Search results for: particle emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2979

Search results for: particle emission

1149 Thermal and Mechanical Properties of Powder Injection Molded Alumina Nano-Powder

Authors: Mostafa Rezaee Saraji, Ali Keshavarz Panahi

Abstract:

In this work, the processing steps for producing alumina parts using powder injection molding (PIM) technique and nano-powder were investigated and the thermal conductivity and flexural strength of samples were determined as a function of sintering temperature and holding time. In the first step, the feedstock with 58 vol. % of alumina nano-powder with average particle size of 100nm was prepared using Extrumixing method to obtain appropriate homogeneity. This feedstock was injection molded into the two cavity mold with rectangular shape. After injection molding step, thermal and solvent debinding methods were used for debinding of molded samples and then these debinded samples were sintered in different sintering temperatures and holding times. From the results, it was found that the flexural strength and thermal conductivity of samples increased by increasing sintering temperature and holding time; in sintering temperature of 1600ºC and holding time of 5h, the flexural strength and thermal conductivity of sintered samples reached to maximum values of 488MPa and 40.8 W/mK, respectively.

Keywords: alumina nano-powder, thermal conductivity, flexural strength, powder injection molding

Procedia PDF Downloads 312
1148 The Extraction and Stripping of Hg(II) from Produced Water via Hollow Fiber Contactor

Authors: Dolapop Sribudda, Ura Pancharoen

Abstract:

The separation of Hg(II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a counter current flow. Samples were kept in the outlet of feed and stripping solution for 1 hour and characterized concentration of Hg(II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg(II) were 98% and 44.2%, respectively.

Keywords: Hg(II), hollow fiber contactor, produced water, wastewater treatment

Procedia PDF Downloads 386
1147 Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures

Authors: Ahmed A. El-Kafy Amer, H. M. Gad, A. I. Ibrahim, S. I. Abdel-Mageed, T. M. Farag

Abstract:

This paper represents an experimental study of LPG diffusion flame at elevated air preheated temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Three air to fuel mass ratios of 30, 40 and 50 were also studied. The effect of air preheated temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the air preheated temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the air preheated temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the air preheated temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively.

Keywords: air preheated temperature, air swirler, flame length, emission index

Procedia PDF Downloads 469
1146 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques

Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar

Abstract:

Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.

Keywords: share of electricity generation, k-means clustering, discriminant, CO2 emission

Procedia PDF Downloads 401
1145 Wear and Mechanical Properties of Nodular Iron Modified with Copper

Authors: J. Ramos, V. Gil, A. F. Torres

Abstract:

The nodular iron is a material that has shown great advantages respect to other materials (steel and gray iron) in the production of machine elements. The engineering industry, especially automobile, are potential users of this material. As it is known, the alloying elements modify the properties of steels and castings. Copper has been investigated as a structural modifier of nodular iron, but studies of its mechanical and tribological implications still need to be addressed for industrial use. With the aim of improving the mechanical properties of nodular iron, alloying elements (Mn, Si, and Cu) are added in order to increase their pearlite (or ferrite) structure according to the percentage of the alloying element. In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0,5% and 1,2%) was obtained. Chemical analysis was performed by optical emission spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that copper increases the pearlite structure improving the wear behavior; tension behavior. This improvement is observed in higher proportion with 0,5% due to the fact that too much increase of pearlite leads to ductility loss.

Keywords: copper, mechanical properties, nodular iron, pearlite structure, wear

Procedia PDF Downloads 371
1144 Analysing Maximum Power Point Tracking in a Stand Alone Photovoltaic System

Authors: Osamede Asowata

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident in its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector; these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with maximum power point tracking (MPPT) from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0°N, with a corresponding tilt angle of 36°, 26°, and 16°. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, solar chargers, tilt and orientation angles, maximum power point tracking, MPPT, Pulse Width Modulation (PWM).

Procedia PDF Downloads 158
1143 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis

Procedia PDF Downloads 166
1142 Behavioral Response of Bee Farmers to Climate Change in South East, Nigeria

Authors: Jude A. Mbanasor, Chigozirim N. Onwusiribe

Abstract:

The enigma climate change is no longer an illusion but a reality. In the recent years, the Nigeria climate has changed and the changes are shown by the changing patterns of rainfall, the sunshine, increasing level carbon and nitrous emission as well as deforestation. This study analyzed the behavioural response of bee keepers to variations in the climate and the adaptation techniques developed in response to the climate variation. Beekeeping is a viable economic activity for the alleviation of poverty as the products include honey, wax, pollen, propolis, royal jelly, venom, queens, bees and their larvae and are all marketable. The study adopted the multistage sampling technique to select 120 beekeepers from the five states of Southeast Nigeria. Well-structured questionnaires and focus group discussions were adopted to collect the required data. Statistical tools like the Principal component analysis, data envelopment models, graphs, and charts were used for the data analysis. Changing patterns of rainfall and sunshine with the increasing rate of deforestation had a negative effect on the habitat of the bees. The bee keepers have adopted the Kenya Top bar and Langstroth hives and they establish the bee hives on fallow farmland close to the cultivated communal farms with more flowering crops.

Keywords: climate, farmer, response, smart

Procedia PDF Downloads 115
1141 Improving Physicochemical Properties of Milk Powder and Lactose-Free Milk Powder with the Prebiotic Carrier

Authors: Chanunya Fahwan, Supat Chaiyakul

Abstract:

A lactose-free diet is imperative for those with lactose intolerance and experiencing milk intolerance. This entails eliminating milk-based products, which may result in dietary and nutritional challenges and the main problems of Lactose hydrolyzed milk powder during production were the adhesion in the drying chamber and low-yield and low-quality powder. The use of lactose-free milk to produce lactose-free milk powder was studied here. Development of two milk powder formulas from cow's milk and lactose-free cow's milk by using a substitute for maltodextrin, Polydextrose (PDX), Resistant Starch (RS), Cellobiose (CB), and Resistant Maltodextrin (RMD) to improve quality and reduce the glycemic index from maltodextrin, which are carriers that were used in industry at three experimental levels 10%, 15% and 20% the properties of milk powder were studied such as color, moisture content, percentage yield (%yield) and solubility index. The experiment revealed that prebiotic carriers could replace maltodextrin and improve quality, such as solubility and percentage yield, and enriched nutrients, such as dietary fiber. CB, RMD, and PDX are three possible carriers, which are applied to both regular cow's milk formula and lactose-free cow milk.

Keywords: lactose-free milk powder, prebiotic carrier, co-particle, glycemic index

Procedia PDF Downloads 57
1140 The Effect of Yb3+ Concentration on Spectroscopic properties of Strontium Cerate Doped with Tm3+ and Yb3+

Authors: Yeon Woo Seo, Haeyoung Choi, Jung Hyun Jeong

Abstract:

Recently, the UC phosphors have attracted much attention owing to their wide applicability in areas such as biological fluorescence labeling, three-dimensional color displays, temperature sensor, solar cells, white light emitting diodes (WLEDs), fiber optic communication, anti-counterfeiting and other areas. The UC efficiency is mainly dependent on the host lattice and the interaction between the host lattice and doped ions. Up to date, various host matrices, such as oxides, fluorides, vanadates and phosphates, have been investigated as efficient UC luminescent hosts. Recently, oxide materials with low phonon energy have been investigated as the host matrices of UC materials due to their high chemical durability and physical stability. A series of Sr2CeO4: Tm3+/Yb3+ phosphors with different concentrations of Yb3+ ions have been successfully prepared using the high-energy ball milling method. In this study, we reported the UC luminescent properties of Tm3+/Yb3+ ions co-doped Sr2CeO4 phosphors under an excitation wavelength of 975 nm. Furthermore, the structural and morphological characteristics, as well as the UC luminescence mechanism were investigated in detail. The X-ray diffraction patterns confirmed their orthorhombic structure. Under 975 nm excitation, the emission peaks were observed at 478 nm (blue) and 652 nm (red), corresponding to the 1G4 → 3H6 and 1G4 → 3F4 transitions of Tm3+, respectively. The optimized doping concentration of Yb3+ ion was 10 mol%.

Keywords: Strontium Cerate, up-conversion, luminescence, Tm3+, Yb3+

Procedia PDF Downloads 248
1139 Microwave Assisted Synthesis of Ag/ZnO Sub-Microparticles Deposited on Various Cellulose Surfaces

Authors: Lukas Munster, Pavel Bazant, Ivo Kuritka

Abstract:

Zinc oxide sub-micro particles and metallic silver nano particles (Ag/ZnO) were deposited on micro crystalline cellulose surface by a fast, simple and environmentally friendly one-pot microwave assisted solvo thermal synthesis in an open vessel system equipped with an external reflux cooler. In order to increase the interaction between the surface of cellulose and the precipitated Ag/ZnO particles, oxidized form of cellulose (cellulose dialdehyde, DAC) prepared by periodate oxidation of micro crystalline cellulose was added to the reaction mixture of Ag/ZnO particle precursors and untreated micro crystalline cellulose. The structure and morphology of prepared hybrid powder materials were analysed by X-ray diffraction (XRD), energy dispersive analysis (EDX), scanning electron microscopy (SEM) and nitrogen absorption method (BET). Microscopic analysis of the prepared materials treated by ultra-sonication showed that Ag/ZnO particles deposited on the cellulose/DAC sample exhibit increased adhesion to the surface of the cellulose substrate which can be explained by the DAC adhesive effect in comparison with the material prepared without DAC addition.

Keywords: microcrystalline cellulose, microwave synthesis, silver nanoparticles, zinc oxide sub-microparticles, cellulose dialdehyde

Procedia PDF Downloads 464
1138 Thermochemical Conversion: Jatropha Curcus in Fixed Bed Reactor Using Slow Pyrolysis

Authors: Vipan Kumar Sohpal, Rajesh Kumar Sharma

Abstract:

Thermo-chemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.

Keywords: Jatropha curcus, thermo-chemical, pyrolysis, product composition, yield

Procedia PDF Downloads 414
1137 Ultrafine Non Water Soluble Drug Particles

Authors: Shahnaz Mansouri, David Martin, Xiao Dong Chen, Meng Wai Woo

Abstract:

Ultrafine hydrophobic and non-water-soluble drugs can increase the percentage of absorbed compared to their initial dosage. This paper provides a scalable new method of making ultrafine particles of substantially insoluble water compounds specifically, submicron particles of ethanol soluble and water insoluble pharmaceutical materials by steaming an ethanol droplet to prepare a suspension and then followed by immediate drying. This suspension is formed by adding evaporated water molecules as an anti-solvent to the solute of the samples and in early stage of precipitation continued to dry by evaporating both solvent and anti-solvent. This fine particle formation has produced fast dispersion powder in water. The new method is an extension of the antisolvent vapour precipitation technique which exposes a droplet to an antisolvent vapour with reference to the dissolved materials within the droplet. Ultrafine vitamin D3 and ibuprofen particles in the submicron ranges were produced. This work will form the basis for using spray dryers as high-throughput scalable micro-precipitators.

Keywords: single droplet drying, nano size particles, non-water-soluble drugs, precipitators

Procedia PDF Downloads 469
1136 Fabrication of Modified Chitosan-Gold Nanoshell with Mercaptopropionic Acid(MPA) for γ-Aminobutyric Acid Detection as a Surface-Enhanced Raman Scattering Substrate

Authors: Bi Wa, Su-Yeon Kwon, Ik-Joong Kang

Abstract:

Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. In this case, the Mercaptopropionic Acid (MPA) is used to modified chitosan –gold nanoshell, which enhances the absorption between GABA and Chitosan-gold nanoshell. The sulfur end of the MPA is linked to gold which is the surface of the chitosan nanoparticles via the very strong S–Au bond, while a functional group (carboxyl group) attached to GABA. The controlling of particles’ size and the surface morphology are also the important factors during the whole experiment. The particle around 100nm is using to link to MPA, and the range of GABA from 1mM to 30mM was detected by the Raman Scattering to obtain the calibrate curve. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.

Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced raman scattering

Procedia PDF Downloads 229
1135 Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle's Exhaust with Absorbent Chitosan

Authors: Yuandanis Wahyu Salam, Irfi Panrepi, Nuraeni

Abstract:

The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable.

Keywords: filter, carbon, carbondioxide, exhaust, chitosan

Procedia PDF Downloads 337
1134 A Range of Steel Production in Japan towards 2050

Authors: Reina Kawase

Abstract:

Japan set the goal of 80% reduction in GHG emissions by 2050. To consider countermeasures for reducing GHG emission, the production estimation of energy intensive materials, such as steel, is essential. About 50% of steel production is exported in Japan, so it is necessary to consider steel production including export. Steel productions from 2005-2050 in Japan were estimated under various global assumptions based on combination of scenarios such as goods trade scenarios and steel making process selection scenarios. Process selection scenarios decide volume of steel production by process (basic oxygen furnace and electric arc furnace) with considering steel consumption projection, supply-demand balance of steel, and scrap surplus. The range of steel production by process was analyzed. Maximum steel production was estimated under the scenario which consumes scrap in domestic steel production at maximum level. In 2035, steel production reaches 149 million ton because of increase in electric arc furnace steel. However, it decreases towards 2050 and amounts to 120 million ton, which is almost same as a current level. Minimum steel production is under the scenario which assumes technology progress in steel making and supply-demand balance consideration in each region. Steel production decreases from base year and is 44 million ton in 2050.

Keywords: goods trade scenario, steel making process selection scenario, steel production, global warming

Procedia PDF Downloads 367
1133 Different Tools and Complex Approach for Improving Phytoremediation Technology

Authors: T. Varazi, M. Pruidze, M. Kurashvili, N. Gagelidze, M. Sutton

Abstract:

The complex phytoremediation approach given in the presented work implies joint application of natural sorbents, microorganisms, natural biosurfactants and plants. The approach is based on using the natural mineral composites, microorganism strains with high detoxification abilities, plants-phytoremediators and natural biosurfactants for enhancing the uptake of intermediates of pollutants by plant roots. In this complex strategy of phytoremediation technology, the sorbent serves to uptake and trap the pollutants and thus restrain their emission in the environment. The role of microorganisms is to accomplish the first stage biodegradation of organic contaminants. This is followed by application of a phytoremediation technology through purposeful planting of selected plants. Thus, using of different tools will provide restoration of polluted environment and prevention of toxic compounds’ dissemination from hotbeds of pollution for a considerable length of time. The main idea and novelty of the carried out work is the development of a new approach for the ecological safety. The wide spectrum of contaminants: Organochlorine pesticide – DDT, heavy metal –Cu, oil hydrocarbon (hexadecane) and wax have been used in this work. The presented complex biotechnology is important from the viewpoint of prevention, providing total rehabilitation of soil. It is unique to chemical pollutants, ecologically friendly and provides the control of erosion of soils.

Keywords: bioremediation, phytoremediation, pollutants, soil contamination

Procedia PDF Downloads 279
1132 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 460
1131 Geotechnical Characterization of Landslide in Dounia Park, Algiers, Algeria

Authors: Mira Filali, Amar Nechnech

Abstract:

Most landslides in Algiers take place in Piacenzian marls of the Sahel (port in Arabic) and cause severe damage to properties and infrastructures. The aim of this paper is to describe the results of experimental as well as theoretical analysis of landslides. In order to understand the process which caused this slope instabilities, the results of geotechnical investigation carried out by the laboratory of construction (LNHC) laboratory in the area of Dounia park were analyzed, including particle size distribution, Atterberg limits, shear strength, odometer and pressuremeter tests. The study shows that the soils exhibited a high capacity to swelling according to index plasticity and clay content. Highs limit liquidity (LL) (53.45%) means that the soils are susceptible to landslides. The stability analysis carried out using finite element method, shows that the slope is stable (Fs > 1) in dry condition and in static state. Despite this results, the stable site could be described as only conditionally stable because slope failure can occur under combined effect of different factors. In fact the safety factor obtained by applying load when the phreatic surface is at ground, less than 1.5.

Keywords: index properties, landslides, safety factor, slope stability

Procedia PDF Downloads 215
1130 A QoE-driven Cross-layer Resource Allocation Scheme for High Traffic Service over Open Wireless Network Downlink

Authors: Liya Shan, Qing Liao, Qinyue Hu, Shantao Jiang, Tao Wang

Abstract:

In this paper, a Quality of Experience (QoE)-driven cross-layer resource allocation scheme for high traffic service over Open Wireless Network (OWN) downlink is proposed, and the related problem about the users in the whole cell including the users in overlap region of different cells has been solved.A method, in which assess models of the BestEffort service and the no-reference assess algorithm for video service are adopted, to calculate the Mean Opinion Score (MOS) value for high traffic service has been introduced. The cross-layer architecture considers the parameters in application layer, media access control layer and physical layer jointly. Based on this architecture and the MOS value, the Binary Constrained Particle Swarm Optimization (B_CPSO) algorithm is used to solve the cross-layer resource allocation problem. In addition,simulationresults show that the proposed scheme significantly outperforms other schemes in terms of maximizing average users’ MOS value for the whole system as well as maintaining fairness among users.

Keywords: high traffic service, cross-layer resource allocation, QoE, B_CPSO, OWN

Procedia PDF Downloads 529
1129 Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics

Authors: Qiuhua Miao, Peng Huang, Yifei Ding

Abstract:

Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum.

Keywords: relative regional total energy, crushing energy, axial segregation characteristics, rotary drum

Procedia PDF Downloads 70
1128 Addressing the Silent Killer: The Shift in Local Governance to Combat Air Pollution

Authors: Jayati Das

Abstract:

Kolkata, one of the fastest-growing metropolises in India, has been suffering from air pollution for many decades. Mismanagement of government and an increase in automobiles have been fuelling this problem. The study aims to portray the quality of air along with the influence of traffic flow and vehicular growth and the effects on human health. It further shows the correlation between the emission of pollution during weekdays and weekends with the help of a scatter diagram and trend line. An assessment of Kolkata air quality is done where the listed pollutants’ (RPM, SPM, NO2, and SO2) annual average concentrations are classified into four different categories. Our observed association between childhood Acute Respiratory disorder and early life exposure to traffic-related air pollutants is biologically plausible. The period of in utero and the first year of life is critical in the development of the immune and respiratory systems and potentially harmful effects of toxic pollutants during this period might result in the long-lasting impaired capacity to fight infections and increased risk of allergic manifestations. Up-to-date knowledge about the seasonal and spatial variation of asthma and studying the air quality of the area is done through Geographical Information System (GIS). Steps are taken by the government to control air pollution by alternative public transport like the metro and compulsory certification of period-driven vehicles which test for Carbon mono oxide.

Keywords: air pollution, asthma, GIS, hotspots, governance

Procedia PDF Downloads 53
1127 Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis

Authors: Satya Eswari Jujjavarapu, Swasti Dhagat, Lata Upadhyay, Reecha Sahu

Abstract:

Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles.

Keywords: biosurfactant, Bacillus subtilis, silver nano particle, lipopeptide

Procedia PDF Downloads 222
1126 Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

Authors: L. L. Ivy-Yap, H. A. Bekhet

Abstract:

As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 periods. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationary of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modeled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions.

Keywords: co-integration, elasticity, granger causality, Malaysia, residential electricity consumption

Procedia PDF Downloads 250
1125 On Erosion-Corrosion Behavior of Carbon Steel in Oil Sands Slurry: Electrochemical Studies

Authors: M. Deyab, A. Al-Sabagh, S. Keera

Abstract:

The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of carbon steel in oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.

Keywords: erosion-corrosion, steel, oil sands slurry, polarization

Procedia PDF Downloads 278
1124 Off-Line Detection of "Pannon Wheat" Milling Fractions by Near-Infrared Spectroscopic Methods

Authors: E. Izsó, M. Bartalné-Berceli, Sz. Gergely, A. Salgó

Abstract:

The aims of this investigation is to elaborate near-infrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. This wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis (PCA), cluster analysis (CA) and operation condition of milling technology. Its obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.

Keywords: near infrared spectroscopy, wheat categories, milling process, monitoring

Procedia PDF Downloads 393
1123 Preparation, Characterisation, and Antibacterial Activity of Green-Biosynthesised Silver Nanoparticles Using Clinacanthus Nutans Extract

Authors: Salahaedin Waiezi, Nik Ahmad Nizam Nik Malek, Hassan Abdelmagid Elzamzami, Shahrulnizahana Mohammad Din

Abstract:

A green and safe approach to the synthesis of silver nanoparticles (AgNP) can be performed using plant leaf extract as the reducing agent. Hence, this paper reports the biosynthesis of AgNP using Clinacanthus nutans plant extract. C. nutans is known as belalai gajah in Malaysia and is widely used as a medicinal herb locally. The biosynthesized AgNP, using C. nutans aqueous extract at pH 10, with the reaction temperature of 70°C and 48 h reaction time, was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and transmission electron microscope (TEM). A peak appeared in the UV-Vis spectra at around 400 nm, while XRD confirmed the crystal structure of AgNP, with the average size between 20 to 30 nm, as shown in FESEM and TEM. The antibacterial activity of the biosynthesized AgNP, which was performed using the disc diffusion technique (DDT) indicated effective inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. In contrast, minimal antibacterial activity was detected against Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA). In general, AgNP produced using C. nutans leaf extract possesses potential antibacterial activity.

Keywords: silver nanoparticles, Clinacanthus nutans, antibacterial agent, biosynthesis

Procedia PDF Downloads 184
1122 Synthesis of Flower-Like Silver Nanoarchitectures in Special Shapes and Their Applications in Surface-Enhanced Raman Scattering

Authors: Radka Králová, Libor Kvítek, Václav Ranc, Aleš Panáček, Radek Zbořil

Abstract:

Surface–Enhanced Raman Scattering (SERS) is an optical spectroscopic technique with very good potential for sensitive detection of substances. In this research, active substrates with high enhancement were provided. Novel silver particles (nanostructures) with high roughened, flower–like morphology were prepared by reduction of cation complex [Ag(NH3)2]+ in presence of sodium borohydride as reducing agent and stabilized polyacrylic acid. The products were characterized by UV/VIS absorption spectrophotometry. Special shapes of silver particles were determined by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). Dispersions of this particle were put on fixed substrate to producing suitable layer for SERS. Adenine was applied as basic substance whose effect of enhancement on the layer of silver nanostructures was studied. By comparison with our work, the important influence of stabilizers, polyacrylic acid with various molecular weight and concentration, on the transfer of particles and formation of new structure was confirmed.

Keywords: metals, nanostructures, chemical reduction, Raman spectroscopy, optical properties

Procedia PDF Downloads 357
1121 Batch Kinetic, Isotherm and Thermodynamic Studies of Copper (II) Removal from Wastewater Using HDL as Adsorbent

Authors: Nadjet Taoualit, Zoubida Chemat, Djamel-Eddine Hadj-Boussaad

Abstract:

This study aims the removal of copper Cu (II) contained in wastewater by adsorption on a perfect synthesized mud. It is the materials Hydroxides Double Lamellar, HDL, prepared and synthesized by co-precipitation method at constant pH, which requires a simple titration assembly, with an inexpensive and available material in the laboratory, and also allows us better control of the composition of the reaction medium, and gives well crystallized products. A characterization of the adsorbent proved essential. Thus a range of physic-chemical analysis was performed including: FTIR spectroscopy, X-ray diffraction… The adsorption of copper ions was investigated in dispersed medium (batch). A systematic study of various parameters (amount of support, contact time, initial copper concentration, temperature, pH…) was performed. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order, Bangham's equation and intra-particle diffusion models. The equilibrium data were analyzed using Langmuir, Freundlich, Tempkin and other isotherm models at different doses of HDL. The thermodynamics parameters were evaluated at different temperatures. The results have established good potentiality for the HDL to be used as a sorbent for the removal of Copper from wastewater.

Keywords: adsoption, copper, HDL, isotherm

Procedia PDF Downloads 260
1120 Modeling and Optimization of Nanogenerator for Energy Harvesting

Authors: Fawzi Srairi, Abderrahmane Dib

Abstract:

Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self-powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromechanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromechanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.

Keywords: electrical potential, heuristic algorithms, numerical modeling, nanogenerator

Procedia PDF Downloads 288