Search results for: text processing
2972 Survival of Micro-Encapsulated Probiotic Lactic Acid Bacteria in Mutton Nuggets and Their Assessments in Simulated Gastro-Intestinal Conditions
Authors: Rehana Akhter, Sajad A. Rather, F. A. Masoodi, Adil Gani, S. M. Wani
Abstract:
During recent years probiotic food products receive market interest as health-promoting, functional foods, which are believed to contribute health benefits. In order to deliver the health benefits by probiotic bacteria, it has been recommended that they must be present at a minimum level of 106 CFU/g to 107 CFU/g at point of delivery or be eaten in sufficient amounts to yield a daily intake of 108 CFU. However a major challenge in relation to the application of probiotic cultures in food matrix is the maintenance of viability during processing which might lead to important losses in viability as probiotic cultures are very often thermally labile and sensitive to acidity, oxygen or other food constituents for example, salts. In this study Lactobacillus plantarum and Lactobacillus casei were encapsulated in calcium alginate beads with the objective of enhancing their survivability and preventing exposure to the adverse conditions of the gastrointestinal tract and where then inoculated in mutton nuggets. Micro encapsulated Lactobacillus plantarum and Lactobacillus casei were resistant to simulated gastric conditions (pH 2, 2h) and bile solution (3%, 2 h) resulting in significantly (p ≤ 0.05) improved survivability when compared with free cell counterparts. A high encapsulation yield was found due to the encapsulation procedure. After incubation at low pH-values, micro encapsulation yielded higher survival rates compared to non-encapsulated probiotic cells. The viable cell numbers of encapsulated Lactobacillus plantarum and Lactobacillus casei were 107-108 CFU/g higher compared to free cells after 90 min incubation at pH 2.5. The viable encapsulated cells were inoculated into mutton nuggets at the rate of 108 to 1010 CFU/g. The micro encapsulated Lactobacillus plantarum and Lactobacillus casei achieved higher survival counts (105-107 CFU/g) than the free cell counterparts (102-104 CFU/g). Thus micro encapsulation offers an effective means of delivery of viable probiotic bacterial cells to the colon and maintaining their survival during simulated gastric, intestinal juice and processing conditions during nugget preparation.Keywords: survival, Lactobacillus plantarum, Lactobacillus casei, micro-encapsulation, nugget
Procedia PDF Downloads 2782971 Critical Thinking and Academic Writing: A Case Study
Authors: Mubina Rauf
Abstract:
Critical thinking is a highly valued outcome of university education. There is an agreement in literature that it is demonstrated through the abilities to highlight issues and assumptions, find links between ideas and concepts, make correct inferences, evaluate evidence or authority and deduce conclusions (Tsui, 2002). Although Critical thinking plays a significant role in developing all academic skills, its role in developing writing skills is significant (Kurfiss, 1988). SAW (student academic writing) is an observable output of critical thinking (Wilson K. , 2016). When students apply critical thinking to their writing, they present clear, accurate, significant and logical arguments constructing their own voice in the form of an essay or dissertation (Matsuda, 2001). This presentation will show how a rubric can be used to find evidence of critical thinking in SAW. Participants will experience how evidence-based written arguments supported by background knowledge and authorial voice can develop students into efficient critical thinkers. Participants will have an opportunity to use the rubric to find the evidence of critical thinking in SAW samples. This presentation is intended for classroom teachers with or without the basic knowledge of implementing critical thinking in academic settings. Participants will also learn tips how various features of critical thinking can be developed among students. After the session, the participants will be able to use or adapt the rubric according to their needs to find evidence of critical thinking in SAW within their context.Keywords: critical thinking, Rubric, student academic writing, argumentation, text analysis
Procedia PDF Downloads 712970 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3332969 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks
Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox
Abstract:
miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network
Procedia PDF Downloads 5062968 Psychodidactic Strategies to Facilitate Flow of Logical Thinking in Preparation of Academic Documents
Authors: Deni Stincer Gomez, Zuraya Monroy Nasr, Luis Pérez Alvarez
Abstract:
The preparation of academic documents such as thesis, articles and research projects is one of the requirements of the higher educational level. These documents demand the implementation of logical argumentative thinking which is experienced and executed with difficulty. To mitigate the effect of these difficulties this study designed a thesis seminar, with which the authors have seven years of experience. It is taught in a graduate program in Psychology at the National Autonomous University of Mexico. In this study the authors use the Toulmin model as a mental heuristic and for the application of a set of psychodidactic strategies that facilitate the elaboration of the plot and culmination of the thesis. The efficiency in obtaining the degree in the groups exposed to the seminar has increased by 94% compared to the 10% that existed in the generations that were not exposed to the seminar. In this article the authors will emphasize the psychodidactic strategies used. The Toulmin model alone does not guarantee the success achieved. A set of actions of a psychological nature (almost psychotherapeutic) and didactics of the teacher also seem to contribute. These are actions that derive from an understanding of the psychological, epistemological and ontogenetic obstacles and the most frequent errors in which thought tends to fall when it is demanded a logical course. The authors have grouped the strategies into three groups: 1) strategies to facilitate logical thinking, 2) strategies to strengthen the scientific self and 3) strategies to facilitate the act of writing the text. In this work the authors delve into each of them.Keywords: psychodidactic strategies, logical thinking, academic documents, Toulmin model
Procedia PDF Downloads 1762967 Area-Efficient FPGA Implementation of an FFT Processor by Reusing Butterfly Units
Authors: Atin Mukherjee, Amitabha Sinha, Debesh Choudhury
Abstract:
Fast Fourier transform (FFT) of large-number of samples requires larger hardware resources of field programmable gate arrays and it asks for more area as well as power. In this paper, an area efficient architecture of FFT processor is proposed, that reuses the butterfly units more than once. The FFT processor is emulated and the results are validated on Virtex-6 FPGA. The proposed architecture outperforms the conventional architecture of a N-point FFT processor in terms of area which is reduced by a factor of log_N(2) with the negligible increase of processing time.Keywords: FFT, FPGA, resource optimization, butterfly units
Procedia PDF Downloads 5212966 Study of Chemical Compounds of Garlic
Authors: A. B. Bazaralieva, A. A. Turgumbayeva
Abstract:
The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn.Keywords: Allium sativum, bioactive compounds of garlic, carbon dioxide extraction of garlic, GS-MS method
Procedia PDF Downloads 1082965 BERT-Based Chinese Coreference Resolution
Authors: Li Xiaoge, Wang Chaodong
Abstract:
We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.Keywords: BERT, coreference resolution, deep learning, nature language processing
Procedia PDF Downloads 2152964 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 4752963 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove
Procedia PDF Downloads 3002962 Comparison of Authentication Methods in Internet of Things Technology
Authors: Hafizah Che Hasan, Fateen Nazwa Yusof, Maslina Daud
Abstract:
Internet of Things (IoT) is a powerful industry system, which end-devices are interconnected and automated, allowing the devices to analyze data and execute actions based on the analysis. The IoT technology leverages the technology of Radio-Frequency Identification (RFID) and Wireless Sensor Network (WSN), including mobile and sensor. These technologies contribute to the evolution of IoT. However, due to more devices are connected each other in the Internet, and data from various sources exchanged between things, confidentiality of the data becomes a major concern. This paper focuses on one of the major challenges in IoT; authentication, in order to preserve data integrity and confidentiality are in place. A few solutions are reviewed based on papers from the last few years. One of the proposed solutions is securing the communication between IoT devices and cloud servers with Elliptic Curve Cryptograhpy (ECC) based mutual authentication protocol. This solution focuses on Hyper Text Transfer Protocol (HTTP) cookies as security parameter. Next proposed solution is using keyed-hash scheme protocol to enable IoT devices to authenticate each other without the presence of a central control server. Another proposed solution uses Physical Unclonable Function (PUF) based mutual authentication protocol. It emphasizes on tamper resistant and resource-efficient technology, which equals a 3-way handshake security protocol.Keywords: Internet of Things (IoT), authentication, PUF ECC, keyed-hash scheme protocol
Procedia PDF Downloads 2622961 Detect Circles in Image: Using Statistical Image Analysis
Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee
Abstract:
The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.Keywords: image processing, median filter, projection, scale-space, segmentation, threshold
Procedia PDF Downloads 4302960 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 1822959 Music Therapy Intervention as a Means of Stimulating Communicative Abilities of Seniors with Neurocognitive Disorders – Theory versus Practice
Authors: Pavel Svoboda, Oldřich Müller
Abstract:
The paper contains a screening of the opinions of helping professional workers working in a home for seniors with individuals with neurocognitive disorders and compares them with the opinions of a younger generation of students who are just preparing for this work. The authors carried out a comparative questionnaire survey with both target groups, focusing on the analysis and comparison of possible differences in their knowledge in the field of care for elderly people with neurocognitive disorders. Specifically, they focused on knowledge and experience with approaches, methods and tools applicable within the framework of music therapy interventions, as they are understood in practice in comparison with the theoretical knowledge of secondary school students focused on social work. The questionnaire was mainly aimed at assessing the knowledge of the possibilities of effective memory stimulation of the elderly and their communication skills using the means of music. The conducted investigation was based on the research of studies dealing with so-called non-pharmacological approaches to the given clientele; for professional caregivers, it followed music therapy lessons, which the authors regularly implemented from the beginning of 2022. Its results will, among other things, serve as the basis for an upcoming study with a scoping design review.Keywords: neurocognitive disorders, seniors, music therapy intervention, melody, rhythm, text, memory stimulation, communication skills
Procedia PDF Downloads 692958 Post-occupancy Evaluation of Greenway Based on Multi-source data : A Case Study of Jincheng Greenway in Chengdu
Authors: Qin Zhu
Abstract:
Under the development concept of Park City, Tianfu Greenway system, as the basic and pre-configuration element of Chengdu Global Park construction, connects urban open space with linear and circular structures and undertakes and exerts the ecological, cultural and recreational functions of the park system. Chengdu greenway construction is in full swing. In the process of greenway planning and construction, the landscape effect of greenway on urban quality improvement is more valued, and the long-term impact of crowd experience on the sustainable development of greenway is often ignored. Therefore, it is very important to test the effectiveness of greenway construction from the perspective of users. Taking Jincheng Greenway in Chengdu as an example, this paper attempts to introduce multi-source data to construct a post-occupancy evaluation model of greenway and adopts behavior mapping method, questionnaire survey method, web text analysis and IPA analysis method to comprehensively evaluate the user 's behavior characteristics and satisfaction. According to the evaluation results, we can grasp the actual behavior rules and comprehensive needs of users so that the experience of building greenways can be fed back in time and provide guidance for the optimization and improvement of built greenways and the planning and construction of future greenways.Keywords: multi-source data, greenway, IPA analysis, post -occupancy evaluation (POE)
Procedia PDF Downloads 592957 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI
Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal
Abstract:
Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.Keywords: fMRI, functional connectivity, task-based, beta series correlation
Procedia PDF Downloads 2692956 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.Keywords: power spectral density, 3D EEG model, brain balancing, kNN
Procedia PDF Downloads 4842955 Extraction of Compound Words in Malay Sentences Using Linguistic and Statistical Approaches
Authors: Zamri Abu Bakar Zamri, Normaly Kamal Ismail Normaly, Mohd Izani Mohamed Rawi Izani
Abstract:
Malay noun compound are phrases that consist of two or more nouns. The key characteristic behind noun compounds lies on its frequent occurrences within the text. Therefore, extracting these noun compounds is essential for several domains of research such as Information Retrieval, Sentiment Analysis and Question Answering. Many research efforts have been proposed in terms of extracting Malay noun compounds using linguistic and statistical approaches. Most of the existing methods have concentrated on the extraction of bi-gram noun+noun compound. However, extracting noun+verb, noun+adjective and noun+prepositional is challenging due to the difficulty of selecting an appropriate method with effective results. Thus, there is still room for improvement in terms of enhancing the effectiveness of compound word extraction. Therefore, this study proposed a combination of linguistic approach and statistical measures in order to enhance the extraction of compound words. Several preprocessing steps are involved including normalization, tokenization, and stemming. The linguistic approach that has been used in this study is Part-of-Speech (POS) tagging. In addition, a new linguistic pattern for named entities has been utilized using a list of Malays named entities in order to enhance the linguistic approach in terms of noun compound recognition. The proposed statistical measures consists of NC-value, NTC-value and NLC value.Keywords: Compound Word, Noun Compound, Linguistic Approach, Statistical Approach
Procedia PDF Downloads 3492954 Productivity Improvement in the Propeller Shaft Manufacturing Process
Authors: Won Jung
Abstract:
In automotive, propeller shaft is the device for transferring power from engine to axle via transmission, and the slip yoke is one of the main parts in the component. Since the propeller shafts are subject to torsion and shear stress, they need to be strong enough to bear the stress. The purpose of this research is to improve the productivity of slip yoke for automotive propeller shaft. We present how to redesign the component that currently manufactured as a forged single body type. The research was focused on not only reducing processing time but insuring durability of the component simultaneously.Keywords: automotive, propeller shaft, productivity, durability, slip yoke
Procedia PDF Downloads 3772953 Flood Hazard and Risk Mapping to Assess Ice-Jam Flood Mitigation Measures
Authors: Karl-Erich Lindenschmidt, Apurba Das, Joel Trudell, Keanne Russell
Abstract:
In this presentation, we explore options for mitigating ice-jam flooding along the Athabasca River in western Canada. Not only flood hazard, expressed in this case as the probability of flood depths and extents being exceeded, but also flood risk, in which annual expected damages are calculated. Flood risk is calculated, which allows a cost-benefit analysis to be made so that decisions on the best mitigation options are not based solely on flood hazard but also on the costs related to flood damages and the benefits of mitigation. The river ice model is used to simulate extreme ice-jam flood events with which scenarios are run to determine flood exposure and damages in flood-prone areas along the river. We will concentrate on three mitigation options – the placement of a dike, artificial breakage of the ice cover along the river, the installation of an ice-control structure, and the construction of a reservoir. However, any mitigation option is not totally failsafe. For example, dikes can still be overtopped and breached, and ice jams may still occur in areas of the river where ice covers have been artificially broken up. Hence, for all options, it is recommended that zoning of building developments away from greater flood hazard areas be upheld. Flood mitigation can have a negative effect of giving inhabitants a false sense of security that flooding may not happen again, leading to zoning policies being relaxed. (Text adapted from Lindenschmidt [2022] "Ice Destabilization Study - Phase 2", submitted to the Regional Municipality of Wood Buffalo, Alberta, Canada)Keywords: ice jam, flood hazard, flood risk river ice modelling, flood risk
Procedia PDF Downloads 1842952 Role of Internal and External Factors in Preventing Risky Sexual Behavior, Drug and Alcohol Abuse
Authors: Veronika Sharok
Abstract:
Research relevance on psychological determinants of risky behaviors is caused by high prevalence of such behaviors, particularly among youth. Risky sexual behavior, including unprotected and casual sex, frequent change of sexual partners, drug and alcohol use lead to negative social consequences and contribute to the spread of HIV infection and other sexually transmitted diseases. Data were obtained from 302 respondents aged 15-35 which were divided into 3 empirical groups: persons prone to risky sexual behavior, drug users and alcohol users; and 3 control groups: the individuals who are not prone to risky sexual behavior, persons who do not use drugs and the respondents who do not use alcohol. For processing, we used the following methods: Qualitative method for nominative data (Chi-squared test) and quantitative methods for metric data (student's t-test, Fisher's F-test, Pearson's r correlation test). Statistical processing was performed using Statistica 6.0 software. The study identifies two groups of factors that prevent risky behaviors. Internal factors, which include the moral and value attitudes; significance of existential values: love, life, self-actualization and search for the meaning of life; understanding independence as a responsibility for the freedom and ability to get attached to someone or something up to a point when this relationship starts restricting the freedom and becomes vital; awareness of risky behaviors as dangerous for the person and for others; self-acknowledgement. External factors (prevent risky behaviors in case of absence of the internal ones): absence of risky behaviors among friends and relatives; socio-demographic characteristics (middle class, marital status); awareness about the negative consequences of risky behaviors; inaccessibility to psychoactive substances. These factors are common for proneness to each type of risky behavior, because it usually caused by the same reasons. It should be noted that if prevention of risky behavior is based only on elimination of external factors, it is not as effective as it may be if we pay more attention to internal factors. The results obtained in the study can be used to develop training programs and activities for prevention of risky behaviors, for using values preventing such behaviors and promoting healthy lifestyle.Keywords: existential values, prevention, psychological features, risky behavior
Procedia PDF Downloads 2542951 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning
Authors: Pooja Khanal, Huaming Zhang
Abstract:
Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.Keywords: bug classification, bug labels, GitHub issues, semantic differences
Procedia PDF Downloads 1982950 A Review of Machine Learning for Big Data
Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.
Abstract:
Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.Keywords: active learning, big data, deep learning, machine learning
Procedia PDF Downloads 4432949 Optimising Transcranial Alternating Current Stimulation
Authors: Robert Lenzie
Abstract:
Transcranial electrical stimulation (tES) is significant in the research literature. However, the effects of tES on brain activity are still poorly understood at the surface level, the Brodmann Area level, and the impact on neural networks. Using a method like electroencephalography (EEG) in conjunction with tES might make it possible to comprehend the brain response and mechanisms behind published observed alterations in more depth. Using a method to directly see the effect of tES on EEG may offer high temporal resolution data on the brain activity changes/modulations brought on by tES that correlate to various processing stages within the brain. This paper provides unpublished information on a cutting-edge methodology that may reveal details about the dynamics of how the human brain works beyond what is now achievable with existing methods.Keywords: tACS, frequency, EEG, optimal
Procedia PDF Downloads 802948 The Effects of Shift Work on Neurobehavioral Performance: A Meta Analysis
Authors: Thomas Vlasak, Tanja Dujlociv, Alfred Barth
Abstract:
Shift work is an essential element of modern labor, ensuring ideal conditions of service for today’s economy and society. Despite the beneficial properties, its impact on the neurobehavioral performance of exposed subjects remains controversial. This meta-analysis aims to provide first summarizing the effects regarding the association between shift work exposure and different cognitive functions. A literature search was performed via the databases PubMed, PsyINFO, PsyARTICLES, MedLine, PsycNET and Scopus including eligible studies until December 2020 that compared shift workers with non-shift workers regarding neurobehavioral performance tests. A random-effects model was carried out using Hedge’s g as a meta-analytical effect size with a restricted likelihood estimator to summarize the mean differences between the exposure group and controls. The heterogeneity of effect sizes was addressed by a sensitivity analysis using funnel plots, egger’s tests, p-curve analysis, meta-regressions, and subgroup analysis. The meta-analysis included 18 studies resulting in a total sample of 18,802 participants and 37 effect sizes concerning six different neurobehavioral outcomes. The results showed significantly worse performance in shift workers compared to non-shift workers in the following cognitive functions with g (95% CI): processing speed 0.16 (0.02 - 0.30), working memory 0.28 (0.51 - 0.50), psychomotor vigilance 0.21 (0.05 - 0.37), cognitive control 0.86 (0.45 - 1.27) and visual attention 0.19 (0.11 - 0.26). Neither significant moderating effects of publication year or study quality nor significant subgroup differences regarding type of shift or type of profession were indicated for the cognitive outcomes. These are the first meta-analytical findings that associate shift work with decreased cognitive performance in processing speed, working memory, psychomotor vigilance, cognitive control, and visual attention. Further studies should focus on a more homogenous measurement of cognitive functions, a precise assessment of experience of shift work and occupation types which are underrepresented in the current literature (e.g., law enforcement). In occupations where shift work is fundamental (e.g., healthcare, industries, law enforcement), protective countermeasures should be promoted for workers.Keywords: meta-analysis, neurobehavioral performance, occupational psychology, shift work
Procedia PDF Downloads 1072947 Breast Cancer Sensing and Imaging Utilized Printed Ultra Wide Band Spherical Sensor Array
Authors: Elyas Palantei, Dewiani, Farid Armin, Ardiansyah
Abstract:
High precision of printed microwave sensor utilized for sensing and monitoring the potential breast cancer existed in women breast tissue was optimally computed. The single element of UWB printed sensor that successfully modeled through several numerical optimizations was multiple fabricated and incorporated with woman bra to form the spherical sensors array. One sample of UWB microwave sensor obtained through the numerical computation and optimization was chosen to be fabricated. In overall, the spherical sensors array consists of twelve stair patch structures, and each element was individually measured to characterize its electrical properties, especially the return loss parameter. The comparison of S11 profiles of all UWB sensor elements is discussed. The constructed UWB sensor is well verified using HFSS programming, CST programming, and experimental measurement. Numerically, both HFSS and CST confirmed the potential operation bandwidth of UWB sensor is more or less 4.5 GHz. However, the measured bandwidth provided is about 1.2 GHz due to the technical difficulties existed during the manufacturing step. The configuration of UWB microwave sensing and monitoring system implemented consists of 12 element UWB printed sensors, vector network analyzer (VNA) to perform as the transceiver and signal processing part, the PC Desktop/Laptop acting as the image processing and displaying unit. In practice, all the reflected power collected from whole surface of artificial breast model are grouped into several numbers of pixel color classes positioned on the corresponding row and column (pixel number). The total number of power pixels applied in 2D-imaging process was specified to 100 pixels (or the power distribution pixels dimension 10x10). This was determined by considering the total area of breast phantom of average Asian women breast size and synchronizing with the single UWB sensor physical dimension. The interesting microwave imaging results were plotted and together with some technical problems arisen on developing the breast sensing and monitoring system are examined in the paper.Keywords: UWB sensor, UWB microwave imaging, spherical array, breast cancer monitoring, 2D-medical imaging
Procedia PDF Downloads 1912946 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping
Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert
Abstract:
In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping
Procedia PDF Downloads 892945 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity
Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki
Abstract:
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity
Procedia PDF Downloads 4312944 The Conservation of the Roman Mosaics in the Museum of Sousse, Tunisia: Between Doctrines and Practices
Authors: Zeineb Yousse, Fakher Kharrat
Abstract:
Mosaic is a part of a broad universal cultural heritage; sometimes it represents a rather essential source for the researches on the everyday life of some of the previous civilizations. Tunisia has one of the finest and largest collections of mosaics in the world, which is essentially exhibited in the Museums of Bardo and Sousse. Restored and reconstituted, they bear witnesses to hard work. Our paper deals with the discipline of conservation of Roman mosaics based on the proceedings of the workshop of the Museum of Sousse. Thus, we highlight two main objectives. In the first place, it is a question of revealing the techniques adopted by professionals to handle mosaics and to which school of conservation these techniques belong. In the second place, we are going to interpret the works initiated to preserve the archaeological heritage in order to protect it in present time and transmit it to future generations. To this end, we paid attention to four Roman mosaics currently exhibited in the Museum of Sousse. These Mosaics show different voids or gaps at the level of their surfaces and the method used to fill these gaps seems to be interesting to analyze. These mosaics are known under the names of: Orpheus Charming the Animals, Gladiator and Bears, Stud farm of Sorothus and finally Head of Medusa. The study on the conservation passes through two chained phases. We start with a small historical overview in order to gather information related to the original location, the date of its composition as well as the description of its image. Afterward, the intervention process is analyzed by handling three complementary elements which are: diagnosis of the existing state, the study of the medium processing and the study of the processing of the tesselatum surface which includes the pictorial composition of the mosaic. Furthermore, we have implemented an evaluation matrix with six operating principles allowing the assessment of the appropriateness of the intervention. These principles are the following: minimal intervention, reversibility, compatibility, visibility, durability, authenticity and enhancement. Various accumulated outcomes are pointing out the techniques used to fill the gaps as well as the level of compliance with the principles of conservation. Accordingly, the conservation of mosaics in Tunisia is a practice that combines various techniques without really arguing about the choice of a particular theory.Keywords: conservation, matrix, museum of Sousse, operating particular theory, principles, Roman mosaics
Procedia PDF Downloads 3272943 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment
Authors: Jana Petru, Marie Kudrnova
Abstract:
The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.Keywords: corrosion, experimental device, molten salt, steel
Procedia PDF Downloads 118