Search results for: least square support vector machine
9653 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations
Authors: Teoman Ozer, Ozlem Orhan
Abstract:
This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.Keywords: λ-symmetry, μ-symmetry, classification, invariant solution
Procedia PDF Downloads 3199652 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 4239651 Three Foci of Trust as Potential Mediators in the Association Between Job Insecurity and Dynamic Organizational Capability: A Quantitative, Exploratory Study
Authors: Marita Heyns
Abstract:
Job insecurity is a distressing phenomenon which has far reaching consequences for both employees and their organizations. Previously, much attention has been given to the link between job insecurity and individual level performance outcomes, while less is known about how subjectively perceived job insecurity might transfer beyond the individual level to affect performance of the organization on an aggregated level. Research focusing on how employees’ fear of job loss might affect the organization’s ability to respond proactively to volatility and drastic change through applying its capabilities of sensing, seizing, and reconfiguring, appears to be practically non-existent. Equally little is known about the potential underlying mechanisms through which job insecurity might affect the dynamic capabilities of an organization. This study examines how job insecurity might affect dynamic organizational capability through trust as an underling process. More specifically, it considered the simultaneous roles of trust at an impersonal (organizational) level as well as trust at an interpersonal level (in leaders and co-workers) as potential underlying mechanisms through which job insecurity might affect the organization’s dynamic capability to respond to opportunities and imminent, drastic change. A quantitative research approach and a stratified random sampling technique enabled the collection of data among 314 managers at four different plant sites of a large South African steel manufacturing organization undergoing dramatic changes. To assess the study hypotheses, the following statistical procedures were employed: Structural equation modelling was performed in Mplus to evaluate the measurement and structural models. The Chi-square values test for absolute fit as well as alternative fit indexes such as the Comparative Fit Index and the Tucker-Lewis Index, the Root Mean Square Error of Approximation and the Standardized Root Mean Square Residual were used as indicators of model fit. Composite reliabilities were calculated to evaluate the reliability of the factors. Finally, interaction effects were tested by using PROCESS and the construction of two-sided 95% confidence intervals. The findings indicate that job insecurity had a lower-than-expected detrimental effect on evaluations of the organization’s dynamic capability through the conducive buffering effects of trust in the organization and in its leaders respectively. In contrast, trust in colleagues did not seem to have any noticeable facilitative effect. The study proposes that both job insecurity and dynamic capability can be managed more effectively by also paying attention to factors that could promote trust in the organization and its leaders; some practical recommendations are given in this regard.Keywords: dynamic organizational capability, impersonal trust, interpersonal trust, job insecurity
Procedia PDF Downloads 919650 A Designing 3D Model: Castle of the Mall-Dern
Authors: Nanadcha Sinjindawong
Abstract:
This article discusses the design process of a community mall called Castle of The Mall-dern. The concept behind this mall is to combine elements of a medieval castle with modern architecture. The author aims to create a building that fits into the surroundings while also providing users with the vibes of the ancient era. The total area used for the mall is 4,000 square meters, with three floors. The first floor is 1,500 square meters, the second floor is 1,750 square meters, and the third floor is 750 square meters. Research Aim: The aim of this research is to design a community mall that sells ancient clothes and accessories, and to combine sustainable architectural design with the ideas of ancient architecture in an urban area with convenient transportation. Methodology: The research utilizes qualitative research methods in architectural design. The process begins with calculating the given area and dividing it into different zones. The author then sketches and draws the plan of each floor, adding the necessary rooms based on the floor areas mentioned earlier. The program "SketchUp" is used to create an online 3D model of the community mall, and a physical model is built for presentation purposes on A1 paper, explaining all the details. Findings: The result of this research is a community mall with various amenities. The first floor includes retail shops, clothing stores, a food center, and a service zone. Additionally, there is an indoor garden with a fountain and a tree for relaxation. The second and third floors feature a void in the middle, with a few stores, cafes, restaurants, and studios on the second floor. The third floor is home to the administration and security control room, as well as a community gathering area designed as a public library with a café inside. Theoretical Importance: This research contributes to the field of sustainable architectural design by combining ancient architectural ideas with modern elements. It showcases the potential for creating buildings that blend historical aesthetics with contemporary functionality. Data Collection and Analysis Procedures: The data for this research is collected through a combination of area calculation, sketching, and building a 3D model. The analysis involves evaluating the design based on the allocated area, zoning, and functional requirements for a community mall. Question Addressed: The research addresses the question of how to design a community mall with a theme of ancient Medieval and Victorian eras. It explores how to combine sustainable architectural design principles with historical aesthetics to create a functional and visually appealing space. Conclusion: In conclusion, this research successfully designs a community mall called “Castle of The Mall-dern” that incorporates elements of Medieval and Victorian architecture. The building encompasses various zones, including retail shops, restaurants, community gathering areas, and service zones. It also features an interior garden and a public library within the mall. The research contributes to the field of sustainable architectural design by showcasing the potential for combining ancient architectural ideas with modern elements in an urban setting.Keywords: 3D model, community mall, modern architecture, medieval architecture
Procedia PDF Downloads 1079649 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 909648 Public Debt Shocks and Public Goods Provisioning in Nigeria: Implication for National Development
Authors: Amenawo I. Offiong, Hodo B. Riman
Abstract:
Public debt profile of Nigeria has continuously been on the increase over the years. The drop in international crude oil prices has further worsened revenue position of the country, thus, necessitating further acquisition of public debt to bridge the gap in revenue deficit. Yet, when we look back at the increasing public sector spending, there are concerns that the government spending do not amount to increase in public goods provided for the country. Using data from 1980 to 2014 the study therefore seeks to investigate the factors responsible for the poor provision of public goods in the face of increasing public debt profile. Using the unrestricted VAR model Governance and Tax revenue were introduced into the model as structural variables. The result suggested that governance and tax revenue were structural determinants of the effectiveness of public goods provisioning in Nigeria. The study therefore identified weak governance as the major reason for the non-provision of public goods in Nigeria. While tax revenue exerted positive influence on the provisions of public goods, weak/poor governance was observed to crowd the benefits from increase tax revenue. The study therefore recommends reappraisal of the governance system in Nigeria. Elected officers in governance should be more transparent and accountable to the electorates they represent. Furthermore, the study advocates for an annual auditing of all government MDAs accounts by external auditors to ensure (a) accountability of public debts utilization, (b) transparent in implementation of program support funds, (c) integrity of agencies responsible for program management, and (d) measuring program effectiveness with amount of funds expended.Keywords: impulse response function, public debt shocks, governance, public goods, tax revenue, vector auto-regression
Procedia PDF Downloads 2739647 Effect of R&D Human Capital Support for SMEs: An Analysis of Smes Support Program in South Korea
Authors: Misun Kim, Beomsoo Park
Abstract:
Korean government has strongly supported SMEs financially and technically. It has also changed R&D manpower management so that SMEs can benefit from the knowledge of highly qualified experts. This study evaluates the impacts of such policy on SMEs and analyzes the factors affecting the growth of the firms. Then we compare the characteristics of high growth companies to general companies. This factors could be use in the future for identifying firms that would significantly benefit from manpower help.Keywords: dispatch human Ccapital, high growth, science and technology policy, SMEs
Procedia PDF Downloads 3039646 Citation Analysis of New Zealand Court Decisions
Authors: Tobias Milz, L. Macpherson, Varvara Vetrova
Abstract:
The law is a fundamental pillar of human societies as it shapes, controls and governs how humans conduct business, behave and interact with each other. Recent advances in computer-assisted technologies such as NLP, data science and AI are creating opportunities to support the practice, research and study of this pervasive domain. It is therefore not surprising that there has been an increase in investments into supporting technologies for the legal industry (also known as “legal tech” or “law tech”) over the last decade. A sub-discipline of particular appeal is concerned with assisted legal research. Supporting law researchers and practitioners to retrieve information from the vast amount of ever-growing legal documentation is of natural interest to the legal research community. One tool that has been in use for this purpose since the early nineteenth century is legal citation indexing. Among other use cases, they provided an effective means to discover new precedent cases. Nowadays, computer-assisted network analysis tools can allow for new and more efficient ways to reveal the “hidden” information that is conveyed through citation behavior. Unfortunately, access to openly available legal data is still lacking in New Zealand and access to such networks is only commercially available via providers such as LexisNexis. Consequently, there is a need to create, analyze and provide a legal citation network with sufficient data to support legal research tasks. This paper describes the development and analysis of a legal citation Network for New Zealand containing over 300.000 decisions from 125 different courts of all areas of law and jurisdiction. Using python, the authors assembled web crawlers, scrapers and an OCR pipeline to collect and convert court decisions from openly available sources such as NZLII into uniform and machine-readable text. This facilitated the use of regular expressions to identify references to other court decisions from within the decision text. The data was then imported into a graph-based database (Neo4j) with the courts and their respective cases represented as nodes and the extracted citations as links. Furthermore, additional links between courts of connected cases were added to indicate an indirect citation between the courts. Neo4j, as a graph-based database, allows efficient querying and use of network algorithms such as PageRank to reveal the most influential/most cited courts and court decisions over time. This paper shows that the in-degree distribution of the New Zealand legal citation network resembles a power-law distribution, which indicates a possible scale-free behavior of the network. This is in line with findings of the respective citation networks of the U.S. Supreme Court, Austria and Germany. The authors of this paper provide the database as an openly available data source to support further legal research. The decision texts can be exported from the database to be used for NLP-related legal research, while the network can be used for in-depth analysis. For example, users of the database can specify the network algorithms and metrics to only include specific courts to filter the results to the area of law of interest.Keywords: case citation network, citation analysis, network analysis, Neo4j
Procedia PDF Downloads 1089645 Overview of Resources and Tools to Bridge Language Barriers Provided by the European Union
Authors: Barbara Heinisch, Mikael Snaprud
Abstract:
A common, well understood language is crucial in critical situations like landing a plane. For e-Government solutions, a clear and common language is needed to allow users to successfully complete transactions online. Misunderstandings here may not risk a safe landing but can cause delays, resubmissions and drive costs. This holds also true for higher education, where misunderstandings can also arise due to inconsistent use of terminology. Thus, language barriers are a societal challenge that needs to be tackled. The major means to bridge language barriers is translation. However, achieving high-quality translation and making texts understandable and accessible require certain framework conditions. Therefore, the EU and individual projects take (strategic) actions. These actions include the identification, collection, processing, re-use and development of language resources. These language resources may be used for the development of machine translation systems and the provision of (public) services including higher education. This paper outlines some of the existing resources and indicate directions for further development to increase the quality and usage of these resources.Keywords: language resources, machine translation, terminology, translation
Procedia PDF Downloads 3199644 An Integrated Cloud Service of Application Delivery in Virtualized Environments
Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang
Abstract:
Virtualization technologies are experiencing a renewed interest as a way to improve system reliability, and availability, reduce costs, and provide flexibility. This paper presents the development on leverage existing cloud infrastructure and virtualization tools. We adopted some virtualization technologies which improve portability, manageability and compatibility of applications by encapsulating them from the underlying operating system on which they are executed. Given the development of application virtualization, it allows shifting the user’s applications from the traditional PC environment to the virtualized environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenance and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible and web-based application virtualization service represent the next significant step to the mobile workplace, and it lets user executes their applications from virtually anywhere.Keywords: cloud service, application virtualization, virtual machine, elastic environment
Procedia PDF Downloads 2829643 Artificial Insemination for Cattle and Carabaos in Bicol Region, Philippines: Its Implementation and Assessment
Authors: Lourdita Llanto
Abstract:
This study described and assessed the implementation of artificial insemination (AI) for cattle and carabaos in the Bicol Region, Philippines: Albay, Sorsogon and Camarines Sur. Three hundred respondents were interviewed. Results were analyzed using frequency counts, means, percentages and chi-square test. Semen samples from different stations were analyzed for motility, viability and morphology. T-test was used in semen quality evaluation. Provincial AI coordinators (PAIC) were male, averaging 59 years old, married, had college education, served in government service for 34 years, but as PAIC for 5.7 years. All had other designations. Mean AI operation was 11.33 years with annual support from the local government unit of Php76,666.67. AI technicians were males, married, with college education, and trained on AI. Problems were on mobility; inadequate knowledge of farmers in animal raising and AI; and lack of liquid nitrogen and frozen semen supply. There was 2.95 municipalities and breedable cattle/carabaos of 3,091.25 per AI technician. Mean number of artificially inseminated animals per AI technician for 2011 was 28.57 heads for carabaos and 8.64 heads for cattle. There was very low participation rate among farmers. Carabaos were 6.52 years with parity 1.53. Cattle were 5.61 years, with parity of 1.51. Semen quality significantly (p ≤ 0.05) deteriorated in normal and live sperm with storage and handling at the provincial and field stations. Breed, AI technicians practices and AI operation significantly affected conception rate. Mean conception rate was 57.62%.Keywords: artificial insemination, carabao, parity, mother tanks, frozen semen
Procedia PDF Downloads 4359642 The Effect of Rowing Exercise on Elderly Health
Authors: Rachnavy Pornthep, Khaothin Thawichai
Abstract:
The purpose of this paper was to investigate the effects of rowing ergometer exercise on older persons health. The subjects were divided into two groups. Group 1 was control group (10 male and 10 female) Group 2 was experimental group (10 male and 10 female). The time for study was 12 week. Group 1 engage in normal daily activities Group 2 Training with rowing machine for 20 minutes three days a week. The average age of the experimental group was 73.7 years old, mean weight 55.4 kg, height 154.8 cm in the control group, mean age was 74.95 years, mean weight 48.6 kg, mean height 153.85 cm. Physical fitness test composted of body size, flexibility, Strength, muscle endurance and cardiovascular endurance. The comparison between the experimental and control groups before training showed that body weight, body mass index and waist to hip ratio were significantly different. The flexibility, strength, cardiovascular endurance was not significantly different. The comparison between the control group and the experimental group after training showed that body weight, body mass index and cardiovascular endurance were significantly different. The ratio of waist to hips, flexibility and muscular strength were not significantly different. Comparison of physical fitness before training and after training of the control group showed that body weight, flexibility (Sit and reach) and muscular strength (30 – Second chair stand) were significantly different. Body mass index, waist to hip ratio, muscles flexible (Shoulder girdle flexibility), muscle strength (30 – Second arm curl) and the cardiovascular endurance were not significantly difference. Comparison of physical fitness before training and after training the experimental group showed that waist to hip ratio, flexibility (sit and reach) muscle strength (30 – Second chair stand), cardiovascular endurance (Standing leg raises - up to 2 minutes) were significantly different. The Body mass index and the flexibility (Shoulder girdle flexibility) no significantly difference. The study found that exercising with rowing machine can improve the physical fitness of the elderly, especially the cardiovascular endurance, corresponding with the past research on the effects of exercise in the elderly with different exercise such as cycling, treadmill, walking on the elliptical machine. Therefore, we can conclude that exercise by using rowing machine can improve cardiovascular system and flexibility in the elderly.Keywords: effect, rowing, exercise, elderly
Procedia PDF Downloads 4959641 Reintegrating Forensic Mental Health Service Users into Communities in the Western Cape, South Africa
Authors: Zolani Metu
Abstract:
The death of more than 140 psychiatric patients who were unethically deinstitutionalized from the Life Esidimeni hospital Johannesburg, in 2016, shined a light on South Africa’s failing public mental healthcare system. Compounded by insufficient research evidence on African deinstitutionalization, this necessitates inquiries into deinstitutionalized mental healthcare, reintegration and community-based mental healthcare within the South African context. This study employed a quantitative research approach which utilized a cross-sectional research design, to investigate experiences with the reintegration of institutionalized forensic mental health service users into communities in the Western Cape, South Africa. A convenience sample of 100 mental health care workers from different occupational and organizational backgrounds in the Western Cape was purposively selected using the Western Cape Health Directorate as a sampling frame. A self-administered questionnaire (SAQ) was used as the data collection instrument. The results of the study indicate that criminogenic factors such as substance use, history of violent behaviour, criminal history and disruptive social behaviour complicate the reintegration of forensic mental health service users into communities. The current extent of reintegration of forensic mental health service users was found to be 'poor' (46%; n= 46); and financial difficulties, criminogenic factors and limited Community-Based Care (CBC) facilities were identified as key barriers to the reintegration process. 56% of all job applications for forensic mental health service users were unsuccessful, and 53% of all applications for their admission into CBC facilities were declined. Although social support (informal) was found to be essential for successful reintegration, institutional support (formal) through assertive community treatment (35%; n= 35) and CBC facilities (21%) and the disability grant (DG=50%) was found to be more important for family coping and reintegration. Moreover, 72% of respondents had positive perceptions about the process of reintegration; no statistically significant relationship was found between years of experience and perceptions about reintegration (P-value = 0.062); and perceptions were not found to be a barrier to reintegration. No statistically significant relationship was found between years of working experience and understanding the legislative framework of deinstitutionalization (P-Value =.0.061). However, using a Chi-square test, a significant relationship (P-value = 0.021) was found between sex and understanding the legal framework involved in the process of reintegration. The study recommends a post-2020 deinstitutionalization agenda that factors-in criminogenic realities associated with forensic mental health service users, and affirms the strengthening of PHC and community based care systems as precedents of successful deinstitutionalization and reintegration of mental health service users.Keywords: forensic mental health, deinstitutionalization, reintegration, mental health service users
Procedia PDF Downloads 1659640 The Relationship Between Social Support, Happiness, Work-Family Conflict and State-Trait Anxiety Among Single Mothers by Choice at Time of Covid-19 Pandemic
Authors: Shamir Balderman Orit, Shamir Michal
Abstract:
Israel often deals with crisis situations, but most have been characterized as security crises (e.g., war). This is the first time that the Israel has dealt with a health and social emergency as part of a global crisis. The crisis began in January 2020 with the emergence of the novel coronavirus (Covid-19), which was defined as a pandemic (World Health Organization, 2020) and arrived in Israel in early March 2020. This study examined how single mothers by choice (SMBC) experience state anxiety (SA), social support, work–family conflict (WFC), and happiness. This group has not been studied in the context of crises in general or a global crisis. Using a snowball sample, 386 SMBCanswered an online questionnaire. The findings show a negative relationship between income and level of state anxiety. State anxiety was also negatively associated with social support, level of happiness, and WFC. Finally, a stepwise regression analysis indicated that happiness explained 34% of the variance in SA. We also found that most of the women did not turn to formal support agencies such as social workers, other Government Ministries, or municipal welfare. A positive and strong correlations was also found between SA and WFC. The findings of the study reinforce the understanding that although these women made a conscious and informed decision regarding the choice of their family cell, their situation is more complex in the absence of a spouse support. Therefore, this study, as other future studies in the field of SMBC, may contribute to the improvement of their social status and the understanding that they are a unique group. Although SMBC are a growing sector of society in the past few years, there are still special needs and special attention that is needed from the formal and informal supports systems. A comparative study of these two groups and in different countries would shed light on SA among mothers in general, regardless of their relationship status and location. Researchers should expand this study by comparing mothers in relationships and exploring how SMBC coped in other countries. In summary, the findings of the study contribute knowledge on three levels: (a) knowledge about SMBC in general and during crisis situations; (b) examination of social support using tools assessing receipt of assistance and support, some of which were developed for the present study; and (c) insights regarding counseling, accompaniment, and guidance of welfare mechanisms.Keywords: single mothers by choice, state anxiety, social support, happiness, work-family conflict
Procedia PDF Downloads 1059639 Analysis of the Gait Characteristics of Soldier between the Normal and Loaded Gait
Authors: Ji-il Park, Min Kyu Yu, Jong-woo Lee, Sam-hyeon Yoo
Abstract:
The purpose of this research is to analyze the gait strategy between the normal and loaded gait. To this end, five male participants satisfied two conditions: the normal and loaded gait (backpack load 25.2 kg). As expected, results showed that additional loads elicited not a proportional increase in vertical and shear ground reaction force (GRF) parameters but also increase of the impulse, momentum and mechanical work. However, in case of the loaded gait, the time duration of the double support phase was increased unexpectedly. It is because the double support phase which is more stable than the single support phase can reduce instability of the loaded gait. Also, the directions of the pre-collision and after-collision were moved upward and downward compared to the normal gait. As a result, regardless of the additional backpack load, the impulse-momentum diagram during the step-to-step transition was maintained such as the normal gait. It means that human walk efficiently to keep stability and minimize total net works in case of the loaded gait.Keywords: normal gait, loaded gait, impulse, collision, gait analysis, mechanical work, backpack load
Procedia PDF Downloads 2899638 The Effect of Fetal Movement Counting on Maternal Antenatal Attachment
Authors: Esra Güney, Tuba Uçar
Abstract:
Aim: This study has been conducted for the purpose of determining the effects of fetal movement counting on antenatal maternal attachment. Material and Method: This research was conducted on the basis of the real test model with the pre-test /post-test control groups. The study population consists of pregnant women registered in the six different Family Health Centers located in the central Malatya districts of Yeşilyurt and Battalgazi. When power analysis is done, the sample size was calculated for each group of at least 55 pregnant women (55 tests, 55 controls). The data were collected by using Personal Information Form and MAAS (Maternal Antenatal Attachment Scale) between July 2015-June 2016. Fetal movement counting training was given to pregnant women by researchers in the experimental group after the pre-test data collection. No intervention was applied to the control group. Post-test data for both groups were collected after four weeks. Data were evaluated with percentage, chi-square arithmetic average, chi-square test and as for the dependent and independent group’s t test. Result: In the MAAS, the pre-test average of total scores in the experimental group is 70.78±6.78, control group is also 71.58±7.54 and so there was no significant difference in mean scores between the two groups (p>0.05). MAAS post-test average of total scores in the experimental group is 78.41±6.65, control group is also is 72.25±7.16 and so the mean scores between groups were found to have statistically significant difference (p<0.05). Conclusion: It was determined that fetal movement counting increases the maternal antenatal attachments.Keywords: antenatal maternal attachment, fetal movement counting, pregnancy, midwifery
Procedia PDF Downloads 2729637 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 249636 Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics
Authors: Orestis Κ. Efthymiou, Stavros T. Ponis
Abstract:
In the last decade, a new industrial revolution seems to be emerging, supported -once again- by the rapid advancements of Information Technology in the areas of Machine-to-Machine (M2M) communication permitting large numbers of intelligent devices, e.g. sensors to communicate with each other and take decisions without any or minimum indirect human intervention. The advent of these technologies have triggered the emergence of a new category of hybrid (cyber-physical) manufacturing systems, combining advanced manufacturing techniques with innovative M2M applications based on the Internet of Things (IoT), under the umbrella term Industry 4.0. Even though the topic of Industry 4.0 has attracted much attention during the last few years, the attempts of providing a systematic literature review of the subject are scarce. In this paper, we present the authors’ initial study of the field with a special focus on the use and applications of Industry 4.0 principles in material handling automations and in-house logistics. Research shows that despite the vivid discussion and attractiveness of the subject, there are still many challenges and issues that have to be addressed before Industry 4.0 becomes standardized and widely applicable.Keywords: Industry 4.0, internet of things, manufacturing systems, material handling, logistics
Procedia PDF Downloads 1279635 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers
Authors: Oumaima Lahmar
Abstract:
This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.Keywords: finance literature, textual analysis, topic modeling, perplexity
Procedia PDF Downloads 1709634 Parameter Identification Analysis in the Design of Rock Fill Dams
Authors: G. Shahzadi, A. Soulaimani
Abstract:
This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS
Procedia PDF Downloads 1469633 Emotions Evoked by Robots - Comparison of Older Adults and Students
Authors: Stephanie Lehmann, Esther Ruf, Sabina Misoch
Abstract:
Background: Due to demographic change and shortage of skilled nursing staff, assistive robots are built to support older adults at home and nursing staff in care institutions. When assistive robots facilitate tasks that are usually performed by humans, user acceptance is essential. Even though they are an important aspect of acceptance, emotions towards different assistive robots and different situations of robot-use have so far not been examined in detail. The appearance of assistive robots can trigger emotions that affect their acceptance. Acceptance of robots is assumed to be greater when they look more human-like; however, too much human similarity can be counterproductive. Regarding different groups, it is assumed that older adults have a more negative attitude towards robots than younger adults. Within the framework of a simulated robot study, the aim was to investigate emotions of older adults compared to students towards robots with different appearances and in different situations and so contribute to a deeper view of the emotions influencing acceptance. Methods: In a questionnaire study, vignettes were used to assess emotions toward robots in different situations and of different appearance. The vignettes were composed of two situations (service and care) shown by video and four pictures of robots varying in human similarity (machine-like to android). The combination of the vignettes was randomly distributed to the participants. One hundred forty-two older adults and 35 bachelor students of nursing participated. They filled out a questionnaire that surveyed 30 positive and 30 negative emotions. For each group, older adults and students, a sum score of “positive emotions” and a sum score of “negative emotions” was calculated. Mean value, standard deviation, or n for sample size and % for frequencies, according to the scale level, were calculated. For differences in the scores of positive and negative emotions for different situations, t-tests were calculated. Results: Overall, older adults reported significantly more positive emotions than students towards robots in general. Students reported significantly more negative emotions than older adults. Regarding the two different situations, the results were similar for the care situation, with older adults reporting more positive emotions than students and less negative emotions than students. In the service situation, older adults reported significantly more positive emotions; negative emotions did not differ significantly from the students. Regarding the appearance of the robot, there were no significant differences in emotions reported towards the machine-like, the mechanical-human-like and the human-like appearance. Regarding the android robot, students reported significantly more negative emotions than older adults. Conclusion: There were differences in the emotions reported by older adults compared to students. Older adults reported more positive emotions, and students reported more negative emotions towards robots in different situations and with different appearances. It can be assumed that older adults have a different attitude towards the use of robots than younger people, especially young adults in the health sector. Therefore, the use of robots in the service or care sector should not be rejected rashly based on the attitudes of younger persons, without considering the attitudes of older adults equally.Keywords: emotions, robots, seniors, young adults
Procedia PDF Downloads 4669632 Analyzing Extended Reality Technologies for Human Space Exploration
Authors: Morgan Kuligowski, Marientina Gotsis
Abstract:
Extended reality (XR) technologies share an intertwined history with spaceflight and innovation. New advancements in XR technologies offer expanding possibilities to advance the future of human space exploration with increased crew autonomy. This paper seeks to identify implementation gaps between existing and proposed XR space applications to inform future mission planning. A review of virtual reality, augmented reality, and mixed reality technologies implemented aboard the International Space Station revealed a total of 16 flown investigations. A secondary set of ground-tested XR human spaceflight applications were systematically retrieved from literature sources. The two sets of XR technologies, those flown and those existing in the literature were analyzed to characterize application domains and device types. Comparisons between these groups revealed untapped application areas for XR to support crew psychological health, in-flight training, and extravehicular operations on future flights. To fill these roles, integrating XR technologies with advancements in biometric sensors and machine learning tools is expected to transform crew capabilities.Keywords: augmented reality, extended reality, international space station, mixed reality, virtual reality
Procedia PDF Downloads 2169631 Health Status among Government and Private Primary School Children in the Central of Thailand
Authors: Petcharat Kerdonfag, Supunnee Thrakul
Abstract:
School health services through regular screening of school students’ health status have been the main responsibility for community or school health nurses. The purposes of these retrospective study were to assess and compare health problems between government and private primary school students in the central region of Thailand. The data were collected from the school health records in October at the end of the first semester in the academic year 2018. Two thousand and fifty primary school health records from government and private primary schools were gathered to assess health problems regarding anthropometric measurements, physical examination/personal hygiene, and clinical findings for this study. Descriptive statistics and Chi-square were used to be analyzed. The results revealed that health problems of all the school students remained high magnitude. The five top ranks for prevalence rate of health problems were dental caries (36.6%), visual acuity problem (27.7%), over-nutrition (16.8%), head lice (12.8%), and under-nutrition (6.8%), respectively. However, when compared between government and private schools among five health problems; dental caries (55.0% vs 19.9%), visual acuity problem (23.1% vs 31.9%), over-nutrition (20.2% vs 13.8%), head lice (26.5% vs 0.3%), and under-nutrition (10.6% vs 3.4%) with Chi-square analysis, there were significantly different (p < .001). The problem of visual acuity seems to be more serious in private schools while other health problems tend to be more critical in government schools. The findings have suggested that parents who have children in the private primary schools should pay more attention to visual health defects whereas parents with children in the government school should pay more vigilance regards to hygiene and health behavior problems.Keywords: community health nursing, school health service, health status, primary school children
Procedia PDF Downloads 1229630 Techniques to Characterize Subpopulations among Hearing Impaired Patients and Its Impact for Hearing Aid Fitting
Authors: Vijaya K. Narne, Gerard Loquet, Tobias Piechowiak, Dorte Hammershoi, Jesper H. Schmidt
Abstract:
BEAR, which stands for better hearing rehabilitation is a large-scale project in Denmark designed and executed by three national universities, three hospitals, and the hearing aid industry with the aim to improve hearing aid fitting. A total of 1963 hearing impaired people were included and were segmented into subgroups based on hearing-loss, demographics, audiological and questionnaires data (i.e., the speech, spatial and qualities of hearing scale [SSQ-12] and the International Outcome Inventory for Hearing-Aids [IOI-HA]). With the aim to provide a better hearing-aid fit to individual patients, we applied modern machine learning techniques with traditional audiograms rule-based systems. Results show that age, speech discrimination scores, and audiogram configurations were evolved as important parameters in characterizing sub-population from the data-set. The attempt to characterize sub-population reveal a clearer picture about the individual hearing difficulties encountered and the benefits derived from more individualized hearing aids.Keywords: hearing loss, audiological data, machine learning, hearing aids
Procedia PDF Downloads 1549629 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration
Authors: Marimuthu Gurusamy
Abstract:
In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration
Procedia PDF Downloads 4519628 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1509627 Using Heat-Mask in the Thermoforming Machine for Component Positioning in Thermoformed Electronics
Authors: Behnam Madadnia
Abstract:
For several years, 3D-shaped electronics have been rising, with many uses in home appliances, automotive, and manufacturing. One of the biggest challenges in the fabrication of 3D shape electronics, which are made by thermoforming, is repeatable and accurate component positioning, and typically there is no control over the final position of the component. This paper aims to address this issue and present a reliable approach for guiding the electronic components in the desired place during thermoforming. We have proposed a heat-control mask in the thermoforming machine to control the heating of the polymer, not allowing specific parts to be formable, which can assure the conductive traces' mechanical stability during thermoforming of the substrate. We have verified our approach's accuracy by applying our method on a real industrial semi-sphere mold for positioning 7 LEDs and one touch sensor. We measured the LEDs' position after thermoforming to prove the process's repeatability. The experiment results demonstrate that the proposed method is capable of positioning electronic components in thermoformed 3D electronics with high precision.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioning
Procedia PDF Downloads 979626 Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets
Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J. W. Chen, P. H. Liu, D. H. Chen
Abstract:
The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi.Keywords: 3D printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin
Procedia PDF Downloads 5619625 Health Status, Perception of Self-Efficacy and Social Support of Thailand Aging
Authors: Wipakon Sonsnam, Kanya Napapongsa
Abstract:
The quantitative aim of the study; 1) health conditions, to examine the state of health of the aging, 2) perceived of self-efficacy, self-care of aging ,3) perceived of social support of the aging, 4) to examine factors associated with self-efficacy in enhancing the health and self-care when illness. 100 samples selected from communities in Dusit, Bangkok, 2014 by random sampling. The questionnaires were used to collect data have 5-point rating scale, consisting of strongly agree, agree, undecided, disagree, and strongly disagree; approved content valid by 3 experts, reliability coefficients alpha was .784 for perceived of self-efficacy, self-care of aging and .827 for perceived of social support of the aging. ST-5, 2Q used for collect mental health. The ability to engage in a daily routine was collected by Barthel ADL index. Founding, the sample group were female (68%). (33%) of them were in the age of 60-65. Most of them were married and still live with their spouse (55%) and do not work (38%). The average annual income was less than 10,000 baht supported by child. Most people think that income was adequate (49.0%) and Satisfaction (61.0%). Most of aging caring them-self, followed by them spouse (26%). Welfare of the public had supported, living for the aging (100%), followed by Join and health volunteers in communities (23%). In terms of health, (53%) of the sample group feels health was fair, hypertension was the most common health condition among sample group (68%), following by diabetes (55%). About eyesight, (42%) have visual acuity. (59.0%) do not need hearing aids. 84% have more than 20 teeth remaining, and have no problem with chewing (61%). In terms of Ability to engage in a daily routine, most of people (84%) in sample group are in type 1. (91%) of the participants don’t have bladder incontinence. For mental condition, (82%) do not have insomnia. (87%) do not have anxiety. (96%) do not have depression. However, (77%) of the sample group is facing stress. In terms of environment in home, bathroom in the home (90.0%) and floor of bathroom was slippery (91.0%). (48%) of the sample group has the skills of how to look after themselves while being sick, and how to keep up healthy lifestyle. Besides, some other factors, such as gender, age and educational background are related to the health perception. The statistical significance was <0.05. Suggestion: The instruments available to national standards such as ST-5, 2Q and Barthel ADL index. Reliability coefficients alpha was .784 for perceived of self-efficacy, self-care of aging and .827 for perceived of social support of the aging. The instrument used to collect perceived of social support must be further developed to study level of influence of social support that affect the health of elderly.Keywords: ้health status, perception of aging, self-efficacy, social support
Procedia PDF Downloads 5449624 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model
Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong
Abstract:
This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors
Procedia PDF Downloads 570