being more commonly used: flotation, hydrocyclones, as well as the three phase separator vessels. Facing what has been presented so far, it is the aim of this paper to study a system consisting of a three-phase separator, evaluating the influence of three variables: temperature, working pressure and separator type, for two types of oil (light and heavy), by performing two factorial design plans 23, in order to find the best operating condition. In this case, the purpose is to obtain the greatest oil flow rate in the product stream (m3/h) as well as the lowest percentage of water in the oil stream. The simulation of the three-phase separator was performed using Aspen Hysys®2006 simulation software in stationary mode, and the evaluation of the factorial experimental designs was performed using the software Statistica®. From the general analysis of the four normal probability plots of effects obtained, it was observed that interaction effects of two and three factors did not show statistical significance at 95% confidence, since all the values were very close to zero. Similarly, the main effect "separator type" did not show significant statistical influence in any situation. As in this case, it has been assumed that the volumetric flow of water, oil and gas were equal in the inlet stream, the effect separator type, in fact, may not be significant for the proposed system. Nevertheless, the main effect “temperature” was significant for both responses (oil flow rate and mass fraction of water in the oil stream), considering both light and heavy oil, so that the best operation condition occurs with the temperature at its lowest level (30oC), since the higher the temperature, the liquid oil components pass into the vapor phase, going to the gas stream. Furthermore, the higher the temperature, the higher the formation water vapor, so that ends up going into the lighter stream (oil stream), making the separation process more difficult. Regarding the “working pressure”, this effect showed to be significant only for the oil flow rate, so that the best operation condition occurs with the pressure at its highest level (9bar), since a higher operating pressure, in this case, indicated a lower pressure drop inside the vessel, generating lower level of turbulence inside the separator. In conclusion, the best-operating condition obtained for the proposed system, at the studied range, occurs for temperature is at its lowest level and the working pressure is at its highest level.

Keywords: factorial experimental design, oil production, simulation, three-phase separator

Procedia PDF Downloads 260
7642 CRISPR Technology: A Tool in the Potential Cure for COVID-19 Virus

Authors: Chijindu Okpalaoka, Charles Chinedu Onuselogu

Abstract:

COVID-19, humanity's coronavirus disease caused by SARS-CoV-2, was first detected in late 2019 in Wuhan, China. COVID-19 lacked an established conventional pharmaceutical therapy, and as a result, the outbreak quickly became an epidemic affecting the entire World. Only a qPCR assay is reliable for diagnosing COVID-19. Clustered, regularly interspaced short palindromic repeats (CRISPR) technology is being researched for speedy and specific identification of COVID-19, among other therapeutic techniques. Apart from its therapeutic capabilities, the CRISPR technique is being evaluated to develop antiviral therapies; nevertheless, no CRISPR-based medication has been approved for human use to date. Prophylactic antiviral CRISPR in living being cells, a Cas 13-based approach against coronavirus, has been developed. While this method can be evolved into a treatment approach, it may face substantial obstacles in human clinical trials for licensure. This study discussed the potential applications of CRISPR-based techniques for developing a speedy and accurate feasible treatment alternative for the COVID-19 virus.

Keywords: COVID-19, CRISPR technique, Cas13, SARS-CoV-2, prophylactic antiviral

Procedia PDF Downloads 106