Search results for: production control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16689

Search results for: production control

14859 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models

Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble

Abstract:

Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.

Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate

Procedia PDF Downloads 197
14858 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production

Authors: G. Bravo, D. Lopez, A. Iriarte

Abstract:

Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.

Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production

Procedia PDF Downloads 257
14857 Manipulator Development for Telediagnostics

Authors: Adam Kurnicki, Bartłomiej Stanczyk, Bartosz Kania

Abstract:

This paper presents development of the light-weight manipulator with series elastic actuation for medical telediagnostics (USG examination). General structure of realized impedance control algorithm was shown. It was described how to perform force measurements based mainly on elasticity of manipulator links.

Keywords: telediagnostics, elastic manipulator, impedance control, force measurement

Procedia PDF Downloads 455
14856 Design of a Dietetic Food: Case of Lebanese Kishk

Authors: Henri El Zakhem, Dona Shalhoub, Elias Atallah, Jessica Koura

Abstract:

Due to the increase of demand on dietetic food and the need for more types of diet food, the production of dietetic food is increasing and improving. This demand on dietetic food has triggered us to study the market in which we found that Kishk (Lebanese dairy product) diet is not available. Production of a low fat product which is diet Kishk was our concern. A strategy was followed to choose the right idea that will satisfy the need of the market. The whole process was studied and explained thoroughly. The percentage of fat was found to be 32.52 % in regular Kishk and 3.84 % in the diet Kishk produced. The new product has the advantage to be high in protein, low in fat.

Keywords: design and industrialization, dietetic, diet Kishk, fat

Procedia PDF Downloads 359
14855 Comparative Assessment of a Distributed Model and a Lumped Model for Estimating of Sediments Yielding in Small Urban Areas

Authors: J.Zambrano Nájera, M.Gómez Valentín

Abstract:

Increases in urbanization during XX century, have brought as one major problem the increased of sediment production. Hydraulic erosion is one of the major causes of increasing of sediments in small urban catchments. Such increments in sediment yielding in header urban catchments can caused obstruction of drainage systems, making impossible to capture urban runoff, increasing runoff volumes and thus exacerbating problems of urban flooding. For these reasons, it is more and more important to study of sediment production in urban watershed for properly analyze and solve problems associated to sediments. The study of sediments production has improved with the use of mathematical modeling. For that reason, it is proposed a new physically based model applicable to small header urban watersheds that includes the advantages of distributed physically base models, but with more realistic data requirements. Additionally, in this paper the model proposed is compared with a lumped model, reviewing the results, the advantages and disadvantages between the both of them.

Keywords: erosion, hydrologic modeling, urban runoff, sediment modeling, sediment yielding, urban planning

Procedia PDF Downloads 329
14854 Change of Substrate in Solid State Fermentation Can Produce Proteases and Phytases with Extremely Distinct Biochemical Characteristics and Promising Applications for Animal Nutrition

Authors: Paula K. Novelli, Margarida M. Barros, Luciana F. Flueri

Abstract:

Utilization of agricultural by-products, wheat ban and soybean bran, as substrate for solid state fermentation (SSF) was studied, aiming the achievement of different enzymes from Aspergillus sp. with distinct biological characteristics and its application and improvement on animal nutrition. Aspergillus niger and Aspergillus oryzea were studied as they showed very high yield of phytase and protease production, respectively. Phytase activity was measure using p-nitrophenilphosphate as substrate and a standard curve of p-nitrophenol, as the enzymatic activity unit was the quantity of enzyme necessary to release one μmol of p-nitrophenol. Protease activity was measure using azocasein as substrate. Activity for phytase and protease substantially increased when the different biochemical characteristics were considered in the study. Optimum pH and stability of the phytase produced by A. niger with wheat bran as substrate was between 4.0 - 5.0 and optimum temperature of activity was 37oC. Phytase fermented in soybean bran showed constant values at all pHs studied, for optimal and stability, but low production. Phytase with both substrates showed stable activity for temperatures higher than 80oC. Protease from A. niger showed very distinct behavior of optimum pH, acid for wheat bran and basic for soybean bran, respectively and optimal values of temperature and stability at 50oC. Phytase produced by A. oryzae in wheat bran had optimum pH and temperature of 9 and 37oC, respectively, but it was very unstable. On the other hand, proteases were stable at high temperatures, all pH’s studied and showed very high yield when fermented in wheat bran, however when it was fermented in soybean bran the production was very low. Subsequently the upscale production of phytase from A. niger and proteases from A. oryzae were applied as an enzyme additive in fish fed for digestibility studies. Phytases and proteases were produced with stable enzyme activity of 7,000 U.g-1 and 2,500 U.g-1, respectively. When those enzymes were applied in a plant protein based fish diet for digestibility studies, they increased protein, mineral, energy and lipids availability, showing that these new enzymes can improve animal production and performance. In conclusion, the substrate, as well as, the microorganism species can affect the biochemical character of the enzyme produced. Moreover, the production of these enzymes by SSF can be up to 90% cheaper than commercial ones produced with the same fungi species but submerged fermentation. Add to that these cheap enzymes can be easily applied as animal diet additives to improve production and performance.

Keywords: agricultural by-products, animal nutrition, enzymes production, solid state fermentation

Procedia PDF Downloads 312
14853 Enhancement of Growth and Lipid Accumulation in Microalgae with Aggregation Induced Emission-Based Photosensitiser

Authors: Sharmin Ferdewsi Rakhi, AHM Mohsinul Reza, Brynley Davies, Jianzhong Wang, Youhong Tang, Jian Qin

Abstract:

Mass production of microalgae has become a focus of research owing to their promising aspects for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content with optimum algal biomass is still a challenge that must be resolved for commercial use. This research aims to determine the effects of light spectral shift and reactive oxygen species (ROS) on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. Aggregation Induced Emission (AIE)-based photosensitisers, CN-TPAQ-PF6 ([C₃₂H₂₃N₄]+) with high ROS productivity, was introduced into the algal culture media separately for effective conversion of the green-yellow-light to the red spectra. The intense photon energy and high-photon flux density in the photosystems and ROS supplementation induced photosynthesis and lipid biogenesis. In comparison to the control, maximum algal growth (0.15 g/l) was achieved at 2 µM CN-TPAQ-PF6 exposure. A significant increase in total lipid accumulation (146.87 mg/g dry biomass) with high proportion of 10-Heptadecanoic acid (C17:1) linolenic acid (C18:2), α-linolenic acid (C18:3) was observed. The elevated level of cellular NADP/NADPH triggered the Acetyl-Co-A production in lipid biogenesis cascade. Furthermore, MTT analysis suggested that this nanomaterial is highly biocompatible on HaCat cell lines with 100% cell viability. This study reveals that the AIE-based approach can strongly impact algal biofactory development for sustainable food, healthy lipids and eco-friendly biofuel.

Keywords: microalgae, photosensitiser, lipid, biomass, aggregation-induced-emission, reactive oxygen species

Procedia PDF Downloads 28
14852 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 88
14851 Climate Physical Processes Mathematical Modeling for Dome-Like Traditional Residential Building

Authors: Artem Sedov, Aigerim Uyzbayeva, Valeriya Tyo

Abstract:

The presented article is showing results of dynamic modeling with Mathlab software of optimal automatic room climate control system for two experimental houses in Astana, one of which has circle plan and the other one has square plan. These results are showing that building geometry doesn't influence on climate system PID-controls configuring. This confirms theoretical implication that optimal automatic climate control system parameters configuring should depend on building's internal space volume, envelope heat transfer, number of people inside, supply ventilation air flow and outdoor temperature.

Keywords: climate control system, climate physics, dome-like building, mathematical modeling

Procedia PDF Downloads 346
14850 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 38
14849 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 179
14848 Use of Anti-Stick to Reduce Bitterness in Ultra Filtrated Chees-es(Single Packaged)

Authors: B. Khorram, M. Taslikh, R. Sattarzadeh, M. Ghazanfari

Abstract:

Bitterness is one of the most important problems in cheese processing industry all over the world. There are several reasons that bitterness may develop in cheese. With a few exceptions bitterness is generally associated with proteolysis. In this investigation, anti-stick as a neutral substance in proteolysis were considered and studied for reducing the problem. This vast survey was conducted in a big cheese production factory (in Neyshabur) and in the same procedure anti-stick as interested factor in cheeses packaging compared to standard cheeses production, one line productions (65200 packs with anti-stick were tested by 2953 persons for bitterness and another line was included the same procedure with standard cheese. In this investigate: 83% of standard packaging cheeses, compared with only28% of consumers cheese with anti-stick which confirmed bitterness. Although bitterness is generally associated with proteolysis and Microbial factors, Somatic cell, Starters play important role in generating bitterness in ultra filtrated cheeses, but based on the results the other factors such as anti-stick in packaging can be effective methods for reducing and removing unfavorable bitterness in cheese production.

Keywords: bitterness, uf cheese, anti-stick, single packaged

Procedia PDF Downloads 457
14847 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 127
14846 Testing of Electronic Control Unit Communication Interface

Authors: Petr Šimek, Kamil Kostruk

Abstract:

This paper deals with the problem of testing the Electronic Control Unit (ECU) for the specified function validation. Modern ECUs have many functions which need to be tested. This process requires tracking between the test and the specification. The technique discussed in this paper explores the system for automating this process. The paper focuses in its chapter IV on the introduction to the problem in general, then it describes the proposed test system concept and its principle. It looks at how the process of the ECU interface specification file for automated interface testing and test tracking works. In the end, the future possible development of the project is discussed.

Keywords: electronic control unit testing, embedded system, test generate, test automation, process automation, CAN bus, ethernet

Procedia PDF Downloads 91
14845 Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron

Authors: Pawan Kumar Sharma, Sudhakar Dwivedi, R. K. Arora

Abstract:

Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06.

Keywords: saffron, internal rate of return, cost efficiency, stochastic frontier model

Procedia PDF Downloads 137
14844 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 484
14843 Exploring Managerial Approaches towards Green Manufacturing: A Thematic Analysis

Authors: Hakimeh Masoudigavgani

Abstract:

Since manufacturing firms deplete non-renewable resources and pollute air, soil, and water in greatly unsustainable manner, industrial activities or production of products are considered to be a key contributor to adverse environmental impacts. Hence, management strategies and approaches that involve an effective supply chain decision process in a manufacturing sector could be extremely significant to the application of environmental initiatives. Green manufacturing (GM) is one of these strategies which minimises negative effects on the environment through reducing greenhouse gas emissions, waste, and the consumption of energy and natural resources. This paper aims to explore what greening methods and mechanisms could be applied in the manufacturing supply chain and what are the outcomes of adopting these methods in terms of abating environmental burdens? The study is an interpretive research with an exploratory approach, using thematic analysis by coding text, breaking down and grouping the content of collected literature into various themes and categories. It is found that green supply chain could be attained through execution of some pre-production strategies including green building, eco-design, and green procurement as well as a number of in-production and post-production strategies involving green manufacturing and green logistics. To achieve an effective GM, the pre-production strategies are suggested to be employed. This paper defines GM as (1) the analysis of the ecological impacts generated by practices, products, production processes, and operational functions, and (2) the implementation of greening methods to reduce damaging influences of them on the natural environment. Analysis means assessing, monitoring, and auditing of practices in order to measure and pinpoint their harmful impacts. Moreover, greening methods involved within GM (arranged in order from the least to the most level of environmental compliance and techniques) consist of: •product stewardship (e.g. less use of toxic, non-renewable, and hazardous materials in the manufacture of the product; and stewardship of the environmental problems with regard to the product in all production, use, and end-of-life stages); •process stewardship (e.g. controlling carbon emission, energy and resources usage, transportation method, and disposal; reengineering polluting processes; recycling waste materials generated in production); •lean and clean production practices (e.g. elimination of waste, materials replacement, materials reduction, resource-efficient consumption, energy-efficient usage, emission reduction, managerial assessment, waste re-use); •use of eco-industrial parks (e.g. a shared warehouse, shared logistics management system, energy co-generation plant, effluent treatment). However, the focus of this paper is only on methods related to the in-production phase and needs further research on both pre-production and post-production environmental innovations. The outlined methods in this investigation may possibly be taken into account by policy/decision makers. Additionally, the proposed future research direction and identified gaps can be filled by scholars and researchers. The paper compares and contrasts a variety of viewpoints and enhances the body of knowledge by building a definition for GM through synthesising literature and categorising the strategic concept of greening methods, drivers, barriers, and successful implementing tactics.

Keywords: green manufacturing (GM), product stewardship, process stewardship, clean production, eco-industrial parks (EIPs)

Procedia PDF Downloads 567
14842 Speed Control of DC Motor Using Optimization Techniques Based PID Controller

Authors: Santosh Kumar Suman, Vinod Kumar Giri

Abstract:

The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers.

Keywords: DC motor, PID controller, optimization techniques, genetic algorithm (GA), objective function, IAE

Procedia PDF Downloads 406
14841 Enhanced Methane Production from Waste Paper through Anaerobic Co-Digestion with Macroalgae

Authors: Cristina Rodriguez, Abed Alaswad, Zaki El-Hassan, Abdul G. Olabi

Abstract:

This study investigates the effect on methane production from the waste paper when co-digested with macroalgal biomass as a source of nitrogen. Both feedstocks were previously mechanically pretreated in order to reduce their particle size. Methane potential assays were carried out at laboratory scale in batch mode for 28 days. The study was planned according to two factors: the feedstock to inoculum (F/I) ratio and the waste paper to macroalgae (WP/MA) ratio. The F/I ratios checked were 0.2, 0.3 and 0.4 and the WP/MA ratios were 0:100, 25:75, 50:50, 75:25 and 100:0. The highest methane yield (608 ml/g of volatile solids (VS)) was achieved at an F/I ratio of 0.2 and a WP/MA ratio of 50:50. The methane yield at a ratio WP/MA of 50:50 is higher than for single compound, while for ratios WP/MA of 25:75 and 75:25 the methane yield decreases compared to biomass mono-digestion. This behavior is observed for the three levels of F/I ratio being more noticeable at F/I ratio of 0.3. A synergistic effect was found for the WP/MA ratio of 50:50 and all F/I ratios and for WP/MA=50:50 and F/I=0.2. A maximum increase of methane yield of 49.58% was found for a co-digestion ratio of 50:50 and an F/I ratio of 0.4. It was concluded that methane production from waste paper improves significantly when co-digested with macroalgae biomass. The methane yields from co-digestion were also found higher that from macroalgae mono-digestion.

Keywords: anaerobic co-digestion, biogas, macroalgae, waste paper

Procedia PDF Downloads 351
14840 The Effects of Varying Nutrient Conditions on Hydrogen Production in PGR5 Deficient C. Reinhardtii Mutants

Authors: Samuel Mejorado

Abstract:

C. Reinahrdtii serves as one of the most promising organisms from which to obtain biological hydrogen. However, its production catalyst, [FeFe]-hydrogenase, is largely inhibited by the presence of oxygen. In recent years, researchers have identified a Proton Gradient Regulation 5 (PGR5) deficient mutant, which shows enhanced respiration and lower accumulations of oxygen within the system. In this research, we investigated the effects of varying nutrient conditions on PGR5 mutants' ability to produce hydrogen. After growing PGR5 mutants in varying nutrient conditions under 55W fluorescent lamps at 30℃ with constant stirring at 200 rpm, a common water displacement method was utilized to obtain a definitive volumetric reading of hydrogen produced by these mutants over a period of 12 days. After the trials, statistical t-tests and ANOVAs were performed to better determine the effect which nutrient conditions have on PGR5 mutants' ability to produce hydrogen. In this, we report that conditions of sulfur deprivation most optimally enhanced hydrogen production within these mutants, with groups grown under these conditions demonstrating the highest production capacity over the entire 12-day period. Similarly, it was found that when grown under conditions of nitrogen deprivation, a favorable shift towards carbon fixation and overall lipid/starch metabolism was observed. Overall, these results demonstrate that PGR5-deficient mutants stand as a promising source of biohydrogen when grown under conditions of sulfur deprivation. To date, photochemical characteristics of [FeFe]-hydrogenase in these mutants have yet to be investigated under conditions of sulfur deprivation.

Keywords: biofuel, biohydrogen, [FeFe]-hydrogenase, algal biofuel

Procedia PDF Downloads 125
14839 Effect of Herbal Mineral Blend on Growth Performance of Broilers

Authors: M. Rizwan, S. Ahmad, U. Farooq, U. Mahmood, S. U. Rehman, P. Akhtar

Abstract:

This experiment was conducted to investigate the effect of supplementation of herbal and mineral mixture on growth performance of boilers. One hundred and eighty birds were randomly distributed into 6 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), commercially available herbal-mineral product FitFat™ at the rate of 150g/bag and 200g/bag, and herbal-mineral mixture at the rate of 150g/bag and herbal-mineral mixture at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of body weight gain showed significant (P < 0.05) differences in 3rd week of age (506.90g), also, feed intake showed significant (P < 0.05) results in 1st (297.22g), 3rd (936.7g) and 4th (967.8g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (1.14) and 3rd (1.74) week of age. The starter phase indicated significant (P < 0.05) differences among all treatments groups in body weight gain (902.2g), feed intake (1843.9g) and feed conversion ratio (1.78). In case of nutrient digestibility trial, results showed significant (P < 0.05) values of dry matter, crude protein, and crude fat in starter phase as 77.74%, 69.37%, and 61.18% respectively and 77.65%, 68.79% and 61.03% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of combination of herbs and mineral can increase the production performance of broilers.

Keywords: herbal blend, minerals, crop filling, nutrient digestibility, broiler

Procedia PDF Downloads 195
14838 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast

Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey

Abstract:

The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.

Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein

Procedia PDF Downloads 239
14837 Production of Nanocrystalline Cellulose (NCC) from Rice Husk Biomass by Chemical Extraction Process

Authors: Md. Sakinul Islam, Nhol Kao, Sati Bhattacharya, Rahul Gupta

Abstract:

The objective of the study is to produce naocrystalline cellulose (NCC) from rice husk by chemical extraction process. The chemical extraction processes of this production are delignification, bleaching and hydrolysis. In order to produce NCC, raw rice husk (RRH) was grinded and converted to powder form. Powder rice husk was obtained by sieving and the particles in the 75-710 μm size range was used for experimental work. The production of NCC was conducted into the jacketed glass reactor at 80 ˚C temperature under predetermined experimental conditions. In this work NaOH (4M) solution was used for delignification process. After certain experimental time delignified powder RH was collected from the reactor then washed, bleached and finally hydrolyzed in order to degrade cellulose to nanocrystalline cellulose (NCC). For bleaching and hydrolysis processes NaOCl (20%) and H2SO4 (4M) solutions were used, respectively. The resultant products from hydrolysis was neutralized by buffer solution and analyzed by FTIR, XRD, SEM, AFM and TEM. From the analysis, NCC has been identified successfully and the particle dimension has been confirmed to be in the range of 20-50 nm. From XRD results, the crystallinity of NCC was found to be approximately 45%.

Keywords: nanocrystalline cellulose, NCC, rice husk, biomass, chemical extraction

Procedia PDF Downloads 387
14836 From the “Movement Language” to Communication Language

Authors: Mahmudjon Kuchkarov, Marufjon Kuchkarov

Abstract:

The origin of ‘Human Language’ is still a secret and the most interesting subject of historical linguistics. The core element is the nature of labeling or coding the things or processes with symbols and sounds. In this paper, we investigate human’s involuntary Paired Sounds and Shape Production (PSSP) and its contribution to the development of early human communication. Aimed at twenty-six volunteers who provided many physical movements with various difficulties, the research team investigated the natural, repeatable, and paired sounds and shape productions during human activities. The paper claims the involvement of Paired Sounds and Shape Production (PSSP) in the phonetic origin of some modern words and the existence of similarities between elements of PSSP with characters of the classic Latin alphabet. The results may be used not only as a supporting idea for existing theories but to create a closer look at some fundamental nature of the origin of the languages as well.

Keywords: body shape, body language, coding, Latin alphabet, merging method, movement language, movement sound, natural sound, origin of language, pairing, phonetics, sound and shape production, word origin, word semantic

Procedia PDF Downloads 210
14835 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control

Procedia PDF Downloads 369
14834 A Comparative Study of the Impact of Membership in International Climate Change Treaties and the Environmental Kuznets Curve (EKC) in Line with Sustainable Development Theories

Authors: Mojtaba Taheri, Saied Reza Ameli

Abstract:

In this research, we have calculated the effect of membership in international climate change treaties for 20 developed countries based on the human development index (HDI) and compared this effect with the process of pollutant reduction in the Environmental Kuznets Curve (EKC) theory. For this purpose, the data related to The real GDP per capita with 2010 constant prices is selected from the World Development Indicators (WDI) database. Ecological Footprint (ECOFP) is the amount of biologically productive land needed to meet human needs and absorb carbon dioxide emissions. It is measured in global hectares (gha), and the data retrieved from the Global Ecological Footprint (2021) database will be used, and we will proceed by examining step by step and performing several series of targeted statistical regressions. We will examine the effects of different control variables, including Energy Consumption Structure (ECS) will be counted as the share of fossil fuel consumption in total energy consumption and will be extracted from The United States Energy Information Administration (EIA) (2021) database. Energy Production (EP) refers to the total production of primary energy by all energy-producing enterprises in one country at a specific time. It is a comprehensive indicator that shows the capacity of energy production in the country, and the data for its 2021 version, like the Energy Consumption Structure, is obtained from (EIA). Financial development (FND) is defined as the ratio of private credit to GDP, and to some extent based on the stock market value, also as a ratio to GDP, and is taken from the (WDI) 2021 version. Trade Openness (TRD) is the sum of exports and imports of goods and services measured as a share of GDP, and we use the (WDI) data (2021) version. Urbanization (URB) is defined as the share of the urban population in the total population, and for this data, we used the (WDI) data source (2021) version. The descriptive statistics of all the investigated variables are presented in the results section. Related to the theories of sustainable development, Environmental Kuznets Curve (EKC) is more significant in the period of study. In this research, we use more than fourteen targeted statistical regressions to purify the net effects of each of the approaches and examine the results.

Keywords: climate change, globalization, environmental economics, sustainable development, international climate treaty

Procedia PDF Downloads 54
14833 Design of Direct Power Controller for a High Power Neutral Point Clamped Converter Using Real-Time Simulator

Authors: Amin Zabihinejad, Philippe Viarouge

Abstract:

In this paper, a direct power control (DPC) strategies have been investigated in order to control a high power AC/DC converter with time variable load. This converter is composed of a three level three phase neutral point clamped (NPC) converter as rectifier and an H-bridge four quadrant current control converter. In the high power application, controller not only must adjust the desired outputs but also decrease the level of distortions which are injected to the network from the converter. Regarding this reason and nonlinearity of the power electronic converter, the conventional controllers cannot achieve appropriate responses. In this research, the precise mathematical analysis has been employed to design the appropriate controller in order to control the time variable load. A DPC controller has been proposed and simulated using Matlab/Simulink. In order to verify the simulation result, a real-time simulator- OPAL-RT- has been employed. In this paper, the dynamic response and stability of the high power NPC with variable load has been investigated and compared with conventional types using a real-time simulator. The results proved that the DPC controller is more stable and has more precise outputs in comparison with the conventional controller.

Keywords: direct power control, three level rectifier, real time simulator, high power application

Procedia PDF Downloads 503
14832 Performance Investigation of UAV Attitude Control Based on Modified PI-D and Nonlinear Dynamic Inversion

Authors: Ebrahim Hassan Kapeel, Ahmed Mohsen Kamel, Hossan Hendy, Yehia Z. Elhalwagy

Abstract:

Interest in autopilot design has been raised intensely as a result of recent advancements in Unmanned Aerial vehicles (UAVs). Due to the enormous number of applications that UAVs can achieve, the number of applied control theories used for them has increased in recent years. These small fixed-wing UAVs are suffering high non-linearity, sensitivity to disturbances, and coupling effects between their channels. In this work, the nonlinear dynamic inversion (NDI) control lawisdesigned for a nonlinear small fixed-wing UAV model. The NDI is preferable for varied operating conditions, there is no need for a scheduling controller. Moreover, it’s applicable for high angles of attack. For the designed flight controller validation, a nonlinear Modified PI-D controller is performed with our model. A comparative study between both controllers is achieved to evaluate the NDI performance. Simulation results and analysis are proposed to illustrate the effectiveness of the designed controller based on NDI.

Keywords: UAV dynamic model, attitude control, nonlinear PID, dynamic inversion

Procedia PDF Downloads 91
14831 Salicylic Acid Improves Growth, Physiological Attributes and Salt Tolerance in Bread Wheat Cultivar (Triticum Aestivum L.)

Authors: Faiza Ateeq, Huma Jawed, Kamran Azim, Nadeem Khalid

Abstract:

Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on bread wheat cultivars AAI_10 from Faisalabad, Pakistan (Triticum aestivum L.) grown under salt stress in the presence and absence of 0.5 mM salicylic acid. The Physiological test was performed using different concentrations of salt solutions, i.e., 0%, 1%, 2%, 4%, and 6% on leaf blades, and determined the germination of seedlings growth after 14 days. Results showed a reduction in the weights of wheat seedlings when it’s dry and fresh in the consideration of salt stress. Salicylic Acid treatment has a positive effect when evaluated in the case of salt-treated control. The morphological test (Lowry method) was performed to determine the concentration of proteins in different samples. Results showed that the samples treated with SA showed the highest absorbance(720nm) as compared to the control and other treated samples absorbance was determined. Thus, Salicylic Acid treating wheat seedlings enables the growth of anti-stress effects, such as maintaining proline accumulation. The morphological and physiological parameters revealed that SA treatment not only decreased the negative effect of salinity on the development of the seedlings but also accelerated the reparation of the growth processes. These results suggested that salicylic acid application improved the salt tolerance of bread wheat cultivars.

Keywords: salinity, salicylic acid, biotic and abiotic stresses, proline

Procedia PDF Downloads 41
14830 Vibration Control of a Horizontally Supported Rotor System by Using a Radial Active Magnetic Bearing

Authors: Vishnu A., Ashesh Saha

Abstract:

The operation of high-speed rotating machinery in industries is accompanied by rotor vibrations due to many factors. One of the primary instability mechanisms in a rotor system is the centrifugal force induced due to the eccentricity of the center of mass away from the center of rotation. These unwanted vibrations may lead to catastrophic fatigue failure. So, there is a need to control these rotor vibrations. In this work, control of rotor vibrations by using a 4-pole Radial Active Magnetic Bearing (RAMB) as an actuator is analysed. A continuous rotor system model is considered for the analysis. Several important factors, like the gyroscopic effect and rotary inertia of the shaft and disc, are incorporated into this model. The large deflection of the shaft and the restriction to axial motion of the shaft at the bearings result in nonlinearities in the system governing equation. The rotor system is modeled in such a way that the system dynamics can be related to the geometric and material properties of the shaft and disc. The mathematical model of the rotor system is developed by incorporating the control forces generated by the RAMB. A simple PD controller is used for the attenuation of system vibrations. An analytical expression for the amplitude and phase equations is derived using the Method of Multiple Scales (MMS). Analytical results are verified with the numerical results obtained using an ‘ode’ solver in-built into MATLAB Software. The control force is found to be effective in attenuating the system vibrations. The multi-valued solutions leading to the jump phenomenon are also eliminated with a proper choice of control gains. Most interestingly, the shape of the backbone curves can also be altered for certain values of control parameters.

Keywords: rotor dynamics, continuous rotor system model, active magnetic bearing, PD controller, method of multiple scales, backbone curve

Procedia PDF Downloads 69