Search results for: control and protection systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20063

Search results for: control and protection systems

1163 A Case Study on Problems Originated from Critical Path Method Application in a Governmental Construction Project

Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali

Abstract:

In public construction projects, determining the contract period in the award phase is one of the most important factors. The contract period establishes the baseline for creating the cash flow curve and progress payment planning in the post-award phase. If overestimated, project duration causes losses for both the owner and the contractor. Therefore, it is essential to base construction project duration on reliable forecasting. In Turkey, schedules are usually built using the bar chart (Gantt) schedule, especially for governmental construction agencies. The usage of these schedules is limited for bidding purposes. Although the bar-chart schedule is useful in some cases, it lacks logical connections between activities; it would be harder to obtain the activities that have more effects than others on the project's total duration, especially in large complex projects. In this study, a construction schedule is prepared with Critical Path Method (CPM) that addresses the above-mentioned discrepancies. CPM is a simple and effective method that displays project time and critical paths, showing results of forward and backward calculations with considering the logic relationships between activities; it is a powerful tool for planning and managing all kinds of construction projects and is a very convenient method for the construction industry. CPM provides a much more useful and precise approach than traditional bar-chart diagrams that form the basis of construction planning and control. CPM has two main application utilities in the construction field; the first one is obtaining project duration, which is called an as-planned schedule that includes as-planned activity durations with relationships between subsequent activities. Another utility is during the project execution; each activity is tracked, and their durations are recorded in order to obtain as-built schedule, which is named as a black box of the project. The latter is more useful for delay analysis, and conflict resolutions. These features of CPM have been popular around the world. However, it has not been yet extensively used in Turkey. In this study, a real construction project is investigated as a case study; CPM-based scheduling is used for establishing both of as-built and as-planned schedules. Problems that emerged during the construction phase are identified and categorized. Subsequently, solutions are suggested. Two scenarios were considered. In the first scenario, project progress was monitored based as CPM was used to track and manage progress; this was carried out based on real-time data. In the second scenario, project progress was supposedly tracked based on the assumption that the Gantt chart was used. The S-curves of the two scenarios are plotted and interpreted. Comparing the results, possible faults of the latter scenario are highlighted, and solutions are suggested. The importance of CPM implementation has been emphasized and it has been proposed to make it mandatory for preparation of construction schedule based on CPM for public construction projects contracts.

Keywords: as-built, case-study, critical path method, Turkish government sector projects

Procedia PDF Downloads 115
1162 Redirecting Photosynthetic Electron Flux in the Engineered Cyanobacterium synechocystis Sp. Pcc 6803 by the Deletion of Flavodiiron Protein Flv3

Authors: K. Thiel, P. Patrikainen, C. Nagy, D. Fitzpatrick, E.-M. Aro, P. Kallio

Abstract:

Photosynthetic cyanobacteria have been recognized as potential future biotechnological hosts for the direct conversion of CO₂ into chemicals of interest using sunlight as the solar energy source. However, in order to develop commercially viable systems, the flux of electrons from the photosynthetic light reactions towards specified target chemicals must be significantly improved. The objective of the study was to investigate whether the autotrophic production efficiency of specified end-metabolites can be improved in engineered cyanobacterial cells by rescuing excited electrons that are normally lost to molecular oxygen due to the cyanobacterial flavodiiron protein Flv1/3. Natively Flv1/3 dissipates excess electrons in the photosynthetic electron transfer chain by directing them to molecular oxygen in Mehler-like reaction to protect photosystem I. To evaluate the effect of flavodiiron inactivation on autotrophic production efficiency in the cyanobacterial host Synechocystis sp. PCC 6803 (Synechocystis), sucrose was selected as the quantitative reporter and a representative of a potential end-product of interest. The concept is based on the native property of Synechocystis to produce sucrose as an intracellular osmoprotectant when exposed to high external ion concentrations, in combination with the introduction of a heterologous sucrose permease (CscB from Escherichia coli), which transports the sucrose out from the cell. In addition, cell growth, photosynthetic gas fluxes using membrane inlet mass spectrometry and endogenous storage compounds were analysed to illustrate the consequent effects of flv deletion on pathway flux distributions. The results indicate that a significant proportion of the electrons can be lost to molecular oxygen via Flv1/3 even when the cells are grown under high CO₂ and that the inactivation of flavodiiron activity can enhance the photosynthetic electron flux towards optionally available sinks. The flux distribution is dependent on the light conditions and the genetic context of the Δflv mutants, and favors the production of either sucrose or one of the two storage compounds, glycogen or polyhydroxybutyrate. As a conclusion, elimination of the native Flv1/3 reaction and concomitant introduction of an engineered product pathway as an alternative sink for excited electrons could enhance the photosynthetic electron flux towards the target endproduct without compromising the fitness of the host.

Keywords: cyanobacterial engineering, flavodiiron proteins, redirecting electron flux, sucrose

Procedia PDF Downloads 121
1161 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim

Abstract:

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Keywords: gerotor pump, high speed, numerical simulations, aeronautic, aeration, cavitation

Procedia PDF Downloads 129
1160 Interoperability of 505th Search and Rescue Group and the 205th Tactical Helicopter Wing of the Philippine Air Force in Search and Rescue Operations: An Assessment

Authors: Ryan C. Igama

Abstract:

The complexity of disaster risk reduction management paved the way for various innovations and approaches to mitigate the loss of lives and casualties during disaster-related situations. The efficiency of doing response operations during disasters relies on the timely and organized deployment of search, rescue and retrieval teams. Indeed, the assistance provided by the search, rescue, and retrieval teams during disaster operations is a critical service needed to further minimize the loss of lives and casualties. The Armed Forces of the Philippines was mandated to provide humanitarian assistance and disaster relief operations during calamities and disasters. Thus, this study “Interoperability of 505TH Search and Rescue Group and the 205TH Tactical Helicopter Wing of the Philippine Air Force in Search and Rescue Operations: An Assessment” was intended to provide substantial information to further strengthen and promote the capabilities of search and rescue operations in the Philippines. Further, this study also aims to assess the interoperability of the 505th Search and Rescue Group of the Philippine Air Force and the 205th Tactical Helicopter Wing Philippine Air Force. This study was undertaken covering the component units in the Philippine Air Force of the Armed Forces of the Philippines – specifically the 505th SRG and the 205th THW as the involved units who also acted as the respondents of the study. The qualitative approach was the mechanism utilized in the form of focused group discussions, key informant interviews, and documentary analysis as primary means to obtain the needed data for the study. Essentially, this study was geared towards the evaluation of the effectiveness of the interoperability of the two (2) involved PAF units during search and rescue operations. Further, it also delved into the identification of the impacts, gaps, and challenges confronted regarding interoperability as to training, equipment, and coordination mechanism vis-à-vis the needed measures for improvement, respectively. The result of the study regarding the interoperability of the two (2) PAF units during search and rescue operations showed that there was a duplication in terms of functions or tasks in HADR activities, specifically during the conduct of air rescue operations in situations like calamities. In addition, it was revealed that there was a lack of equipment and training for the personnel involved in search and rescue operations which is a vital element during calamity response activities. Based on the findings of the study, it was recommended that a strategic planning workshop/activity must be conducted regarding the duties and responsibilities of the personnel involved in the search and rescue operations to address the command and control and interoperability issues of these units. Additionally, the conduct of intensive HADR-related training for the personnel involved in search and rescue operations of the two (2) PAF Units must also be conducted so they can be more proficient in their skills and sustainably increase their knowledge of search and rescue scenarios, including the capabilities of the respective units. Lastly, the updating of existing doctrines or policies must be undertaken to adapt advancement to the evolving situations in search and rescue operations.

Keywords: interoperability, search and rescue capability, humanitarian assistance, disaster response

Procedia PDF Downloads 87
1159 Ambient Factors in the Perception of Crowding in Public Transport

Authors: John Zacharias, Bin Wang

Abstract:

Travel comfort is increasingly seen as crucial to effecting the switch from private motorized modes to public transit. Surveys suggest that travel comfort is closely related to perceived crowding, that may involve lack of available seating, difficulty entering and exiting, jostling and other physical contacts with strangers. As found in studies on environmental stress, other factors may moderate perceptions of crowding–in this case, we hypothesize that the ambient environment may play a significant role. Travel comfort was measured by applying a structured survey to randomly selected passengers (n=369) on 3 lines of the Beijing metro on workdays. Respondents were standing with all seats occupied and with car occupancy at 14 levels. A second research assistant filmed the metro car while passengers were interviewed, to obtain the total number of passengers. Metro lines 4, 6 and 10 were selected that travel through the central city north-south, east-west and circumferentially. Respondents evaluated the following factors: crowding, noise, smell, air quality, temperature, illumination, vibration and perceived safety as they experienced them at the time of interview, and then were asked to rank these 8 factors according to their importance for their travel comfort. Evaluations were semantic differentials on a 7-point scale from highly unsatisfactory (-3) to highly satisfactory (+3). The control variables included age, sex, annual income and trip purpose. Crowding was assessed most negatively, with 41% of the scores between -3 and -2. Noise and air quality were also assessed negatively, with two-thirds of the evaluations below 0. Illumination was assessed most positively, followed by crime, vibration and temperature, all scoring at indifference (0) or slightly positive. Perception of crowding was linearly and positively related to the number of passengers in the car. Linear regression tested the impact of ambient environmental factors on perception of crowding. Noise intensity accounted for more than the actual number of individuals in the car in the perception of crowding, with smell also contributing. Other variables do not interact with the crowding variable although the evaluations are distinct. In all, only one-third of the perception of crowding (R2=.154) is explained by the number of people, with the other ambient environmental variables accounting for two-thirds of the variance (R2=.316). However, when ranking the factors by their importance to travel comfort, perceived crowding made up 69% of the first rank, followed by noise at 11%. At rank 2, smell dominates (25%), followed by noise and air quality (17%). Commuting to work induces significantly lower evaluations of travel comfort with shopping the most positive. Clearly, travel comfort is particularly important to commuters. Moreover, their perception of crowding while travelling on metro is highly conditioned by the ambient environment in the metro car. Focussing attention on the ambient environmental conditions of the metro is an effective way to address the primary concerns of travellers with overcrowding. In general, the strongly held opinions on travel comfort require more attention in the effort to induce ridership in public transit.

Keywords: ambient environment, mass rail transit, public transit, travel comfort

Procedia PDF Downloads 260
1158 Predicting Photovoltaic Energy Profile of Birzeit University Campus Based on Weather Forecast

Authors: Muhammad Abu-Khaizaran, Ahmad Faza’, Tariq Othman, Yahia Yousef

Abstract:

This paper presents a study to provide sufficient and reliable information about constructing a Photovoltaic energy profile of the Birzeit University campus (BZU) based on the weather forecast. The developed Photovoltaic energy profile helps to predict the energy yield of the Photovoltaic systems based on the weather forecast and hence helps planning energy production and consumption. Two models will be developed in this paper; a Clear Sky Irradiance model and a Cloud-Cover Radiation model to predict the irradiance for a clear sky day and a cloudy day, respectively. The adopted procedure for developing such models takes into consideration two levels of abstraction. First, irradiance and weather data were acquired by a sensory (measurement) system installed on the rooftop of the Information Technology College building at Birzeit University campus. Second, power readings of a fully operational 51kW commercial Photovoltaic system installed in the University at the rooftop of the adjacent College of Pharmacy-Nursing and Health Professions building are used to validate the output of a simulation model and to help refine its structure. Based on a comparison between a mathematical model, which calculates Clear Sky Irradiance for the University location and two sets of accumulated measured data, it is found that the simulation system offers an accurate resemblance to the installed PV power station on clear sky days. However, these comparisons show a divergence between the expected energy yield and actual energy yield in extreme weather conditions, including clouding and soiling effects. Therefore, a more accurate prediction model for irradiance that takes into consideration weather factors, such as relative humidity and cloudiness, which affect irradiance, was developed; Cloud-Cover Radiation Model (CRM). The equivalent mathematical formulas implement corrections to provide more accurate inputs to the simulation system. The results of the CRM show a very good match with the actual measured irradiance during a cloudy day. The developed Photovoltaic profile helps in predicting the output energy yield of the Photovoltaic system installed at the University campus based on the predicted weather conditions. The simulation and practical results for both models are in a very good match.

Keywords: clear-sky irradiance model, cloud-cover radiation model, photovoltaic, weather forecast

Procedia PDF Downloads 127
1157 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold

Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher

Abstract:

Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.

Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve

Procedia PDF Downloads 135
1156 Phage Display-Derived Vaccine Candidates for Control of Bovine Anaplasmosis

Authors: Itzel Amaro-Estrada, Eduardo Vergara-Rivera, Virginia Juarez-Flores, Mayra Cobaxin-Cardenas, Rosa Estela Quiroz, Jesus F. Preciado, Sergio Rodriguez-Camarillo

Abstract:

Bovine anaplasmosis is an infectious, tick-borne disease caused mainly by Anaplasma marginale; typical signs include anemia, fever, abortion, weight loss, decreased milk production, jaundice, and potentially death. Sick bovine can recover when antibiotics are administered; however, it usually remains as carrier for life, being a risk of infection for susceptible cattle. Anaplasma marginale is an obligate intracellular Gram-negative bacterium with genetic composition highly diverse among geographical isolates. There are currently no vaccines fully effective against bovine anaplasmosis; therefore, the economic losses due to disease are present. Vaccine formulation became a hard task for several pathogens as Anaplasma marginale, but peptide-based vaccines are an interesting proposal way to induce specific responses. Phage-displayed peptide libraries have been proved one of the most powerful technologies for identifying specific ligands. Screening of these peptides libraries is also a tool for studying interactions between proteins or peptides. Thus, it has allowed the identification of ligands recognized by polyclonal antiserums, and it has been successful for the identification of relevant epitopes in chronic diseases and toxicological conditions. Protective immune response to bovine anaplasmosis includes high levels of immunoglobulins subclass G2 (IgG2) but not subclass IgG1. Therefore, IgG2 from the serum of protected bovine can be useful to identify ligands, which can be part of an immunogen for cattle. In this work, phage display random peptide library Ph.D. ™ -12 was incubating with IgG2 or blood sera of immunized bovines against A. marginale as targets. After three rounds of biopanning, several candidates were selected for additional analysis. Subsequently, their reactivity with sera immunized against A. marginale, as well as with positive and negative sera to A. marginale was evaluated by immunoassays. A collection of recognized peptides tested by ELISA was generated. More than three hundred phage-peptides were separately evaluated against molecules which were used during panning. At least ten different peptides sequences were determined from their nucleotide composition. In this approach, three phage-peptides were selected by their binding and affinity properties. In the case of the development of vaccines or diagnostic reagents, it is important to evaluate the immunogenic and antigenic properties of the peptides. Immunogenic in vitro and in vivo behavior of peptides will be assayed as synthetic and as phage-peptide for to determinate their vaccine potential. Acknowledgment: This work was supported by grant SEP-CONACYT 252577 given to I. Amaro-Estrada.

Keywords: bovine anaplasmosis, peptides, phage display, veterinary vaccines

Procedia PDF Downloads 137
1155 Contributions of Natural and Human Activities to Urban Surface Runoff with Different Hydrological Scenarios (Orléans, France)

Authors: Al-Juhaishi Mohammed, Mikael Motelica-Heino, Fabrice Muller, Audrey Guirimand-Dufour, Christian Défarge

Abstract:

This study aims at improving the urban hydrological cycle of the Orléans agglomeration (France) and understanding the relationship between physical and chemical parameters of urban surface runoff and the hydrological conditions. In particular water quality parameters such as pH, conductivity, total dissolved solids, major dissolved cations and anions, and chemical and biological oxygen demands were monitored for three types of urban water discharges (wastewater treatment plant output (WWTP), storm overflow and stormwater outfall) under two hydrologic scenarii (dry and wet weather). The first results were obtained over a period of five months.Each investigated (Ormes and l’Egoutier) outfall represents an urban runoff source that receives water from runoff roads, gutters, the irrigation of gardens and other sources of flow over the Earth’s surface that drains in its catchments and carries it to the Loire River. In wet weather conditions there is rain water runoff and an additional input from the roof gutters that have entered the stormwater system during rainfall. For the comparison the results La Chilesse is a storm overflow that was selected in our study as a potential source of waste water which is located before the (WWTP).The comparison of the physical-chemical parameters (total dissolved solids, turbidity, pH, conductivity, dissolved organic carbon (DOC), concentration of major cations and anions) together with the chemical oxygen demand (COD) and biological oxygen demand (BOD) helped to characterize sources of runoff waters in the different watersheds. It also helped to highlight the infiltration of wastewater in some stormwater systems that reject directly in the Loire River. The values of the conductivity measured in the outflow of Ormes were always higher than those measured in the other two outlets. The results showed a temporal variation for the Ormes outfall of conductivity from 1465 µS cm-1 in the dry weather flow to 650 µS cm-1 in the wet weather flow and also a spatial variation in the wet weather flow from 650 µS cm-1 in the Ormes outfall to 281 μS cm-1 in L’Egouttier outfall. The ultimate BOD (BOD28) showed a significant decrease in La Corne outfall from 210 mg L-1 in the wet weather flow to 75 mg L-1 in the dry weather flow because of the nutrient load that was transported by the runoff.

Keywords: BOD, COD, the Loire River, urban hydrology, urban dry and wet weather discharges, macronutrients

Procedia PDF Downloads 262
1154 Speech Acts of Selected Classroom Encounters: Analyzing the Speech Acts of a Career Technology Lesson

Authors: Michael Amankwaa Adu

Abstract:

Effective communication in the classroom plays a vital role in ensuring successful teaching and learning. In particular, the types of language and speech acts teachers use shape classroom interactions and influence student engagement. This study aims to analyze the speech acts employed by a Career Technology teacher in a junior high school. While much research has focused on speech acts in language classrooms, less attention has been given to how these acts operate in non-language subject areas like technical education. The study explores how different types of speech acts—directives, assertives, expressives, and commissives—are used during three classroom encounters: lesson introduction, content delivery, and classroom management. This research seeks to fill the gap in understanding how teachers of non-language subjects use speech acts to manage classroom dynamics and facilitate learning. The study employs a mixed-methods design, combining qualitative and quantitative approaches. Data was collected through direct classroom observation and audio recordings of a one-hour Career Technology lesson. The transcriptions of the lesson were analyzed using John Searle’s taxonomy of speech acts, classifying the teacher’s utterances into directives, assertives, expressives, and commissives. Results show that directives were the most frequently used speech act, accounting for 59.3% of the teacher's utterances. These speech acts were essential in guiding student behavior, giving instructions, and maintaining classroom control. Assertives made up 20.4% of the speech acts, primarily used for stating facts and reinforcing content. Expressives, at 14.2%, expressed emotions such as approval or frustration, helping to manage the emotional atmosphere of the classroom. Commissives were the least used, representing 6.2% of the speech acts, often used to set expectations or outline future actions. No declarations were observed during the lesson. The findings of this study reveal the critical role that speech acts play in managing classroom behavior and delivering content in technical subjects. Directives were crucial for ensuring students followed instructions and completed tasks, while assertives helped in reinforcing lesson objectives. Expressives contributed to motivating or disciplining students, and commissives, though less frequent, helped set clear expectations for students’ future actions. The absence of declarations suggests that the teacher prioritized guiding students over making formal pronouncements. These insights can inform teaching strategies across various subject areas, demonstrating that a diverse use of speech acts can create a balanced and interactive learning environment. This study contributes to the growing field of pragmatics in education and offers practical recommendations for educators, particularly in non-language classrooms, on how to utilize speech acts to enhance both classroom management and student engagement.

Keywords: classroom interaction, pragmatics, speech acts, teacher communication, career technology

Procedia PDF Downloads 15
1153 Using the Theory of Reasoned Action and Parental Mediation Theory to Examine Cyberbullying Perpetration among Children and Adolescents

Authors: Shirley S. Ho

Abstract:

The advancement and development of social media have inadvertently brought about a new form of bullying – cyberbullying – that transcends across physical boundaries of space. Although extensive research has been conducted in the field of cyberbullying, most of these studies have taken an overwhelmingly empirical angle. Theories guiding cyberbullying research are few. Furthermore, very few studies have explored the association between parental mediation and cyberbullying, with majority of existing studies focusing on cyberbullying victimization rather than perpetration. Therefore, this present study investigates cyberbullying perpetration from a theoretical angle, with a focus on the Theory of Reasoned Action and the Parental Mediation Theory. More specifically, this study examines the direct effects of attitude, subjective norms, descriptive norms, injunctive norms and active mediation and restrictive mediation on cyberbullying perpetration on social media among children and adolescents in Singapore. Furthermore, the moderating role of age on the relationship between parental mediation and cyberbullying perpetration on social media are examined. A self-administered paper-and-pencil nationally-representative survey was conducted. Multi-stage cluster random sampling was used to ensure that schools from all the four (North, South, East, and West) regions of Singapore were equally represented in the sample used for the survey. In all 607 upper primary school children (i.e., Primary 4 to 6 students) and 782 secondary school adolescents participated in our survey. The total average response rates were 69.6% for student participation. An ordinary least squares hierarchical regression analysis was conducted to test the hypotheses and research questions. The results revealed that attitude and subjective norms were positively associated with cyberbullying perpetration on social media. Descriptive norms and injunctive norms were not found to be significantly associated with cyberbullying perpetration. The results also showed that both parental mediation strategies were negatively associated with cyberbullying perpetration on social media. Age was a significant moderator of both parental mediation strategies and cyberbullying perpetration. The negative relationship between active mediation and cyberbullying perpetration was found to be greater in the case of children than adolescents. Children who received high restrictive parental mediation were less likely to perform cyberbullying behaviors, while adolescents who received high restrictive parental mediation were more likely to be engaged in cyberbullying perpetration. The study reveals that parents should apply active mediation and restrictive mediation in different ways for children and adolescents when trying to prevent cyberbullying perpetration. The effectiveness of active parental mediation for reducing cyberbullying perpetration was more in the case of children than for adolescents. Younger children were found to be more likely to respond more positively toward restrictive parental mediation strategies, but in the case of adolescents, overly restrictive control was found to increase cyberbullying perpetration. Adolescents exhibited less cyberbullying behaviors when under low restrictive strategies. Findings highlight that the Theory of Reasoned Action and Parental Mediation Theory are promising frameworks to apply in the examination of cyberbullying perpetration. The findings that different parental mediation strategies had differing effectiveness, based on the children’s age, bring about several practical implications that may benefit educators and parents when addressing their children’s online risk.

Keywords: cyberbullying perpetration, theory of reasoned action, parental mediation, social media, Singapore

Procedia PDF Downloads 249
1152 The Decision-Making Process of the Central Banks of Brazil and India in Regional Integration: A Comparative Analysis of MERCOSUR and SAARC (2003-2014)

Authors: Andre Sanches Siqueira Campos

Abstract:

Central banks can play a significant role in promoting regional economic and monetary integration by strengthening the payment and settlement systems. However, close coordination and cooperation require facilitating the implementation of reforms at domestic and cross-border levels in order to benchmark with international standards and commitments to the liberal order. This situation reflects the normative power of the regulatory globalization dimension of strong states, which may drive or constrain regional integration. In the MERCOSUR and SAARC regions, central banks have set financial initiatives that could facilitate South America and South Asia regions to move towards convergence integration and facilitate trade and investments connectivities. This is qualitative method research based on a combination of the Process-Tracing method with Qualitative Comparative Analysis (QCA). This research approaches multiple forms of data based on central banks, regional organisations, national governments, and financial institutions supported by existing literature. The aim of this research is to analyze the decision-making process of the Central Bank of Brazil (BCB) and the Reserve Bank of India (RBI) towards regional financial cooperation by identifying connectivity instruments that foster, gridlock, or redefine cooperation. The BCB and The RBI manage the monetary policy of the largest economies of those regions, which makes regional cooperation a relevant framework to understand how they provide an effective institutional arrangement for regional organisations to achieve some of their key policies and economic objectives. The preliminary conclusion is that both BCB and RBI demonstrate a reluctance to deepen regional cooperation because of the existing economic, political, and institutional asymmetries. Deepening regional cooperation is constrained by the interests of central banks in protecting their economies from risks of instability due to different degrees of development between countries in their regions and international financial crises that have impacted the international system in the 21st century. Reluctant regional integration also provides autonomy for national development and political ground for the contestation of Global Financial Governance by Brazil and India.

Keywords: Brazil, central banks, decision-making process, global financial governance, India, MERCOSUR, connectivity, payment system, regional cooperation, SAARC

Procedia PDF Downloads 104
1151 Design, Numerical Simulation, Fabrication and Physical Experimentation of the Tesla’s Cohesion Type Bladeless Turbine

Authors: M.Sivaramakrishnaiah, D. S .Nasan, P. V. Subhanjeneyulu, J. A. Sandeep Kumar, N. Sreenivasulu, B. V. Amarnath Reddy, B. Veeralingam

Abstract:

Design, numerical simulation, fabrication, and physical experimentation of the Tesla’s Bladeless centripetal turbine for generating electrical power are presented in this research paper. 29 Pressurized air combined with water via a nozzle system is made to pass tangentially through a set of parallel smooth discs surfaces, which impart rotational motion to the discs fastened common shaft for the power generation. The power generated depends upon the fluid speed parameter leaving the nozzle inlet. Physically due to laminar boundary layer phenomena at smooth disc surface, the high speed fluid layers away from the plate moving against the low speed fluid layers nearer to the plate develop a tangential drag from the viscous shear forces. This compels the nearer layers to drag along with the high layers causing the disc to spin. Solid Works design software and fluid mechanics and machine elements design theories was used to compute mechanical design specifications of turbine parts like 48 mm diameter discs, common shaft, central exhaust, plenum chamber, swappable nozzle inlets, etc. Also, ANSYS CFX 2018 was used for the numerical 2 simulation of the physical phenomena encountered in the turbine working. When various numerical simulation and physical experimental results were verified, there is good agreement between them 6, both quantitatively and qualitatively. The sources of input and size of the blades may affect the power generated and turbine efficiency, respectively. The results may change if there is a change in the fluid flowing between the discs. The inlet fluid pressure versus turbine efficiency and the number of discs versus turbine power studies based on both results were carried out to develop the 8 relationships between the inlet and outlet parameters of the turbine. The present research work obtained the turbine efficiency in the range of 7-10%, and for this range; the electrical power output generated was 50-60 W.

Keywords: tesla turbine, cohesion type bladeless turbine, boundary layer theory, cohesion type bladeless turbine, tangential fluid flow, viscous and adhesive forces, plenum chamber, pico hydro systems

Procedia PDF Downloads 85
1150 Examining College Students’ Attitudes toward Diversity Environments in a Physical Activity Course

Authors: Young Ik Suh, Sanghak Lee, Tae Wook Chung

Abstract:

In recent year, cultural diversity has acquired increasing attentions in our society due to the cultural pluralism and globalization. With the emphasis of diversity in our society, higher education has played a significant role in preparing people to be successful in a diverse world. A number of colleges and universities provide various diversity-related courses that enhance students to recognize the importance of diversity and multiculturalism. However, little research has been conducted with diversity environments in physical activity and sports-related courses to appreciate students’ attitudes toward multiculturalism. Physical activity courses can be regarded as an essential and complementary part of general education. As well, playing and watching certain sports plays a critical role to foster mutual understanding between different races and to help social integration for minority communities. Therefore, it is expected that the appropriate diverse environments in physical activity courses may have a positive impact to the understandings of different cultures and races. The primary purpose of this study is to examine attitudes toward cultural diversity in a physical activity course among undergraduate students. In building on the scholarly foundation in this area, this study applies the established survey scale (e.g., Pluralism and Diversity Attitude Assessment [PADAA]) developed by Stanley (1996) and previous literature related to cultural diversity. The PADAA includes 19 questions. The following two research hypotheses were proposed. H1: Students who take a diversity-related physical course (i.e., Taekwondo) will provide positive attitude changes toward their cultural diversity. H2: Students who take a general physical activity course (i.e., Weight Training) will provide no significant attitude changes toward their cultural diversity. To test the research hypotheses, subjects will be selected from the both Taekwondo and Weight Training class at University of West Georgia. In the Taekwondo class, students will learn the history, meaning, basic terminology, and physical skills, which is a Korean martial art and the national sport of Korea. In the Weight Training class, students will not be exposed to any cultural diversity topics. Regarding data analysis, Doubly Multivariate Analysis of Covariance (Doubly MANCOVA), 2 (time period: pre and after) X 2 (diversity-related content exposure: Taekwondo and Weight Training), will be conducted on attitudes toward the cultural diversity with control variables such as gender and age. The findings of this study will add to the body of literature in cultural diversity because this will be the first known attempt to explain the college students’ attitudes toward cultural diversity in a physical activity courses. The expected results will state that the physical activity course focusing on diversity issues will have a positive impact on college students’ attitude toward cultural diversity. This finding will indicate that Universities need to create diverse programs (e.g., study abroad, exchange program, second language courses) and environments so that students can have positive interactions with other groups of races and different cultures. It is also expected that the positive perceptions and attitudes toward cultural diversity will break down cultural barriers and make students be ready for meeting several challenges in a multicultural and global society.

Keywords: cultural diversity, physical activity course, attitude, Taekwondo

Procedia PDF Downloads 263
1149 Analysis of Waterjet Propulsion System for an Amphibious Vehicle

Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian

Abstract:

This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.

Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion

Procedia PDF Downloads 221
1148 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence

Authors: Oluwagbemi Victor Aladeokin

Abstract:

In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.

Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area

Procedia PDF Downloads 141
1147 Factors Controlling Marine Shale Porosity: A Case Study between Lower Cambrian and Lower Silurian of Upper Yangtze Area, South China

Authors: Xin Li, Zhenxue Jiang, Zhuo Li

Abstract:

Generally, shale gas is trapped within shale systems with low porosity and ultralow permeability as free and adsorbing states. Its production is controlled by properties, in terms of occurrence phases, gas contents, and percolation characteristics. These properties are all influenced by porous features. In this paper, porosity differences of marine shales were explored between Lower Cambrian shale and Lower Silurian shale of Sichuan Basin, South China. Both the two shales were marine shales with abundant oil-prone kerogen and rich siliceous minerals. Whereas Lower Cambrian shale (3.56% Ro) possessed a higher thermal degree than that of Lower Silurian shale (2.31% Ro). Samples were measured by a combination of organic-chemistry geology measurement, organic matter (OM) isolation, X-ray diffraction (XRD), N2 adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). Lower Cambrian shale presented relatively low pore properties, with averaging 0.008ml/g pore volume (PV), averaging 7.99m²/g pore surface area (PSA) and averaging 5.94nm average pore diameter (APD). Lower Silurian shale showed as relatively high pore properties, with averaging 0.015ml/g PV, averaging 10.53m²/g PSA and averaging 18.60nm APD. Additionally, fractal analysis indicated that the two shales presented discrepant pore morphologies, mainly caused by differences in the combination of pore types between the two shales. More specifically, OM-hosted pores with pin-hole shape and dissolved pores with dead-end openings were the main types in Lower Cambrian shale, while OM-hosted pore with a cellular structure was the main type in Lower Silurian shale. Moreover, porous characteristics of isolated OM suggested that OM of Lower Silurian shale was more capable than that of Lower Cambrian shale in the aspect of pore contribution. PV of isolated OM in Lower Silurian shale was almost 6.6 times higher than that in Lower Cambrian shale, and PSA of isolated OM in Lower Silurian shale was almost 4.3 times higher than that in Lower Cambrian shale. However, no apparent differences existed among samples with various matrix compositions. At late diagenetic or metamorphic epoch, extensive diagenesis overprints the effects of minerals on pore properties and OM plays the dominant role in pore developments. Hence, differences of porous features between the two marine shales highlight the effect of diagenetic degree on OM-hosted pore development. Consequently, distinctive pore characteristics may be caused by the different degrees of diagenetic evolution, even with similar matrix basics.

Keywords: marine shale, lower Cambrian, lower Silurian, om isolation, pore properties, om-hosted pore

Procedia PDF Downloads 131
1146 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 121
1145 The Clinical Effectiveness of Off-The-Shelf Foot Orthoses on the Dynamics of Gait in Patients with Early Rheumatoid Arthritis

Authors: Vicki Cameron

Abstract:

Background: Rheumatoid Arthritis (RA) typically effects the feet and about 20% of patients present initially with foot and ankle symptoms. Custom moulded foot orthoses (FO) in the management of foot and ankle problems in RA is well documented in the literature. Off-the-shelf FO are thought to provide an effective alternative to custom moulded FO in patients with RA, however they are not evidence based. Objectives: To determine the effects of off-the-shelf FO on; 1. quality of life (QOL) 2. walking speed 4. peak plantar pressure in the forefoot (PPPft) Methods: Thirty-five patients (six male and 29 female) participated in the study from 11/2006 to 07/2008. The age of the patients ranged from 26 to 80 years (mean 52.4 years; standard deviation [SD] 13.3 years). A repeated measures design was used, with patients presenting at baseline, three months and six months. Patients were tested walking barefoot, shod and shod with FO. The type of orthoses used was the Slimflex Plastic ® (Algeos). The Leeds Foot Impact Scale (LFIS) was used to investigate QOL. The Vicon 612 motion analysis system was used to determine the effect of FO on walking speed. The F-scan walkway and in-shoe systems provided information of the effect on PPPft. Ethical approval was obtained on 07/2006. Data was analysed using SPSS version 15.0. Results/Discussion: The LFIS data was analysed with a repeated measures ANOVA. There was a significant improvement in the LFIS score with the use of the FO over the six months (p<0.01). A significant increase in walking speed with the orthoses was observed (p<0.01). Peak plantar pressure in the forefoot was reduced with the FO, as shown by a non-parametric Friedman’s test (chi-square = 55.314, df=2, p<0.05). Conclusion: The results show that off-the-shelf FO are effective in managing foot problems in patients with RA. Patients reported an improved QOL with the orthoses, and further objective measurements were quantified to provide a rationale for this change. Patients demonstrated an increased walking speed, which has been shown to be associated with reduced pain. The FO decreased PPPft which have been reported as a site of pain and ulceration in patients with RA. Salient Clinical Points: Off-the-shelf FO offer an effective alternative to custom moulded FO, and can be dispensed at the chair side. This is crucial in the management of foot problems associated with RA as early intervention is advocated due to the chronic and progressive nature of the disease.

Keywords: podiatry, rheumatoid arthritis, foot orthoses, gait analysis

Procedia PDF Downloads 256
1144 Impact of 6-Week Brain Endurance Training on Cognitive and Cycling Performance in Highly Trained Individuals

Authors: W. Staiano, S. Marcora

Abstract:

Introduction: It has been proposed that acute negative effect of mental fatigue (MF) could potentially become a training stimulus for the brain (Brain endurance training (BET)) to adapt and improve its ability to attenuate MF states during sport competitions. Purpose: The aim of this study was to test the efficacy of 6 weeks of BET on cognitive and cycling tests in a group of well-trained subjects. We hypothesised that combination of BET and standard physical training (SPT) would increase cognitive capacity and cycling performance by reducing rating of perceived exertion (RPE) and increase resilience to fatigue more than SPT alone. Methods: In a randomized controlled trial design, 26 well trained participants, after a familiarization session, cycled to exhaustion (TTE) at 80% peak power output (PPO) and, after 90 min rest, at 65% PPO, before and after random allocation to a 6 week BET or active placebo control. Cognitive performance was measured using 30 min of STROOP coloured task performed before cycling performance. During the training, BET group performed a series of cognitive tasks for a total of 30 sessions (5 sessions per week) with duration increasing from 30 to 60 min per session. Placebo engaged in a breathing relaxation training. Both groups were monitored for physical training and were naïve to the purpose of the study. Physiological and perceptual parameters of heart rate, lactate (LA) and RPE were recorded during cycling performances, while subjective workload (NASA TLX scale) was measured during the training. Results: Group (BET vs. Placebo) x Test (Pre-test vs. Post-test) mixed model ANOVA’s revealed significant interaction for performance at 80% PPO (p = .038) or 65% PPO (p = .011). In both tests, groups improved their TTE performance; however, BET group improved significantly more compared to placebo. No significant differences were found for heart rate during the TTE cycling tests. LA did not change significantly at rest in both groups. However, at completion of 65% TTE, it was significantly higher (p = 0.043) in the placebo condition compared to BET. RPE measured at ISO-time in BET was significantly lower (80% PPO, p = 0.041; 65% PPO p= 0.021) compared to placebo. Cognitive results in the STROOP task showed that reaction time in both groups decreased at post-test. However, BET decreased significantly (p = 0.01) more compared to placebo despite no differences accuracy. During training sessions, participants in the BET showed, through NASA TLX questionnaires, constantly significantly higher (p < 0.01) mental demand rates compared to placebo. No significant differences were found for physical demand. Conclusion: The results of this study provide evidences that combining BET and SPT seems to be more effective than SPT alone in increasing cognitive and cycling performance in well trained endurance participants. The cognitive overload produced during the 6-week training of BET can induce a reduction in perception of effort at a specific power, and thus improving cycling performance. Moreover, it provides evidence that including neurocognitive interventions will benefit athletes by increasing their mental resilience, without affecting their physical training load and routine.

Keywords: cognitive training, perception of effort, endurance performance, neuro-performance

Procedia PDF Downloads 115
1143 Further Development of Offshore Floating Solar and Its Design Requirements

Authors: Madjid Karimirad

Abstract:

Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology.

Keywords: floating solar, offshore renewable energy, wind and wave loading, design space

Procedia PDF Downloads 73
1142 Spatio-Temporal Variation of Gaseous Pollutants and the Contribution of Particulate Matters in Chao Phraya River Basin, Thailand

Authors: Samart Porncharoen, Nisa Pakvilai

Abstract:

The elevated levels of air pollutants in regional atmospheric environments is a significant problem that affects human health in Thailand, particularly in the Chao Phraya River Basin. Of concern are issues surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the river. Therefore, the spatio-temporal study of air pollution in this real environment can gain more accurate air quality data for making formalized environmental policy in river basins. In order to inform such a policy, a study was conducted over a period of January –December, 2015 to continually collect measurements of various pollutants in both urban and regional locations in the Chao Phraya River Basin. This study investigated the air pollutants in many diverse environments along the Chao Phraya River Basin, Thailand in 2015. Multivariate Analysis Techniques such as Principle Component Analysis (PCA) and Path analysis were utilised to classify air pollution in the surveyed location. Measurements were collected in both urban and rural areas to see if significant differences existed between the two locations in terms of air pollution levels. The meteorological parameters of various particulates were collected continually from a Thai pollution control department monitoring station over a period of January –December, 2015. Of interest to this study were the readings of SO2, CO, NOx, O3, and PM10. Results showed a daily arithmetic mean concentration of SO2, CO, NOx, O3, PM10 reading at 3±1 ppb, 0.5± 0.5 ppm, 30±21 ppb, 19±16 ppb, and 40±20 ug/m3 in urban locations (Bangkok). During the same time period, the readings for the same measurements in rural areas, Ayutthaya (were 1±0.5 ppb, 0.1± 0.05 ppm, 25±17 ppb, 30±21 ppb, and 35±10 ug/m3respectively. This show that Bangkok were located in highly polluted environments that are dominated source emitted from vehicles. Further, results were analysed to ascertain if significant seasonal variation existed in the measurements. It was found that levels of both gaseous pollutants and particle matter in dry season were higher than the wet season. More broadly, the results show that levels of pollutants were measured highest in locations along the Chao Phraya. River Basin known to have a large number of vehicles and biomass burning. This correlation suggests that the principle pollutants were from these anthropogenic sources. This study contributes to the body of knowledge surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the Chao Phraya River Basin. Further, this study is one of the first to utilise continuous mobile monitoring along a river in order to gain accurate measurements during a data collection period. Overall, the results of this study can be used for making formalized environmental policy in river basins in order to reduce the physical effects on human health.

Keywords: air pollution, Chao Phraya river basin, meteorology, seasonal variation, principal component analysis

Procedia PDF Downloads 280
1141 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 51
1140 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 145
1139 Impact of Pandemics on Cities and Societies

Authors: Deepak Jugran

Abstract:

Purpose: The purpose of this study is to identify how past Pandemics shaped social evolution and cities. Methodology: A historical and comparative analysis of major historical pandemics in human history their origin, transmission route, biological response and the aftereffects. A Comprehensive pre & post pandemic scenario and focuses selectively on major issues and pandemics that have deepest & lasting impact on society with available secondary data. Results: Past pandemics shaped the behavior of human societies and their cities and made them more resilient biologically, intellectually & socially endorsing the theory of “Survival of the fittest” by Sir Charles Darwin. Pandemics & Infectious diseases are here to stay and as a human society, we need to strengthen our collective response & preparedness besides evolving mechanisms for strict controls on inter-continental movements of people, & especially animals who become carriers for these viruses. Conclusion: Pandemics always resulted in great mortality, but they also improved the overall individual human immunology & collective social response; at the same time, they also improved the public health system of cities, health delivery systems, water, sewage distribution system, institutionalized various welfare reforms and overall collective social response by the societies. It made human beings more resilient biologically, intellectually, and socially hence endorsing the theory of “AGIL” by Prof Talcott Parsons. Pandemics & infectious diseases are here to stay and as humans, we need to strengthen our city response & preparedness besides evolving mechanisms for strict controls on inter-continental movements of people, especially animals who always acted as carriers for these novel viruses. Pandemics over the years acted like natural storms, mitigated the prevailing social imbalances and laid the foundation for scientific discoveries. We understand that post-Covid-19, institutionalized city, state and national mechanisms will get strengthened and the recommendations issued by the various expert groups which were ignored earlier will now be implemented for reliable anticipation, better preparedness & help to minimize the impact of Pandemics. Our analysis does not intend to present chronological findings of pandemics but rather focuses selectively on major pandemics in history, their causes and how they wiped out an entire city’s population and influenced the societies, their behavior and facilitated social evolution.

Keywords: pandemics, Covid-19, social evolution, cities

Procedia PDF Downloads 107
1138 Assessment of the Impact of Regular Pilates Exercises on Static Balance in Healthy Adult Women: Preliminary Report

Authors: Anna Słupik, Krzysztof Jaworski, Anna Mosiołek, Dariusz Białoszewski

Abstract:

Background: Maintaining the correct body balance is essential in the prevention of falls in the elderly, which is especially important for women because of postmenopausal osteoporosis and the serious consequences of falls. One of the exercise methods which is very popular among adults, and which may affect body balance in a positive way is the pilates method. The aim of the study was to evaluate the effect of regular pilates exercises on the ability to maintain body balance in static conditions in adult healthy women. Material and methods: The study group consisted of 20 healthy women attending pilates twice a week for at least 1 year. The control group consisted of 20 healthy women physically inactive. Women in the age range from 35 to 50 years old without pain in musculoskeletal system or other pain were only qualified to the groups. Body balance was assessed using MatScan VersaTek platform with Sway Analysis Module based on Matscan Clinical 6.7 software. The balance was evaluated under the following conditions: standing on both feet with eyes open, standing on both feet with eyes closed, one-leg standing (separately on the right and left foot) with eyes open. Each test lasted 30 seconds. The following parameters were calculated: estimated size of the ellipse of 95% confidence, the distance covered by the Center of Gravity (COG), the size of the maximum shift in the sagittal and frontal planes and load distribution between the left and right foot, as well as between rear- and forefoot. Results: It was found that there is significant difference between the groups in favor of the study group in the size of the confidence ellipse and maximum shifts of COG in the sagittal plane during standing on both feet, both with the eyes open and closed (p < 0.05). While standing on one leg both on the right and left leg, with eyes opened there was a significant difference in favor of the study group, in terms of the size of confidence ellipse, the size of the maximum shifts in the sagittal and in the frontal plane (p < 0.05). There were no differences between the distribution of load between the right and left foot (standing with both feet), nor between fore- and rear foot (in standing with both feet or one-leg). Conclusions: 1. Static balance in women exercising regularly by pilates method is better than in inactive women, which may in the future prevent falls and their consequences. 2. The observed differences in maintaining balance in frontal plane in one-leg standing may indicate a positive impact of pilates exercises on the ability to maintain global balance in terms of the reduced support surface. 3. Pilates method can be used as a form preventive therapy for all people who are expected to have problems with body balance in the future, for example in chronic neurological disorders or vestibular problems. 4. The results have shown that further prospective randomized research on a larger and more representative group is needed.

Keywords: balance exercises, body balance, pilates, pressure distribution, women

Procedia PDF Downloads 309
1137 Identification of Text Domains and Register Variation through the Analysis of Lexical Distribution in a Bangla Mass Media Text Corpus

Authors: Mahul Bhattacharyya, Niladri Sekhar Dash

Abstract:

The present research paper is an experimental attempt to investigate the nature of variation in the register in three major text domains, namely, social, cultural, and political texts collected from the corpus of Bangla printed mass media texts. This present study uses a corpus of a moderate amount of Bangla mass media text that contains nearly one million words collected from different media sources like newspapers, magazines, advertisements, periodicals, etc. The analysis of corpus data reveals that each text has certain lexical properties that not only control their identity but also mark their uniqueness across the domains. At first, the subject domains of the texts are classified into two parameters namely, ‘Genre' and 'Text Type'. Next, some empirical investigations are made to understand how the domains vary from each other in terms of lexical properties like both function and content words. Here the method of comparative-cum-contrastive matching of lexical load across domains is invoked through word frequency count to track how domain-specific words and terms may be marked as decisive indicators in the act of specifying the textual contexts and subject domains. The study shows that the common lexical stock that percolates across all text domains are quite dicey in nature as their lexicological identity does not have any bearing in the act of specifying subject domains. Therefore, it becomes necessary for language users to anchor upon certain domain-specific lexical items to recognize a text that belongs to a specific text domain. The eventual findings of this study confirm that texts belonging to different subject domains in Bangla news text corpus clearly differ on the parameters of lexical load, lexical choice, lexical clustering, lexical collocation. In fact, based on these parameters, along with some statistical calculations, it is possible to classify mass media texts into different types to mark their relation with regard to the domains they should actually belong. The advantage of this analysis lies in the proper identification of the linguistic factors which will give language users a better insight into the method they employ in text comprehension, as well as construct a systemic frame for designing text identification strategy for language learners. The availability of huge amount of Bangla media text data is useful for achieving accurate conclusions with a certain amount of reliability and authenticity. This kind of corpus-based analysis is quite relevant for a resource-poor language like Bangla, as no attempt has ever been made to understand how the structure and texture of Bangla mass media texts vary due to certain linguistic and extra-linguistic constraints that are actively operational to specific text domains. Since mass media language is assumed to be the most 'recent representation' of the actual use of the language, this study is expected to show how the Bangla news texts reflect the thoughts of the society and how they leave a strong impact on the thought process of the speech community.

Keywords: Bangla, corpus, discourse, domains, lexical choice, mass media, register, variation

Procedia PDF Downloads 171
1136 Soils Properties of Alfisols in the Nicoya Peninsula, Guanacaste, Costa Rica

Authors: Elena Listo, Miguel Marchamalo

Abstract:

This research studies the soil properties located in the watershed of Jabillo River in the Guanacaste province, Costa Rica. The soils are classified as Alfisols (T. Haplustalfs), in the flatter parts with grazing as Fluventic Haplustalfs or as a consequence of bad drainage as F. Epiaqualfs. The objective of this project is to define the status of the soil, to use remote sensing as a tool for analyzing the evolution of land use and determining the water balance of the watershed in order to improve the efficiency of the water collecting systems. Soil samples were analyzed from trial pits taken from secondary forests, degraded pastures, mature teak plantation, and regrowth -Tectona grandis L. F.- species developed favorably in the area. Furthermore, to complete the study, infiltration measurements were taken with an artificial rainfall simulator, as well as studies of soil compaction with a penetrometer, in points strategically selected from the different land uses. Regarding remote sensing, nearly 40 data samples were collected per plot of land. The source of radiation is reflected sunlight from the beam and the underside of leaves, bare soil, streams, roads and logs, and soil samples. Infiltration reached high levels. The majority of data came from the secondary forest and mature planting due to a high proportion of organic matter, relatively low bulk density, and high hydraulic conductivity. Teak regrowth had a low rate of infiltration because the studies made regarding the soil compaction showed a partial compaction over 50 cm. The secondary forest presented a compaction layer from 15 cm to 30 cm deep, and the degraded pasture, as a result of grazing, in the first 15 cm. In this area, the alfisols soils have high content of iron oxides, a fact that causes a higher reflectivity close to the infrared region of the electromagnetic spectrum (around 700mm), as a result of clay texture. Specifically in the teak plantation where the reflectivity reaches values of 90 %, this is due to the high content of clay in relation to others. In conclusion, the protective function of secondary forests is reaffirmed with regards to erosion and high rate of infiltration. In humid climates and permeable soils, the decrease of runoff is less, however, the percolation increases. The remote sensing indicates that being clay soils, they retain moisture in a better way and it means a low reflectivity despite being fine texture.

Keywords: alfisols, Costa Rica, infiltration, remote sensing

Procedia PDF Downloads 691
1135 Immune Responses and Pathological Manifestations in Chicken to Oral Infection with Salmonella typhimurium

Authors: Mudasir Ahmad Syed, Raashid Ahmd Wani, Mashooq Ahmad Dar, Uneeb Urwat, Riaz Ahmad Shah, Nazir Ahmad Ganai

Abstract:

Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a primary avian pathogen responsible for severe intestinal pathology in younger chickens and economic losses. However, the Salmonella Typhimurium is also able to cause infection in humans, described by typhoid fever and acute gastro-intestinal disease. A study was conducted at days to investigate pathological, histopathological, haemato-biochemical, immunological and expression kinetics of NRAMP (natural resistance associated macrophage protein) gene family (NRAMP1 and NRAMP2) in broiler chickens following experimental infection of Salmonella Typhimurium at 0,1,3,5,7,9,11,13 and 15 days respectively. Infection was developed in birds through oral route at 2×108 CFU/ml. Clinical symptoms appeared 4 days post infection (dpi) and after one-week birds showed progressive weakness, anorexia, diarrhea and lowering of head. On postmortem examination, liver showed congestion, hemorrhage and necrotic foci on surface, while as spleen, lungs and intestines revealed congestion and hemorrhages. Histopathological alterations were principally observed in liver in second week post infection. Changes in liver comprised of congestion, areas of necrosis, reticular endothelial hyperplasia in association with mononuclear cell and heterophilic infiltration. Hematological studies confirm a significant decrease (P<0.05) in RBC count, Hb concentration and PCV. White blood cell count showed significant increase throughout the experimental study. An increase in heterophils was found up to 7dpi and a decreased pattern was observed afterwards. Initial lymphopenia followed by lymphocytosis was found in infected chicks. Biochemical studies showed a significant increase in glucose, AST and ALT concentration and a significant decrease (P<0.05) in total protein and albumin level in the infected group. Immunological studies showed higher titers of IgG in infected group as compared to control group. The real time gene expression of NRAMPI and NRAMP2 genes increased significantly (P<0.05) in infected group as compared to controls. The peak expression of NRAMP1 gene was seen in liver, spleen and caecum of infected birds at 3dpi, 5dpi and 7dpi respectively, while as peak expression of NRAMP2 gene in liver, spleen and caecum of infected chicken was seen at 9dpi, 5dpi and 9dpi respectively. This study has role in diagnostics and prognostics in the poultry industry for the detection of salmonella infections at early stages of poultry development.

Keywords: biochemistry, histopathology, NRAMP, poultry, real time expression, Salmonella Typhimurium

Procedia PDF Downloads 329
1134 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 139