Search results for: high-intensity interval training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4709

Search results for: high-intensity interval training

2849 Incidence of Cancer in Patients with Alzheimer's Disease: A 11-Year Nationwide Population-Based Study

Authors: Jun Hong Lee

Abstract:

Background: Alzheimer`s disease (AD) I: creases with age and is characterized by the premature progressive loss of neuronal cell. In contrast, cancer cells have inappropriate cell proliferation and resistance to cell death. Objective: We evaluated the association between cancer and AD and also examined the specific types of cancer. Patients and Methods/Material and Methods: This retrospective, nationwide, longitudinal study used National Health Insurance Service – Senior cohort (NHIS-Senior) 2002-2013, which was released by the KNHIS in 2016, comprising 550,000 random subjects who were selected from over than 60. The study included a cohort of 4,408 patients who were first diagnoses as AD between 2003 and 2005. To match each dementia patient, 19,150 subjects were selected from the database by Propensity Score Matching. Results: We enrolled 4,790 patients for analysis in this cohort and the prevalence of AD was higher in female (19.29%) than in male (17.71%). A higher prevalence of AD was observed in the 70-84 year age group and in the higher income status group. A total of 540 cancers occurred within the observation interval. Overall cancer was less frequent in those with AD (12.25%) than in the control (18.46%), with HR 0.704 (95% Confidence Intervals (CIs)=0.0.64-0.775, p-Value < 0.0001). Conclusion: Our data showed a decreased incidence of overall cancers in patients with AD similar to previous studies. Patients with AD had a significantly decreased risk of colon & rectum, lung and stomach cancer. This finding lower than but consistent with Western countries. We need further investigation of genetic evidence linking AD to cancer.

Keywords: Alzheimer, cancer, nationwide, longitudinal study

Procedia PDF Downloads 178
2848 Revolutionizing Legal Drafting: Leveraging Artificial Intelligence for Efficient Legal Work

Authors: Shreya Poddar

Abstract:

Legal drafting and revising are recognized as highly demanding tasks for legal professionals. This paper introduces an approach to automate and refine these processes through the use of advanced Artificial Intelligence (AI). The method employs Large Language Models (LLMs), with a specific focus on 'Chain of Thoughts' (CoT) and knowledge injection via prompt engineering. This approach differs from conventional methods that depend on comprehensive training or fine-tuning of models with extensive legal knowledge bases, which are often expensive and time-consuming. The proposed method incorporates knowledge injection directly into prompts, thereby enabling the AI to generate more accurate and contextually appropriate legal texts. This approach substantially decreases the necessity for thorough model training while preserving high accuracy and relevance in drafting. Additionally, the concept of guardrails is introduced. These are predefined parameters or rules established within the AI system to ensure that the generated content adheres to legal standards and ethical guidelines. The practical implications of this method for legal work are considerable. It has the potential to markedly lessen the time lawyers allocate to document drafting and revision, freeing them to concentrate on more intricate and strategic facets of legal work. Furthermore, this method makes high-quality legal drafting more accessible, possibly reducing costs and expanding the availability of legal services. This paper will elucidate the methodology, providing specific examples and case studies to demonstrate the effectiveness of 'Chain of Thoughts' and knowledge injection in legal drafting. The potential challenges and limitations of this approach will also be discussed, along with future prospects and enhancements that could further advance legal work. The impact of this research on the legal industry is substantial. The adoption of AI-driven methods by legal professionals can lead to enhanced efficiency, precision, and consistency in legal drafting, thereby altering the landscape of legal work. This research adds to the expanding field of AI in law, introducing a method that could significantly alter the nature of legal drafting and practice.

Keywords: AI-driven legal drafting, legal automation, futureoflegalwork, largelanguagemodels

Procedia PDF Downloads 64
2847 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT

Authors: Jae Ni Jang, Young Uk Kim

Abstract:

Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.

Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT

Procedia PDF Downloads 47
2846 Effectiveness of Research Promotion Organizations in Higher Education and Research (ESR)

Authors: Jonas Sanon

Abstract:

The valorization of research is becoming a transversal instrument linking different sectors (academic, public and industrial). The practice of valorization seems to impact innovation techniques within companies where, there is often the implementation of industrial conventions of training through research (CIFRE), continuous training programs for employees, collaborations and partnerships around joint research and R&D laboratories focused on the needs of companies to improve or develop more efficient innovations. Furthermore, many public initiatives to support innovation and technology transfer have been developed at the international, European and national levels, with significant budget allocations. Thus, in the context of this work, we tried to analyze the way in which research transfer structures are evaluated within the Saclay ecosystem. In fact, the University-Paris-Saclay is one of the best French universities; it is made up of 10 university components, more than 275 laboratories and is in partnership with the largest French research centers This work mainly focused on how evaluations affected research transfer structures, how evaluations were conducted, and what the managers of research transfer structures thought about assessments. Thus, with the aid of the conducted interviews, it appears that the evaluations do not have a significant impact on the qualitative aspect of research and innovation, but is rather present a directive aspect to allow the structures to benefit or not from the financial resources to develop certain research work, sometimes directed and influenced by the market, some researchers might try to accentuate their research and experimentation work on themes that are not necessarily their areas of interest, but just to comply with the calls for proposed thematic projects. The field studies also outline the primary indicators used to assess the effectiveness of valorization structures as "the number of start-ups generated, the license agreements signed, the structure's patent portfolio, and the innovations of items developed from public research.". Finally, after mapping the actors, it became clear that the ecosystem of the University of Paris-Saclay benefits from a richness allowing it to better value its research in relation to the three categories of actors it has (internal, external and transversal), united and linked by a relationship of proximity of sharing and endowed with a real opportunity to innovate openly.

Keywords: research valorization, technology transfer, innovation, evaluation, impacts and performances, innovation policy

Procedia PDF Downloads 73
2845 Infant and Child Mortality among the Low Socio-Economic Households in India

Authors: Narendra Kumar

Abstract:

This study uses data from the ‘National Family Health Survey (NFHS-3) 2005-06’ to investigate the predictors of infant and child mortality among low economic households in East and Northeast region. The cross tabulation, life table survival estimates and Cox proportional hazard model techniques have been used to estimate the predictors of infant and child mortality. The life table survival estimates for infant and child mortality shows that infant mortality in female child is lower in comparison to male child but with child mortality, the rates are higher for female in comparison to male child and the Cox proportional hazard model also give highly significant in female in comparison to male child. The infant and child mortality rates among poor households highest in the Central region followed by North and Northeast region and the lowest in South region in comparison to all regions of India. Education of respondent has been found a significant characteristics in both analyzes, further birth interval, respondent occupation, caste/tribe and place of delivery has substantial impact on infant and child mortality among low economic households in East and Northeast region. Finally these findings specified that an increase in parents’ education, improve health care services and improve socioeconomic conditions of low economic households which should in turn raise infant and child survival and should decrease child mortality among low economic households in India.

Keywords: infant, child, mortality, socio-economic, India

Procedia PDF Downloads 307
2844 Analysis of High Resolution Seismic Reflection Data to Identify Different Regional Lithologies of the Zaria Batholith Located in the Basement Complex of North Central Nigeria

Authors: Collins C. Chiemeke, A. Onugba, P. Sule

Abstract:

High resolution seismic reflection has recently been carried out on Zaria batholith, with the aim of characterizing the granitic Zaria batholiths in terms of its lithology. The geology of the area has revealed that the older granite outcrops in the vicinity of Zaria are exposures of a syntectonics to late-tectonic granite batholiths which intruded a crystalline gneissic basement during the Pan-African Orogeny. During the data acquisition the geophone were placed at interval of 1 m, variable offset of 1 and 10 m was used. The common midpoint (CMP) method with 12 fold coverage was employed for the survey. Analysis of the generated 3D surface of the p wave velocities from different profiles for densities and bulk modulus revealed that the rock material is more consolidated in South East part of the batholith and less consolidated in the North Western part. This was in conformity with earlier identified geology of the area, with the South Eastern part majorly of granitic outcrop, while the North Western part is characterized with the exposure of gneisses and thick overburden cover. The difference in lithology was also confirmed by the difference in seismic sections and Arial satellite photograph. Hence two major lithologies were identified, the granitic and gneisses complex which are characterized by gradational boundaries.

Keywords: basement complex, batholith, high resolution, lithologies, seismic reflection

Procedia PDF Downloads 296
2843 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 121
2842 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
2841 Rapid Biosynthesis of Silver Nanoparticles Using Trachyspermum Ammi

Authors: Rajesh Kumar Meena, Suman Jhajharia, Goutam Chakraborty

Abstract:

Plasmonic silver nanoparticles (Ag NPs) was synthesized by chemical reduction method using Trachyspermum Ammi (TA, Ajwain) seeds extract in aqueous medium and AgNO3 solution at different time interval. Reaction time, and concentration of AgNO3 and TA could accelerate the reduction rate of Ag+ and affect AgNPs size and concentration of NPs. Surface plasmon resonance band centered at 420-430 nm (88.78nm) was recognised as first exitonic peak of UV-Vis absorption spectra of AgNPs that used to calculate the particle size (10-30 nm). FTIR results TA supported AgNPs showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 with respect to the plain TA indicating the involvement of O-H, carbonyl group and C=C stretching in formation of TA-AgNPs aggregates. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the NPs. Impedance study reveals that at low concentration of TA the rate of charge transfer is in TA-AgNPs aggregates, found higher than the higher TA concentration condition that confirms the stability of AgNPs in water. Extract reduce silver ions into silver nanoparticles (NPs) of size 6-50nm. Pronounce effect of the time on Ag NPs concentration and particle size, was exhibited by the system These biogenic Ag NPs are characterized using UV- Vis spectrophotometry (UV-Visible), Fourier transformation infrared (FTIR) and XRD. These studies give us inside view of the most probable mechanism of biosynthesis and optoelectronic properties of the as synthesised Ag NPs.

Keywords: antimicrobial activity, bioreduction, capping agent, silver nanoparticles

Procedia PDF Downloads 326
2840 A Semi-supervised Classification Approach for Trend Following Investment Strategy

Authors: Rodrigo Arnaldo Scarpel

Abstract:

Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.

Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation

Procedia PDF Downloads 89
2839 Succeeding through Disruption: Exploring the Factors Influencing the Adoption of Disruptive Technologies in the Mobile Telecommunications Industry in Zimbabwe

Authors: Africa Makasi

Abstract:

The research explored factors influencing the adoption of disruptive technologies in the mobile telecommunications industry in Zimbabwe. Data was gathered from the second biggest competitor in the industry with over 3 million subscribers as the main case of study. The survey was conducted by purposively selecting 70 respondents from a population of 3,000,000 (three million) active subscribers from the company’s database. A skip interval of 42,857 was used to randomly select the sample. Customer representatives were selected from the company’s five regional offices using a two-stage cluster sampling technique. Employee participants were purposively selected from the company’s head office. Self-administered questionnaires were used in the research. A pilot test was conducted and the assessment of the reliability of the research instruments used in the research performed. Results of the pilot study were analyzed to test for reliability using SPSS. The results confirmed that the style of leadership and its thrust may help speed up or reduce the adoption of disruptive technologies. This was reflected by a p–value of 0.01 which is less than 0.05. The null hypothesis was thus rejected and the strong relationship between leadership and adoption of disruptive technology is confirmed. Similar results were also obtained with respect to staff competence, availability of funding and the type of infrastructure available Future research should look at organizational ambidexterity as well as exploitation and exploration paradigms in organizations in the telecommunications industry and their impact on the adoption of disruptive technologies.

Keywords: disruptive innovation, adoption, mobile telecommunication industry, exploration and exploitation

Procedia PDF Downloads 369
2838 Experience of the Formation of Professional Competence of Students of IT-Specialties

Authors: B. I. Zhumagaliyev, L. Sh. Balgabayeva, G. S. Nabiyeva, B. A. Tulegenova, P. Oralkhan, B. S. Kalenova, S. S. Akhmetov

Abstract:

The article describes an approach to build competence in research of Bachelor and Master, which is now an important feature of modern specialist in the field of engineering. Provides an example of methodical teaching methods with the research aspect, is including the formulation of the problem, the method of conducting experiments, analysis of the results. Implementation of methods allows the student to better consolidate their knowledge and skills at the same time to get research. Knowledge on the part of the media requires some training in the subject area and teaching methods.

Keywords: professional competence, model of it-specialties, teaching methods, educational technology, decision making

Procedia PDF Downloads 437
2837 Role of Maternal Astaxanthin Supplementation on Brain Derived Neurotrophic Factor and Spatial Learning Behavior in Wistar Rat Offspring’s

Authors: K. M. Damodara Gowda

Abstract:

Background: Maternal health and nutrition are considered as the predominant factors influencing brain functional development. If the mother is free of illness and genetic defects, maternal nutrition would be one of the most critical factors affecting the brain development. Calorie restrictions cause significant impairment in spatial learning ability and the levels of Brain Derived Neurotrophic Factor (BDNF) in rats. But, the mechanism by which the prenatal under-nutrition leads to impairment in brain learning and memory function is still unclear. In the present study, prenatal Astaxanthin supplementation on BDNF level, spatial learning and memory performance in the offspring’s of normal, calorie restricted and Astaxanthin supplemented rats was investigated. Methodology: The rats were administered with 6mg and 12 mg of astaxanthin /kg bw for 21 days following which acquisition and retention of spatial memory was tested in a partially-baited eight arm radial maze. The BDNF level in different regions of the brain (cerebral cortex, hippocampus and cerebellum) was estimated by ELISA method. Results: Calorie restricted animals treated with astaxanthin made significantly more correct choices (P < 0.05), and fewer reference memory errors (P < 0.05) on the tenth day of training compared to offsprings of calorie restricted animals. Calorie restricted animals treated with astaxanthin also made significantly higher correct choices (P < 0.001) than untreated calorie restricted animals in a retention test 10 days after the training period. The mean BDNF level in cerebral cortex, Hippocampus and cerebellum in Calorie restricted animals treated with astaxanthin didnot show significant variation from that of control animals. Conclusion: Findings of the study indicated that memory and learning was impaired in the offspring’s of calorie restricted rats which was effectively modulated by astaxanthin at the dosage of 12 mg/kg body weight. In the same way the BDNF level at cerebral cortex, Hippocampus and Cerebellum was also declined in the offspring’s of calorie restricted animals, which was also found to be effectively normalized by astaxanthin.

Keywords: calorie restiction, learning, Memory, Cerebral cortex, Hippocampus, Cerebellum, BDNF, Astaxanthin

Procedia PDF Downloads 232
2836 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 147
2835 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea

Procedia PDF Downloads 362
2834 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok

Authors: Teerada Apibunyopas, Nithinant Thammakoranonta

Abstract:

Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees skill efficiently. This study focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increased. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.

Keywords: e-Learning, job satisfaction, learning and growth, Bangkok

Procedia PDF Downloads 491
2833 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach

Authors: Ali Akbar Heydari

Abstract:

Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.

Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter

Procedia PDF Downloads 154
2832 Protection of the Object of the Critical Infrastructure in the Czech Republic

Authors: Michaela Vašková

Abstract:

With the increasing dependence of countries on the critical infrastructure, it increases their vulnerability. Big threat is primarily in the human factor (personnel of the critical infrastructure) and in terrorist attacks. It emphasizes the development of methodology for searching of weak points and their subsequent elimination. This article discusses methods for the analysis of safety in the objects of critical infrastructure. It also contains proposal for methodology for training employees of security services in the objects of the critical infrastructure and developing scenarios of attacks on selected objects of the critical infrastructure.

Keywords: critical infrastructure, object of critical infrastructure, protection, safety, security, security audit

Procedia PDF Downloads 344
2831 Evaluation of Age-Friendly Nursing Service System: KKU (AFNS:KKU) Model for the Excellence

Authors: Roongtiwa Chobchuen, Siriporn Mongkholthawornchai, Boonsong Hatawaikarn, Uriwan Chaichangreet, Kobkaew Thongtid, Pusda Pukdeekumjorn, Panita Limpawattana

Abstract:

Background: Age-friendly nursing service system in Srinagarind Hospital has been developed continuously based on the value and cultural background of Thailand which corporates with the modified WHO’s Age friendly Primary Care Service System. It consists of 3 issues; 1) development of staff training, 2) age-friendly service and 3) appropriate physical environment. Objective: To evaluate the efficacy of Age-friendly Nursing Service System: KKU (AFNS:KKU) model and to evaluate factors associated with nursing perception with AFN:KKU. Study design: Descriptive study Setting: 31 wards that served older patients in Srinagarind Hospital Populations: Nursing staff from 11 departments (31 wards) Instrument: Age-friendly nursing care scale as perceived by hospitalized older person Procedure and statistical analysis: All participants were asked questions using age-friendly nursing care scale as perceived by hospitalized older person questionnaires. Descriptive statistics and multiple logistic regression analyses were used to analyse the outcomes. Results: There were 337 participants recruited in this study. The majority of them were women (92%) with the mean ages of 29 years and 77.45% were nurse practitioners. They had average nursing experiences of 5 years. The average scores of age-friendly nursing care scale were high and highest in the area of attitude and communication. Age, sex, educational level, duration of work among, and having experience in aging training were not associated with nursing perception where type of department was an independent factor. Nurses from department of Surgery and Orthopedic, Eye and ENT, special ward and Obstetrics and Gynecological had significant greater perception than nurses from Internal Medicine Department (p < 0.05). Conclusion: Nurses had high scores in all dimensions of age-friendly concept. The result indicates that nurses have good attitude to aging care which can lead to improve quality of care. Organization should support other domains of ageing care to achieve greater effectiveness in geriatric care.

Keywords: age-friendly, nursing service system, excellence model, geriatric care

Procedia PDF Downloads 344
2830 The Use of a Novel Visual Kinetic Demonstration Technique in Student Skill Acquisition of the Sellick Cricoid Force Manoeuvre

Authors: L. Nathaniel-Wurie

Abstract:

The Sellick manoeuvre a.k.a the application of cricoid force (CF), was first described by Brian Sellick in 1961. CF is the application of digital pressure against the cricoid cartilage with the intention of posterior force causing oesophageal compression against the vertebrae. This is designed to prevent passive regurgitation of gastric contents, which is a major cause of morbidity and mortality during emergency airway management inside and outside of the hospital. To the authors knowledge, there is no universally standardised training modality and, therefore, no reliable way to examine if there are appropriate outcomes. If force is not measured during training, how can one surmise that appropriate, accurate, or precise amounts of force are being used routinely. Poor homogeneity in teaching and untested outcomes will correlate with reduced efficacy and increased adverse effects. For this study, the accuracy of force delivery in trained professionals was tested, and outcomes contrasted against a novice control and a novice study group. In this study, 20 operating department practitioners were tested (with a mean experience of 5.3years of performing CF). Subsequent contrast with 40 novice students who were randomised into one of two arms. ‘Arm A’ were explained the procedure, then shown the procedure then asked to perform CF with the corresponding force measurement being taken three times. Arm B had the same process as arm A then before being tested, they had 10, and 30 Newtons applied to their hands to increase intuitive understanding of what the required force equated to, then were asked to apply the equivalent amount of force against a visible force metre and asked to hold that force for 20 seconds which allowed direct visualisation and correction of any over or under estimation. Following this, Arm B were then asked to perform the manoeuvre, and the force generated measured three times. This study shows that there is a wide distribution of force produced by trained professionals and novices performing the procedure for the first time. Our methodology for teaching the manoeuvre shows an improved accuracy, precision, and homogeneity within the group when compared to novices and even outperforms trained practitioners. In conclusion, if this methodology is adopted, it may correlate with higher clinical outcomes, less adverse events, and more successful airway management in critical medical scenarios.

Keywords: airway, cricoid, medical education, sellick

Procedia PDF Downloads 79
2829 Health Information Needs and Utilization of Information and Communication Technologies by Medical Professionals in a Northern City of India

Authors: Sonika Raj, Amarjeet Singh, Vijay Lakshmi Sharma

Abstract:

Introduction: In 21st century, due to revolution in Information and Communication Technologies (ICTs), there has been phenomenal development in quality and quantity of knowledge in the field of medical science. So, the access to relevant information to physicians is critical to the delivery of effective healthcare services to patients. The study was conducted to assess the information needs and attitudes of the medical professionals; to determine the sources and channels of information used by them; to ascertain the current usage of ICTs and the barriers faced by them in utilization of ICTs in health information access. Methodology: This descriptive cross-sectional study was carried in 2015 on hundred medical professionals working in public and private sectors of Chandigarh. The study used both quantitative and qualitative method for data collection. A semi structured questionnaire and interview schedule was used to collect data on information seeking needs, access to ICTs and barriers to healthcare information access. Five Data analysis was done using SPSS-16 and qualitative data was analyzed using thematic approach. Results: The most preferred sources to access healthcare information were internet (85%), trainings (61%) and communication with colleagues (57%). They wanted information on new drug therapy and latest developments in respective fields. All had access to computer with but almost half assessed their computer knowledge as average and only 3% had received training regarding usage. Educational status (p=0.004), place of work (p=0.004), number of years in job (p=0.004) and sector of job (p=0.04) of doctors were found to be significantly associated with their active search for information. The major themes that emerged from in-views were need; types and sources of healthcare information; exchange of information among different levels of healthcare providers; usage of ICTs to obtain and share information; barriers to access of healthcare information and quality of health information materials and involvement in their development process Conclusion and Recommendations: The medical professionals need information in their in their due course of work. However, information needs of medical professionals were not being adequately met. There should be training of professional regarding internet skills and the course on bioinformatics should be incorporated in the curricula of medical students. The policy framework must be formulated that will encourage and promote the use of ICTs as tools for health information access and dissemination.

Keywords: health information, ICTs, medical professionals, qualitative

Procedia PDF Downloads 349
2828 A Critical Analysis of How the Role of the Imam Can Best Meet the Changing Social, Cultural, and Faith-Based Needs of Muslim Families in 21st Century Britain

Authors: Christine Hough, Eddie Abbott-Halpin, Tariq Mahmood, Jessica Giles

Abstract:

This paper draws together the findings from two research studies, each undertaken with cohorts of South Asian Muslim respondents located in the North of England between 2017 and 2019. The first study, entitled Faith Family and Crime (FFC), investigated the extent to which a Muslim family’s social and health well-being is affected by a family member’s involvement in the Criminal Justice System (CJS). This study captured a range of data through a detailed questionnaire and structured interviews. The data from the interview transcripts were analysed using open coding and an application of aspects of the grounded theory approach. The findings provide clear evidence that the respondents were neither well-informed nor supported throughout the processes of the CJS, from arrest to post-sentencing. These experiences gave rise to mental and physical stress, potentially unfair sentencing, and a significant breakdown in communication within the respondents’ families. They serve to highlight a particular aspect of complexity in the current needs of those South Asian Muslim families who find themselves involved in the CJS and is closely connected to family structure, culture, and faith. The second study, referred to throughout this paper as #ImamsBritain (that provides the majority of content for this paper), explores how Imams, in their role as community faith leaders, can best address the complex – and changing - needs of South Asian Muslims families, such as those that emerged in the findings from FFC. The changing socio-economic and political climates of the last thirty or so years have brought about significant changes to the lives of Muslim families, and these have created more complex levels of social, cultural, and faith-based needs for families and individuals. As a consequence, Imams now have much greater demands made of them, and so their role has undergone far-reaching changes in response to this. The #ImamsBritain respondents identified a pressing need to develop a wider range of pastoral and counseling skills, which they saw as extending far beyond the traditional role of the Imam as a religious teacher and spiritual guide. The #ImamsBritain project was conducted with a cohort of British Imams in the North of England. Data was collected firstly through a questionnaire that related to the respondents’ training and development needs and then analysed in depth using the Delphi approach. Through Delphi, the data were scrutinized in depth using interpretative content analysis. The findings from this project reflect the respondents’ individual perceptions of the kind of training and development they need to fulfill their role in 21st Century Britain. They also provide a unique framework for constructing a professional guide for Imams in Great Britain. The discussions and critical analyses in this paper draw on the discourses of professionalization and pastoral care and relevant reports and reviews on Imam training in Europe and Canada.

Keywords: criminal justice system, faith and culture, Imams, Muslim community leadership, professionalization, South Asian family structure

Procedia PDF Downloads 138
2827 A Semantic E-Learning and E-Assessment System of Learners

Authors: Wiem Ben Khalifa, Dalila Souilem, Mahmoud Neji

Abstract:

The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time.

Keywords: Semantic Web, semantic system, ontology, evaluation, e-learning

Procedia PDF Downloads 334
2826 Effect of Hydroxy Propyl Methyl Cellulose (HPMC) Coating in Combination with MGSO4 on Some Guava Cultivars

Authors: Muhammad Randhawa, Muhammad Nadeem

Abstract:

Guava (Psidium guajava L.) is a vital source of minerals, vitamins, dietary fiber and antioxidants. Owing to highly perishable nature and proning towards chilling injury, diseases, insect-pests and physical damage the main drawbacks of guava after harvesting, present study was designed. Due to its delicacy in physiology, economic importance, effects of pre and postharvest factors and maturity indices, guava fruits should be given prime importance for good quality attributes. In this study guava fruits were stored at 10°C with 80% relative humidity after treating with different levels of sulphate salt of magnesium followed by dipping in cellulose based edible coating hydroxy propyl methyl cellulose (HPMC). The main objective of this coating was to enhance the shelf life of guava by inhibiting the respiration and also by binding the dissolved solids with salt application. Characterization for quality attributes including physical, physiological and bio chemical analysis was performed after every 7 days interval till the fruit remains edible during the storage period of 4 weeks. Finally, data obtained was subjected to statistical analysis. It was concluded on statistical basis that Surahi variety (treated with 5% MgSO4) showed best storage stability and kept its original quality up to almost 23 days during storage.

Keywords: edible coating, guava cultivars, physicochemical attributes, storage

Procedia PDF Downloads 326
2825 Assessment of Radiation Protection Measures in Diagnosis and Treatment: A Critical Review

Authors: Buhari Samaila, Buhari Maidamma

Abstract:

Background: The use of ionizing radiation in medical diagnostics and treatment is indispensable for accurate imaging and effective cancer therapies. However, radiation exposure carries inherent risks, necessitating strict protection measures to safeguard both patients and healthcare workers. This review critically examines the existing radiation protection measures in diagnostic radiology and radiotherapy, highlighting technological advancements, regulatory frameworks, and challenges. Objective: The objective of this review is to critically evaluate the effectiveness of current radiation protection measures in diagnostic and therapeutic radiology, focusing on minimizing patient and staff exposure to ionizing radiation while ensuring optimal clinical outcomes and propose future directions for improvement. Method: A comprehensive literature review was conducted, covering scientific studies, regulatory guidelines, and international standards on radiation protection in both diagnostic radiology and radiotherapy. Emphasis was placed on ALARA principles, dose optimization techniques, and protective measures for both patients and healthcare workers. Results: Radiation protection measures in diagnostic radiology include the use of shielding devices, minimizing exposure times, and employing advanced imaging technologies to reduce dose. In radiotherapy, accurate treatment planning and image-guided techniques enhance patient safety, while shielding and dose monitoring safeguard healthcare personnel. Challenges such as limited infrastructure in low-income settings and gaps in healthcare worker training persist, impacting the overall efficacy of protection strategies. Conclusion: While significant advancements have been made in radiation protection, challenges remain in optimizing safety, especially in resource-limited settings. Future efforts should focus on enhancing training, investing in advanced technologies, and strengthening regulatory compliance to ensure continuous improvement in radiation safety practices.

Keywords: radiation protection, diagnostic radiology, radiotherapy, ALARA, patient safety, healthcare worker safety

Procedia PDF Downloads 24
2824 Characteristics and Item Parameters Fitness on Chemistry Teacher-Made Test Instrument

Authors: Rizki Nor Amelia, Farida A. Setiawati

Abstract:

This study aimed to: (1) describe the characteristics of teacher-made test instrument used to measure the ability of students’chemistry, and (2) identify the presence of the compability difficulty level set by teachers to difficulty level by empirical results. Based on these objectives, this study was a descriptive research. The analysis in this study used the Rasch model and Chi-square statistics. Analysis using Rasch Model was based on the response patterns of high school students to the teacher-made test instrument on chemistry subject Academic Year 2015/2016 in the Yogyakarta. The sample of this research were 358 students taken by cluster random sampling technique. The analysis showed that: (1) a teacher-made tests instrument has a medium on the mean difficulty level. This instrument is capable to measure the ability on the interval of -0,259 ≤ θ ≤ 0,659 logit. Maximum Test Information Function obtained at 18.187 on the ability +0,2 logit; (2) 100% items categorized either as easy or difficult by rasch model is match with the teachers’ judgment; while 37 items are categorized according to rasch model which 8.10% and 10.81% categorized as easy and difficult items respectively according to the teachers, the others are medium categorized. Overall, the distribution of the level of difficulty formulated by the teachers has the distinction (not match) to the level of difficulty based on the empirical results.

Keywords: chemistry, items parameter fitness, Rasch model, teacher-made test

Procedia PDF Downloads 238
2823 Family Medicine Residents in End-of-Life Care

Authors: Goldie Lynn Diaz, Ma. Teresa Tricia G. Bautista, Elisabeth Engeljakob, Mary Glaze Rosal

Abstract:

Introduction: Residents are expected to convey unfavorable news, discuss prognoses, and relieve suffering, and address do-not-resuscitate orders, yet some report a lack of competence in providing this type of care. Recognizing this need, Family Medicine residency programs are incorporating end-of-life care from symptom and pain control, counseling, and humanistic qualities as core proficiencies in training. Objective: This study determined the competency of Family Medicine Residents from various institutions in Metro Manila on rendering care for the dying. Materials and Methods: Trainees completed a Palliative Care Evaluation tool to assess their degree of confidence in patient and family interactions, patient management, and attitudes towards hospice care. Results: Remarkably, only a small fraction of participants were confident in performing independent management of terminal delirium and dyspnea. Fewer than 30% of residents can do the following without supervision: discuss medication effects and patient wishes after death, coping with pain, vomiting and constipation, and reacting to limited patient decision-making capacity. Half of the respondents had confidence in supporting the patient or family member when they become upset. Majority expressed confidence in many end-of-life care skills if supervision, coaching and consultation will be provided. Most trainees believed that pain medication should be given as needed to terminally ill patients. There was also uncertainty as to the most appropriate person to make end-of-life decisions. These attitudes may be influenced by personal beliefs rooted in cultural upbringing as well as by personal experiences with death in the family, which may also affect their participation and confidence in caring for the dying. Conclusion: Enhancing the quality and quantity of end-of-life care experiences during residency with sufficient supervision and role modeling may lead to knowledge and skill improvement to ensure quality of care. Fostering bedside learning opportunities during residency is an appropriate venue for teaching interventions in end-of-life care education.

Keywords: end of life care, geriatrics, palliative care, residency training skill

Procedia PDF Downloads 257
2822 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall

Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos

Abstract:

The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.

Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization

Procedia PDF Downloads 156
2821 Factors Affecting the Operations of Vocational and Technical Training Institutions in Zambia: A Case of Lusaka and Southern Provinces in Zambia

Authors: Jabulani Mtshiya, Yasmin Sultana-Muchindu

Abstract:

Technical and Vocational Education (TVE) is the platform on which developed nations have built their economic foundations, which have led them to attain high standards of living. Zambia has put up educational systems aimed at empowering the citizens and building the economy. Nations such as China, the United States America, and several other European nations are such examples. Despite having programs in Technical and Vocations Education, the Zambian economy still lags, and the industries contributing merger to Gross Domestic Product. This study addresses the significance of Technical and Vocational Education and how it can improve the livelihood of citizens. It addresses aspects of development and productivity and highlights the problems faced by learners in Lusaka and Southern provinces in Zambia. The study employed qualitative research design in data collection and a method of descriptive data analysis was used in order to bring out the description of the prevailing state of affairs in TVE in the perspective of learners. This meant that the respondents indicated their views and thoughts toward TVE. The study collected information through research questionnaires. The findings showed that TVE is regarded important by government and various stakeholders and that it is also regarded important by learners. The findings also showed that stakeholders and society need to pay particular attention to the development of TVE in order to improve the livelihood of citizens and to improve the national economy. Just like any other developed nation that used TVE to develop their industries, Zambia also has the potential to train its youth and to equip them with the necessary skills required for them to contribute positively to the growth of industries and the growth of the economy. Deliberate steps need to be taken by the government and stakeholders to apply and make firm the TVE policies that were laid. At the end of the study recommendations were made; that government should put in the right measures in order to harness the potential at hand. Further on, recommendations were made to carry out this research at the national level and also to conduct it using the quantitative research method, and that government should be consistent to its obligations of funding and maintaining TVE institutions in order for them to be able to operate effectively.

Keywords: education, technical, training, vocational

Procedia PDF Downloads 162
2820 Reconceptualizing Human Trafficking: Revealings of the Experience of Ethiopian Migrant Returnees

Authors: Waganesh Zeleke, Abebaw Minaye

Abstract:

This study examined the act, means, and purpose of human trafficking in the case of Ethiopian migrant returnees from the Middle East and South Africa. Using a questionnaire survey data was gathered from 1078 returnees. Twelve focus group discussions were used to solicit detailed experience of returnee about the process of their 'unsafe' immigration. Both quantitative and qualitative analysis results revealed that against the mainstream thinking of human trafficking means such as forcing, coercing, abducting or threatening, traffickers used 'victims’ free will' means by providing false promises to and capitalizing on the vulnerability of migrants. The migrants’ living condition including unemployment, ambitious view to change their life, and low level of risk perception were found to be risk factors which made them vulnerable and target of the brokers and smugglers who served as a catalyst in the process of their 'unsafe' migration. Equal to the traffickers/brokers/agency, the migrants’ family, friends and Ethiopian embassies contributed to the deplorable situation of migrant workers. 64.4% of the returnees reported that their migration is self-initiated, and 20% reported peer pressure and 13.8 percent reported family pressure, and it is only 1.8% who reported having been pushed by brokers. The findings revealed that 69.5% of the returnees do not know about the lifestyle and culture of the host community before their leave. In a similar vein, 50.9% of the returnees reported that they do not know about the nature of the work they are to do and their responsibilities. Further, 81% of the returnees indicated that the pre-migration training they received was not enough in equipping them with the required skill. Despite the returnees experiences of various forms of abuse and exploitation in the journey and at the destination they still have a positive attitude for migration (t=9.7 mean of 18.85 with a test value of 15). The returnees evaluated the support provided by sending agencies and Ethiopian embassies in the destination to be poor. 51.8% of the migrants do not know the details of the contract they signed during migration. Close to 70% of the returnees expressed that they had not got any legal support from stakeholders when they faced problems. What is more is that despite all these 27.9% of the returnees indicated re-immigrating as their plan. Based on these findings on the context and experience of Ethiopian migrant returnees, implications for training, policy, research, and intervention are discussed.

Keywords: trafficking, migrant, returnee, Ethiopia, experience, reconceptualizing

Procedia PDF Downloads 308