Search results for: digital surface model (DSM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24139

Search results for: digital surface model (DSM)

5419 In vitro and in vivo Antiangiogenic Activity of Girinimbine Isolated from Murraya koenigii

Authors: Venoos Iman, Suzita Mohd Noor, Syam Mohan, Mohamad Ibrahim Noordin

Abstract:

Girinimbine, a carbazole alkaloid was isolated from the stem bark and root of Murraya koenigii and its structure and purity was identified by HPLC and LC-MS. Here we report that Girinimbine strongly inhibit angiogenesis activity both in vitro and in vivo. MTT result showed that girinimbine inhibits cell proliferation of the HUVECS cell line in vitro. Result of endothelial cell invasion, migration, tube formation and wound healing assays also demonstrated significant time and does dependent inhibition by girinimbine. Moreover, girinibine mediates its anti-angiogenic activity through up- and down-regulation of angiogenic and anti-aniogenic proteins. Furthermore, anti-angiogenic potential of girinimbine was evidenced in vivo on zebrafish model. Girinimbine inhibited neo-vessels formation in zebrafish embryos during 24 hours exposure time. Together, these results demonstrated for the first time that girinimbine could effectively suppress angiogenesis and strongly suggest that it might be a novel angiogenesis inhibitor.

Keywords: anti-angiogenic, carbazole alkaloid, girinimbine, zebrafish

Procedia PDF Downloads 376
5418 Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function

Authors: M. R. Naroui Rad, H. Fanaei, A. Ghalandarzehi

Abstract:

To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections.

Keywords: melon, discriminant analysis, genetic components, yield, selection

Procedia PDF Downloads 333
5417 Translational and Rotational Effect of Earthquake Ground Motion on a Bridge Substructure

Authors: Tauhidur Rahman, Gitartha Kalita

Abstract:

In this study a four span box girder bridge is considered and effect of the rotational and translational earthquake ground motion have been thoroughly investigated. This study is motivated by the fact that in many countries the translational and rotational components of earthquake ground motion, especially rocking, is not adequately considered in analysing the overall response of the structures subjected to earthquake ground excitations. Much consideration is given to only the horizontal components of the earthquake ground motion during the response analysis of structures. In the present research work, P waves, SV waves and Rayleigh wave excitations are considered for different angle of incidence. In the present paper, the four span bridge is model considering the effects of vertical and rocking components of P, SV and Rayleigh wave excitations. Ground responses namely displacement, velocity and acceleration of the substructures of the bridge have been considered for rotational and translational effects in addition to the horizontal ground motion due to earthquake and wind.

Keywords: ground motion, response, rotational effects, translational effects

Procedia PDF Downloads 447
5416 A Therapeutic Approach for Bromhidrosis with Glycopyrrolate 2% Cream: Clinical Study of 20 Patients

Authors: Vasiliki Markantoni, Eftychia Platsidaki, Georgios Chaidemenos, Georgios Kontochristopoulos

Abstract:

Introduction: Bromhidrosis, also known as osmidrosis, is a common distressing condition with a significant negative effect on patient’s quality of life. Its etiology is multifactorial. It usually affects axilla, genital skin, breasts and soles, areas where apocrine glands are mostly distributed. Therapeutic treatments include topical antibacterial agents, antiperspirants and neuromuscular blocker agents-toxins. In this study, we aimed to evaluate the efficacy and possible complications of topical glycopyrrolate, an anticholinergic agent, for treatment of bromhidrosis. Glycopyrrolate, applied topically as a cream, solution or spray at concentrations between 0,5% and 4%, has been successfully used to treat different forms of focal hyperhidrosis. Materials and Methods: Twenty patients, six males and fourteen females, meeting the criteria for bromhidrosis were treated with topical glycopyrrolate for two months. The average age was 36. Eleven patients had bromhidrosis located to the axillae, four to the soles, four to both axillae and soles and one to the genital folds. Glycopyrrolate was applied topically as a cream at concentration 2%, formulated in Fitalite. During the first month, patients were using the cream every night and thereafter twice daily. The degree of malodor was assessed subjectively by patients and scaled averagely as ‘none’, ‘mild’, ‘moderate’, and ‘severe’ with corresponding scores of 0, 1, 2, and 3, respectively. The modified Dermatology Life Quality Index (DLQI) was used to assess the quality of life. The clinical efficacy was graded by the patient scale of excellent, good, fair and poor. In the end, patients were given the power to evaluate whether they were totally satisfied with, partially satisfied or unsatisfied and possible side effects during the treatment were recorded. Results: All patients were satisfied at the end of the treatment. No patient defined the response as no improvement. The subjectively assessed score level of bromhidrosis was remarkably improved after the first month of treatment and improved slightly more after the second month. DLQI score was also improved to all patients. Adverse effects were reported in 2 patients. In the first case, topical irritation was reported. This was classed as mild (erythema and desquamation), appeared during the second month of treatment and was treated with low-potency topical corticosteroids. In the second case, mydriasis was reported, that recovered without specific treatment, as soon as we insisted to the importance of careful hygiene after cream application so as not to contaminate the periocular skin or ocular surface. Conclusions: Dermatologists often encounter patients with bromhidrosis, therefore should be aware of treatment options. To the best of our knowledge, this is the first study to evaluate the use of topical glycopyrrolate as a therapeutic approach for bromhidrosis. Our findings suggest that topical glycopyrrolate has an excellent safety profile and demonstrate encouraging results for the management of this distressful condition.

Keywords: Bromhidrosis, glycopyrrolate, topical treatment, osmidrosis

Procedia PDF Downloads 167
5415 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 374
5414 Volatility of Interest Rates in the US After Covid-19: A Multivariate GARCH Analysis

Authors: Rodrigo Baggi Prieto Alvarez, José Dias Curto

Abstract:

This study examines the volatility dynamics of U.S. Treasury rates from 1994 to 2024, with a focus on the shock induced by the Covid-19 pandemic. This market is considered the most important to monitor daily, as the yield curve of future interest rates is often referred to as "the mother of all curves" due to its importance in the pricing of all global risk assets. The period after 2020 was characterized initially by a stimulative monetary policy, synchronized across major global economies, with a rapid and significant reduction of interest rates by central banks and expansionary fiscal policy and increased government debt. In a subsequent phase, from 2021 to 2022, the end of lockdowns, the boost in income through public subsidies, and increased demand for goods, combined with logistical bottlenecks, resulted in the most significant inflationary shock in decades. The Federal Reserve (Fed) employed an abrupt tightening, raising short-term interest rates from 0.00% to 5.25% p.a. (the highest since the 2000s) at record speed (March 2022 to July 2023), and even before the monetary tightening, long-term interest rates had already been on an upward trend since 2020. The speed at which the Fed raised short-term interest rates has a significant impact on the level and the volatility of yields across other maturities. Estimating models as APARCH and DCC-GARCH, this paper explores the interplay between conditional variance in the 2-year Treasuries and key macroeconomic variables for the U.S., highlighting asymmetric shocks, feedback effects, and spillovers between Treasury markets and macroeconomic volatility. The results evidenced volatility peaks, particularly during the Covid-19 lockdown, and the statistical tests confirmed ARCH/GARCH effects, corroborating high persistence, i.e. future variance being strongly affected by past variance. The univariate models GJR-GARCH and APARCH allowed to verify the importance of asymmetry, that is, bad news have a greater impact than good news on the conditional volatility of future interest rates. Then, the multivariate DCC-GARCH model confirmed the spillover between the volatility of Treasuries and volatility of macroeconomic variables, indicating the time-varying conditional correlation between the variable’s volatilities. Besides estimating a full specification for DCC-GARCH with all variables simultaneously, a robustness test with pairwise estimations confirmed the temporal dynamics of highly persistence volatility and corroborated the feedback effect between the 2-year Treasuries, the unemployment rate and expected inflation, suggesting that these variables are good predictors of the long-term interest rate, which is aligned with the Fed's dual mandate. The empirical results here are consistent with the literature and bring practical insights for risk management and investment strategies, supporting investors to better model asymmetry and downside risk in portfolios and to manage the interest rate risk by understanding how different maturities respond to economic conditions.

Keywords: volatility, US treasury, APARCH, DCC-GARCH, asymmetric shocks, spillover

Procedia PDF Downloads 0
5413 Manage an Acute Pain Unit based on the Balanced Scorecard

Authors: Helena Costa Oliveira, Carmem Oliveira, Rita Moutinho

Abstract:

The Balanced Scorecard (BSC) is a continuous strategic monitoring model focused not only on financial issues but also on internal processes, patients/users, and learning and growth. Initially dedicated to business management, it currently serves organizations of other natures - such as hospitals. This paper presents a BSC designed for a Portuguese Acute Pain Unit (APU). This study is qualitative and based on the experience of collaborators at the APU. The management of APU is based on four perspectives – users, internal processes, learning and growth, and financial and legal. For each perspective, there were identified strategic objectives, critical factors, lead indicators and initiatives. The strategic map of the APU outlining sustained strategic relations among strategic objectives. This study contributes to the development of research in the health management area as it explores how organizational insufficiencies and inconsistencies in this particular case can be addressed, through the identification of critical factors, to clearly establish core outcomes and initiatives to set up.

Keywords: acute pain unit, balanced scorecard, hospital management, organizational performance, Portugal

Procedia PDF Downloads 148
5412 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform

Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung

Abstract:

Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.

Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing

Procedia PDF Downloads 226
5411 Impact of Implementation of 5S and TPM in Industrial Organizations: A Review

Authors: Jamal Ahmed Hama Kareem, Noraini Abu Talib

Abstract:

The purpose of this paper is to explore the literature on 5S and Total Productive Maintenance (TPM) and the benefits that are to be derived from their implementation. It also seeks to highlight the main phases for implementing both the 5S and the TPM successfully, along with highlighting aspects that are needed for successful implementation of these two techniques simultaneously in the contemporary manufacturing scenario. The literature on classification of 5S and TPM has so far been very limited. The paper reviews a large number of papers in this field and presents the overview of several of implementation practices of 5S and TPM, and the benefits that can be achieved by the implementation of 5S and TPM as a one system by industrial organizations globally. The paper systematically categorizes the published literature and reveals important issues that influence the successful implementation of 5S and TPM in organizations to improve production effectiveness for competitiveness. Further, the paper also highlights various phases suggested by researchers and practitioners, which ensure smooth and effective implementation of the 5S and TPM in industrial organizations. In the end, study puts forth propositions based on the model of the study after extensive review of literature. The paper will be useful to researchers, maintenance professionals and other concerned officials with improving the performance of production processes effectiveness in industrial organizations.

Keywords: 5S, Total Productive Maintenance (TPM), phases of implementation of 5S and TPM, industrial organizations

Procedia PDF Downloads 617
5410 Mapping Intertidal Changes Using Polarimetry and Interferometry Techniques

Authors: Khalid Omari, Rene Chenier, Enrique Blondel, Ryan Ahola

Abstract:

Northern Canadian coasts have vulnerable and very dynamic intertidal zones with very high tides occurring in several areas. The impact of climate change presents challenges not only for maintaining this biodiversity but also for navigation safety adaptation due to the high sediment mobility in these coastal areas. Thus, frequent mapping of shorelines and intertidal changes is of high importance. To help in quantifying the changes in these fragile ecosystems, remote sensing provides practical monitoring tools at local and regional scales. Traditional methods based on high-resolution optical sensors are often used to map intertidal areas by benefiting of the spectral response contrast of intertidal classes in visible, near and mid-infrared bands. Tidal areas are highly reflective in visible bands mainly because of the presence of fine sand deposits. However, getting a cloud-free optical data that coincide with low tides in intertidal zones in northern regions is very difficult. Alternatively, the all-weather capability and daylight-independence of the microwave remote sensing using synthetic aperture radar (SAR) can offer valuable geophysical parameters with a high frequency revisit over intertidal zones. Multi-polarization SAR parameters have been used successfully in mapping intertidal zones using incoherence target decomposition. Moreover, the crustal displacements caused by ocean tide loading may reach several centimeters that can be detected and quantified across differential interferometric synthetic aperture radar (DInSAR). Soil moisture change has a significant impact on both the coherence and the backscatter. For instance, increases in the backscatter intensity associated with low coherence is an indicator for abrupt surface changes. In this research, we present primary results obtained following our investigation of the potential of the fully polarimetric Radarsat-2 data for mapping an inter-tidal zone located on Tasiujaq on the south-west shore of Ungava Bay, Quebec. Using the repeat pass cycle of Radarsat-2, multiple seasonal fine quad (FQ14W) images are acquired over the site between 2016 and 2018. Only 8 images corresponding to low tide conditions are selected and used to build an interferometric stack of data. The observed displacements along the line of sight generated using HH and VV polarization are compared with the changes noticed using the Freeman Durden polarimetric decomposition and Touzi degree of polarization extrema. Results show the consistency of both approaches in their ability to monitor the changes in intertidal zones.

Keywords: SAR, degree of polarization, DInSAR, Freeman-Durden, polarimetry, Radarsat-2

Procedia PDF Downloads 137
5409 Online Topic Model for Broadcasting Contents Using Semantic Correlation Information

Authors: Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park, Sang-Jo Lee

Abstract:

This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script which is a series of texts including directions and dialogues. The other is blogposts which possesses relatively abstracted contents, stories and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. In order to improve the quality of topics, it needs a method to consider the word difference. In this paper, we introduce a semantic vocabulary expansion method to solve the word difference. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can learn more salient topics for broadcasting contents.

Keywords: broadcasting script analysis, topic expansion, semantic correlation analysis, word2vec

Procedia PDF Downloads 251
5408 Relative Clause Attachment Ambiguity Resolution in L2: the Role of Semantics

Authors: Hamideh Marefat, Eskandar Samadi

Abstract:

This study examined the effect of semantics on processing ambiguous sentences containing Relative Clauses (RCs) preceded by a complex Determiner Phrase (DP) by Persian-speaking learners of L2 English with different proficiency and Working Memory Capacities (WMCs). The semantic relationship studied was one between the subject of the main clause and one of the DPs in the complex DP to see if, as predicted by Spreading Activation Model, priming one of the DPs through this semantic manipulation affects the L2ers’ preference. The results of a task using Rapid Serial Visual Processing (time-controlled paradigm) showed that manipulation of the relationship between the subject of the main clause and one of the DPs in the complex DP preceding RC has no effect on the choice of the antecedent; rather, the L2ers' processing is guided by the phrase structure information. Moreover, while proficiency did not have any effect on the participants’ preferences, WMC brought about a difference in their preferences, with a DP1 preference by those with a low WMC. This finding supports the chunking hypothesis and the predicate proximity principle, which is the strategy also used by monolingual Persian speakers.

Keywords: semantics, relative clause processing, ambiguity resolution, proficiency, working memory capacity

Procedia PDF Downloads 623
5407 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 302
5406 UVA or UVC Activation of H₂O₂ and S₂O₈²⁻ for Estrogen Degradation towards an Application in Rural Wastewater Treatment Plant

Authors: Anaelle Gabet, Helene Metivier, Christine De Brauer, Gilles Mailhot, Marcello Brigante

Abstract:

The presence of micropollutants in surface waters has been widely reported around the world, particularly downstream from wastewater treatment plants (WWTPs). Rural WWTPs constitute more than 90 % of the total WWTPs in France. Like conventional ones, they are not able to fully remove micropollutants. Estrogens are excreted by human beings every day and several studies have highlighted their endocrine disruption properties on river wildlife. They are mainly estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). Rural WWTPs require cheap and robust tertiary processes. UVC activation of H₂O₂ for HO· generation, a very reactive molecule, has demonstrated its effectiveness. However, UVC rays are dangerous to manipulate and energy-consuming. This is why the ability of UVA rays was investigated in this study. Moreover, the use of S₂O₈²⁻ for SO₄·- generation as an alternative to HO· has emerged in the last few years. Such processes have been widely studied on a lab scale. However, pilot-scale works constitute fewer studies. This study was carried out on a 20-L pilot composed of a 1.12-L UV reactor equipped with a polychromatic UVA lamp or a monochromatic (254 nm) UVC lamp fed in recirculation. Degradation rates of a mixture of spiked E1, E2 and EE2 (5 µM each) were followed by HPLC-UV. Results are expressed in UV dose (mJ.cm-2) received by the compounds of interest to compare UVC and UVA. In every system, estrogen degradation rates followed pseudo-first-order rates. First, experiments were carried out in tap water. All estrogens underwent photolysis under UVC rays, although E1 photolysis is higher. However, only very weak photolysis was observed under UVA rays. Preliminary studies on both oxidants have shown that S₂O₈²⁻ photolysis constants are higher than H₂O₂ under both UVA and UVC rays. Therefore, estrogen degradation rates are about ten times higher in the presence of 1 mM of S₂O₈²⁻ than with one mM of H₂O₂ under both radiations. In the same conditions, the mixture of interest required about 40 times higher UV dose when using UVA rays compared to UVC. However, the UVA/S₂O₈²⁻ system only requires four times more UV dose than the conventional UVC/H₂O₂ system. Further studies were carried out in WWTP effluent with the UVC lamp. When comparing these results to the tap water ones, estrogen degradation rates were more inhibited in the S₂O₈²⁻ system than with H₂O₂. It seems that SO₄·- undergo higher quenching by a real effluent than HO·. Preliminary experiments have shown that natural organic matter is mainly responsible for the radical quenching and that HO and SO₄ both had similar second-order reaction rate constants with dissolved organic matter. However, E1, E2 and EE2 second-order reaction rate constants are about ten times lower with SO₄ than with HO. In conclusion, the UVA/S₂O₈²⁻ system showed encouraging results for the use of UVA rays but further studies in WWTP effluent have to be carried out to confirm this interest. The efficiency of other pollutants in the real matrix also needs to be investigated.

Keywords: AOPs, decontamination, estrogens, radicals, wastewater

Procedia PDF Downloads 191
5405 Investigation of Neutral Axis Shifting and Wall Thickness Distribution of Bent Tubes Produced by Rotary Draw Bending

Authors: Bernd Engel, Hassan Raheem Hassan

Abstract:

Rotary draw bending is a method used for tube forming. During the tube bending process, the neutral axis moves towards the inner arc and the wall thickness changes in the cross section of the tube. Wall thinning of the tube takes place at the extrados, whereas wall thickening of the tube occurs at the intrados. This paper investigates the tube bending with rotary draw bending process using thick-walled tubes and different material properties (16Mo3 and 10CrMo9-10). The experimental tests and finite element simulations are used to calculate the variable characteristics (wall thickness distribution, neutral axis shifting and longitudinal strain distribution). These results are compared with results of a plasto-mechanical model. Moreover, the cross section distortion is investigated in this study. This study helped to get bends with smaller wall factor for different material properties.

Keywords: rotary draw bending, thick wall tube, material properties, material influence

Procedia PDF Downloads 614
5404 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90
5403 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission

Authors: Alex B. Cusick

Abstract:

The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.

Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions

Procedia PDF Downloads 171
5402 Numerical Analysis of Fire Performance of Timber Structures

Authors: Van Diem Thi, Mourad Khelifa, Mohammed El Ganaoui, Yann Rogaume

Abstract:

An efficient numerical method has been developed to incorporate the effects of heat transfer in timber panels on partition walls exposed to real building fires. The procedure has been added to the software package Abaqus/Standard as a user-defined subroutine (UMATHT) and has been verified using both time-and spatially dependent heat fluxes in two- and three-dimensional problems. The aim is to contribute to the development of simulation tools needed to assist structural engineers and fire testing laboratories in technical assessment exercises. The presented method can also be used under the developmental stages of building components to optimize performance in real fire conditions. The accuracy of the used thermal properties and the finite element models was validated by comparing the predicted results with three different available fire tests in literature. It was found that the model calibrated to results from standard fire conditions provided reasonable predictions of temperatures within assemblies exposed to real building fire.

Keywords: Timber panels, heat transfer, thermal properties, standard fire tests

Procedia PDF Downloads 342
5401 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing

Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque

Abstract:

Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.

Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle

Procedia PDF Downloads 101
5400 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh

Authors: B. Hossen, Y. Helmut

Abstract:

Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.

Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing

Procedia PDF Downloads 341
5399 Sensitivity Analysis of Oil Spills Modeling with ADIOS II for Iranian Fields in Persian Gulf

Authors: Farzingohar Mehrnaz, Yasemi Mehran, Esmaili Zinat, Baharlouian Maedeh

Abstract:

Aboozar (Ardeshir) and Bahregansar are the two important Iranian oilfields in Persian Gulf waters. The operation activities cause to create spills which impacted on the marine environment. Assumed spills are molded by ADIOS II (Automated Data Inquiry for Oil Spills) which is NOAA’s weathering oil software. Various atmospheric and marine data with different oil types are used for the modeling. Numerous scenarios for 100 bbls with mean daily air temperature and wind speed are input for 5 days. To find the model sensitivity in each setting, one parameter is changed, but the others stayed constant. In both fields, the evaporated and dispersed output values increased hence the remaining rate is reduced. The results clarified that wind speed first, second air temperature and finally oil type respectively were the most effective factors on the oil weathering process. The obtained results can help the emergency systems to predict the floating (dispersed and remained) volume spill in order to find the suitable cleanup tools and methods.

Keywords: ADIOS, modeling, oil spill, sensitivity analysis

Procedia PDF Downloads 299
5398 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads

Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom

Abstract:

Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.

Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete

Procedia PDF Downloads 257
5397 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: quantum semiconductors, nanostructures, quantum dots, spin polarization

Procedia PDF Downloads 273
5396 The Role of a Biphasic Implant Based on a Bioactive Silk Fibroin for Osteochondral Tissue Regeneration

Authors: Lizeth Fuentes-Mera, Vanessa Perez-Silos, Nidia K. Moncada-Saucedo, Alejandro Garcia-Ruiz, Alberto Camacho, Jorge Lara-Arias, Ivan Marino-Martinez, Victor Romero-Diaz, Adolfo Soto-Dominguez, Humberto Rodriguez-Rocha, Hang Lin, Victor Pena-Martinez

Abstract:

Biphasic scaffolds in cartilage tissue engineering have been designed to influence not only the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone to promote the implant integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a biphasic scaffold based on the assembly of a cartilage phase constituted by fibroin biofunctionalized with bovine cartilage matrix; cellularized with differentiated pre-chondrocytes from adipose tissue stem cells (autologous) and well attached to a bone phase (bone bovine decellularized) to mimic the structure of the nature of native tissue and to promote the cartilage regeneration in a model of joint damage in pigs. Biphasic scaffolds were assembled by fibroin crystallization with methanol. The histological and ultrastructural architectures were evaluated by optical and scanning electron microscopy respectively. Mechanical tests were conducted to evaluate Young's modulus of the implant. For the biological evaluation, pre-chondrocytes were loaded onto the scaffolds and cellular adhesion, proliferation, and gene expression analysis of cartilage extracellular matrix components was performed. The scaffolds that were cellularized and matured for 10 days were implanted into critical 3 mm in diameter and 9-mm in depth osteochondral defects in a porcine model (n=4). Three treatments were applied per knee: Group 1: monophasic cellular scaffold (MS) (single chondral phase), group 2: biphasic scaffold, cellularized only in the chondral phase (BS1), group 3: BS cellularized in both bone and chondral phases (BS2). Simultaneously, a control without treatment was evaluated. After 4 weeks of surgery, integration and regeneration tissues were analyzed by x-rays, histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular biphasic composites exhibited Young's modulus of 805.01 kPa similar to native cartilage (400-800 kPa). In vitro biological studies revealed the chondroinductive ability of the biphasic implant, evidenced by an increase in sulfated glycosaminoglycan (GAGs) and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, In group 1, the defects were not reconstructed. In group 2 and 3 a good integration of the implant with the surrounding tissue was observed. Defects in group 2 were fulfilled by hyaline cartilage and normal bone. Group 3 defects showed fibrous repair tissue. In conclusion; our findings demonstrated the efficacy of biphasic and bioactive scaffold based on silk fibroin, which entwined chondroinductive features and biomechanical capability with appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.

Keywords: biphasic scaffold, extracellular cartilage matrix, silk fibroin, osteochondral tissue engineering

Procedia PDF Downloads 153
5395 Economical Analysis of Optimum Insulation Thickness for HVAC Duct

Authors: D. Kumar, S. Kumar, A. G. Memon, R. A. Memon, K. Harijan

Abstract:

A considerable amount of energy is usually lost due to compression of insulation in Heating, ventilation, and air conditioning (HVAC) duct. In this paper, the economic impact of compression of insulation is estimated. Relevant mathematical models were used to estimate the optimal thickness at the points of compression. Furthermore, the payback period is calculated for the optimal thickness at the critical parts of supply air duct (SAD) and return air duct (RAD) considering natural gas (NG) and liquefied petroleum gas (LPG) as fuels for chillier operation. The mathematical model is developed using preliminary data obtained for an HVAC system of a pharmaceutical company. The higher heat gain and cooling loss, due to compression of thermal insulation, is estimated using relevant heat transfer equations. The results reveal that maximum energy savings (ES) in SAD is 34.5 and 40%, while in RAD is 22.9% and 29% for NG and LPG, respectively. Moreover, the minimum payback period (PP) for SAD is 2 and 1.6years, while in RAD is 4.3 and 2.7years for NG and LPG, respectively. The optimum insulation thickness (OIT) corresponding to maximum ES and minimum PP is estimated to be 35 and 42mm for SAD, while 30 and 38mm for RAD in case of NG and LPG, respectively.

Keywords: optimum insulation thickness, life cycle cost analysis, payback period, HVAC system

Procedia PDF Downloads 216
5394 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network

Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin

Abstract:

Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.

Keywords: eConsent, health social network, mixed methods, situation awareness

Procedia PDF Downloads 292
5393 Distributed Manufacturing (DM)- Smart Units and Collaborative Processes

Authors: Hermann Kuehnle

Abstract:

Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability.

Keywords: autonomous unit, networkability, smart manufacturing unit, virtualization

Procedia PDF Downloads 526
5392 Toward the Destigmatizing the Autism Label: Conceptualizing Celebratory Technologies

Authors: LouAnne Boyd

Abstract:

From the perspective of self-advocates, the biggest unaddressed problem is not the symptoms of an autism spectrum diagnosis but the social stigma that accompanies autism. This societal perspective is in contrast to the focus on the majority of interventions. Autism interventions, and consequently, most innovative technologies for autism, aim to improve deficits that occur within the person. For example, the most common Human-Computer Interaction research projects in assistive technology for autism target social skills from a normative perspective. The premise of the autism technologies is that difficulties occur inside the body, hence, the medical model focuses on ways to improve the ailment within the person. However, other technological approaches to support people with autism do exist. In the realm of Human Computer Interaction, there are other modes of research that provide critique of the medical model. For example, critical design, whose intended audience is industry or other HCI researchers, provides products that are the opposite of interventionist work to bring attention to the misalignment between the lived experience and the societal perception of autism. For example, parodies of interventionist work exist to provoke change, such as a recent project called Facesavr, a face covering that helps allistic adults be more independent in their emotional processing. Additionally, from a critical disability studies’ perspective, assistive technologies perpetuate harmful normalizing behaviors. However, these critical approaches can feel far from the frontline in terms of taking direct action to positively impact end users. From a critical yet more pragmatic perspective, projects such as Counterventions lists ways to reduce the likelihood of perpetuating ableism in interventionist’s work by reflectively analyzing a series of evolving assistive technology projects through a societal lens, thus leveraging the momentum of the evolving ecology of technologies for autism. Therefore, all current paradigms fall short of addressing the largest need—the negative impact of social stigma. The current work introduces a new paradigm for technologies for autism, borrowing from a paradigm introduced two decades ago around changing the narrative related to eating disorders. It is the shift from reprimanding poor habits to celebrating positive aspects of eating. This work repurposes Celebratory Technology for Neurodiversity and intended to reduce social stigma by targeting for the public at large. This presentation will review how requirements were derived from current research on autism social stigma as well as design sessions with autistic adults. Congruence between these two sources revealed three key design implications for technology: provide awareness of the autistic experience; generate acceptance of the neurodivergence; cultivate an appreciation for talents and accomplishments of neurodivergent people. The current pilot work in Celebratory Technology offers a new paradigm for supporting autism by shifting the burden of change from the person with autism to address changing society’s biases at large. Shifting the focus of research outside of the autistic body creates a new space for a design that extends beyond the bodies of a few and calls on all to embrace humanity as a whole.

Keywords: neurodiversity, social stigma, accessibility, inclusion, celebratory technology

Procedia PDF Downloads 72
5391 Pragmatic Discoursal Study of Hedging Constructions in English Language

Authors: Mohammed Hussein Ahmed, Bahar Mohammed Kareem

Abstract:

This study is concerned with the pragmatic discoursal study of hedging constructions in English language. Hedging is a mitigated word used to lessen the impact of the utterance uttered by the speakers. Hedging could be either adverbs, adjectives, verbs and sometimes it may consist of clauses. It aims at finding out the extent to which speakers and participants of the discourse use hedging constructions during their conversations. The study also aims at finding out whether or not there are any significant differences in the types and functions of the frequency of hedging constructions employed by male and female. It is hypothesized that hedging constructions are frequent in English discourse more than any other languages due to its formality and that the frequency of the types and functions are influenced by the gender of the participants. To achieve the aims of the study, two types of procedures have been followed: theoretical and practical. The theoretical procedure consists of presenting a theoretical background of hedging topic which includes its definitions, etymology and theories. The practical procedure consists of selecting a sample of texts and analyzing them according to an adopted model. A number of conclusions will be drawn based on the findings of the study.

Keywords: hedging, pragmatics, politeness, theoretical

Procedia PDF Downloads 587
5390 Social Data-Based Users Profiles' Enrichment

Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick

Abstract:

In this paper, we propose a generic model of user profile integrating several elements that may positively impact the research process. We exploit the classical behavior of users and integrate a delimitation process of their research activities into several research sessions enriched with contextual and temporal information, which allows reflecting the current interests of these users in every period of time and infer data freshness. We argue that the annotation of resources gives more transparency on users' needs. It also strengthens social links among resources and users, and can so increase the scope of the user profile. Based on this idea, we integrate the social tagging practice in order to exploit the social users' behavior to enrich their profiles. These profiles are then integrated into a recommendation system in order to predict the interesting personalized items of users allowing to assist them in their researches and further enrich their profiles. In this recommendation, we provide users new research experiences.

Keywords: user profiles, topical ontology, contextual information, folksonomies, tags' clusters, data freshness, association rules, data recommendation

Procedia PDF Downloads 265