Search results for: nuclear emergency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1885

Search results for: nuclear emergency

55 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy

Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini

Abstract:

The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.

Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering

Procedia PDF Downloads 223
54 Benchmarking of Petroleum Tanker Discharge Operations at a Nigerian Coastal Terminal and Jetty Facilitates Optimization of the Ship–Shore Interface

Authors: Bassey O. Bassey

Abstract:

Benchmarking has progressively become entrenched as a requisite activity for process improvement and enhancing service delivery at petroleum jetties and terminals, most especially during tanker discharge operations at the ship – shore interface, as avoidable delays result in extra operating costs, non-productive time, high demurrage payments and ultimate product scarcity. The jetty and terminal in focus had been operational for 3 and 8 years respectively, with proper operational and logistic records maintained to evaluate their progress over time in order to plan and implement modifications and review of procedures for greater technical and economic efficiency. Regular and emergency staff meetings were held on a team, departmental and company-wide basis to progressively address major challenges that were encountered during each operation. The process and outcome of the resultant collectively planned changes carried out within the past two years forms the basis of this paper, which mirrors the initiatives effected to enhance operational and maintenance excellence at the affected facilities. Operational modifications included a second cargo receipt line designated for gasoline, product loss control at jetty and shore ends, enhanced product recovery and quality control, and revival of terminal–jetty backloading operations. Logistic improvements were the incorporation of an internal logistics firm and shipping agency, fast tracking of discharge procedures for tankers, optimization of tank vessel selection process, and third party product receipt and throughput. Maintenance excellence was achieved through construction of two new lay barges and refurbishment of the existing one; revamping of existing booster pump and purchasing of a modern one as reserve capacity; extension of Phase 1 of the jetty to accommodate two vessels and construction of Phase 2 for two more vessels; regular inspection, draining, drying and replacement of cargo hoses; corrosion management program for all process facilities; and an improved, properly planned and documented maintenance culture. Safety, environmental and security compliance were enhanced by installing state-of-the-art fire fighting facilities and equipment, seawater intake line construction as backup for borehole at the terminal, remediation of the shoreline and marine structures, modern spill containment equipment, improved housekeeping and accident prevention practices, and installation of hi-technology security enhancements, among others. The end result has been observed over the past two years to include improved tanker turnaround time, higher turnover on product sales, consistent product availability, greater indigenous human capacity utilisation by way of direct hires and contracts, as well as customer loyalty. The lessons learnt from this exercise would, therefore, serve as a model to be adapted by other operators of similar facilities, contractors, academics and consultants in a bid to deliver greater sustainability and profitability of operations at the ship – shore interface to this strategic industry.

Keywords: benchmarking, optimisation, petroleum jetty, petroleum terminal

Procedia PDF Downloads 366
53 Isolation and Transplantation of Hepatocytes in an Experimental Model

Authors: Inas Raafat, Azza El Bassiouny, Waldemar L. Olszewsky, Nagui E. Mikhail, Mona Nossier, Nora E. I. El-Bassiouni, Mona Zoheiry, Houda Abou Taleb, Noha Abd El-Aal, Ali Baioumy, Shimaa Attia

Abstract:

Background: Orthotopic liver transplantation is an established treatment for patients with severe acute and end-stage chronic liver disease. The shortage of donor organs continues to be the rate-limiting factor for liver transplantation throughout the world. Hepatocyte transplantation is a promising treatment for several liver diseases and can, also, be used as a "bridge" to liver transplantation in cases of liver failure. Aim of the work: This study was designed to develop a highly efficient protocol for isolation and transplantation of hepatocytes in experimental Lewis rat model to provide satisfactory guidelines for future application on humans.Materials and Methods: Hepatocytes were isolated from the liver by double perfusion technique and bone marrow cells were isolated by centrifugation of shafts of tibia and femur of donor Lewis rats. Recipient rats were subjected to sub-lethal dose of irradiation 2 days before transplantation. In a laparotomy operation the spleen was injected by freshly isolated hepatocytes and bone marrow cells were injected intravenously. The animals were sacrificed 45 day latter and splenic sections were prepared and stained with H & E, PAS AFP and Prox1. Results: The data obtained from this study showed that the double perfusion technique is successful in separation of hepatocytes regarding cell number and viability. Also the method used for bone marrow cells separation gave excellent results regarding cell number and viability. Intrasplenic engraftment of hepatocytes and live tissue formation within the splenic tissue were found in 70% of cases. Hematoxylin and eosin stained splenic sections from 7 rats showed sheets and clusters of cells among the splenic tissues. Periodic Acid Schiff stained splenic sections from 7 rats showed clusters of hepatocytes with intensely stained pink cytoplasmic granules denoting the presence of glycogen. Splenic sections from 7 rats stained with anti-α-fetoprotein antibody showed brownish cytoplasmic staining of the hepatocytes denoting positive expression of AFP. Splenic sections from 7 rats stained with anti-Prox1 showed brownish nuclear staining of the hepatocytes denoting positive expression of Prox1 gene on these cells. Also, positive expression of Prox1 gene was detected on lymphocytes aggregations in the spleens. Conclusions: Isolation of liver cells by double perfusion technique using collagenase buffer is a reliable method that has a very satisfactory yield regarding cell number and viability. The intrasplenic route of transplantation of the freshly isolated liver cells in an immunocompromised model was found to give good results regarding cell engraftment and tissue formation. Further studies are needed to assess function of engrafted hepatocytes by measuring prothrombin time, serum albumin and bilirubin levels.

Keywords: Lewis rats, hepatocytes, BMCs, transplantation, AFP, Prox1

Procedia PDF Downloads 316
52 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells

Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo

Abstract:

Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.

Keywords: biosensors, polymer, skin irritation, degradation products, cell viability

Procedia PDF Downloads 139
51 The U.S. Missile Defense Shield and Global Security Destabilization: An Inconclusive Link

Authors: Michael A. Unbehauen, Gregory D. Sloan, Alberto J. Squatrito

Abstract:

Missile proliferation and global stability are intrinsically linked. Missile threats continually appear at the forefront of global security issues. North Korea’s recently demonstrated nuclear and intercontinental ballistic missile (ICBM) capabilities, for the first time since the Cold War, renewed public interest in strategic missile defense capabilities. To protect from limited ICBM attacks from so-called rogue actors, the United States developed the Ground-based Midcourse Defense (GMD) system. This study examines if the GMD missile defense shield has contributed to a safer world or triggered a new arms race. Based upon increased missile-related developments and the lack of adherence to international missile treaties, it is generally perceived that the GMD system is a destabilizing factor for global security. By examining the current state of arms control treaties as well as existing missile arsenals and ongoing efforts in technologies to overcome U.S. missile defenses, this study seeks to analyze the contribution of GMD to global stability. A thorough investigation cannot ignore that, through the establishment of this limited capability, the U.S. violated longstanding, successful weapons treaties and caused concern among states that possess ICBMs. GMD capability contributes to the perception that ICBM arsenals could become ineffective, creating an imbalance in favor of the United States, leading to increased global instability and tension. While blame for the deterioration of global stability and non-adherence to arms control treaties is often placed on U.S. missile defense, the facts do not necessarily support this view. The notion of a renewed arms race due to GMD is supported neither by current missile arsenals nor by the inevitable development of new and enhanced missile technology, to include multiple independently targeted reentry vehicles (MIRVs), maneuverable reentry vehicles (MaRVs), and hypersonic glide vehicles (HGVs). The methodology in this study encapsulates a period of time, pre- and post-GMD introduction, while analyzing international treaty adherence, missile counts and types, and research in new missile technologies. The decline in international treaty adherence, coupled with a measurable increase in the number and types of missiles or research in new missile technologies during the period after the introduction of GMD, could be perceived as a clear indicator of GMD contributing to global instability. However, research into improved technology (MIRV, MaRV and HGV) prior to GMD, as well as a decline of various global missile inventories and testing of systems during this same period, would seem to invalidate this theory. U.S. adversaries have exploited the perception of the U.S. missile defense shield as a destabilizing factor as a pretext to strengthen and modernize their militaries and justify their policies. As a result, it can be concluded that global stability has not significantly decreased due to GMD; but rather, the natural progression of technological and missile development would inherently include innovative and dynamic approaches to target engagement, deterrence, and national defense.

Keywords: arms control, arms race, global security, GMD, ICBM, missile defense, proliferation

Procedia PDF Downloads 143
50 Implementation of Synthesis and Quality Control Procedures of ¹⁸F-Fluoromisonidazole Radiopharmaceutical

Authors: Natalia C. E. S. Nascimento, Mercia L. Oliveira, Fernando R. A. Lima, Leonardo T. C. do Nascimento, Marina B. Silveira, Brigida G. A. Schirmer, Andrea V. Ferreira, Carlos Malamut, Juliana B. da Silva

Abstract:

Tissue hypoxia is a common characteristic of solid tumors leading to decreased sensitivity to radiotherapy and chemotherapy. In the clinical context, tumor hypoxia assessment employing the positron emission tomography (PET) tracer ¹⁸F-fluoromisonidazole ([¹⁸F]FMISO) is helpful for physicians for planning and therapy adjusting. The aim of this work was to implement the synthesis of 18F-FMISO in a TRACERlab® MXFDG module and also to establish the quality control procedure. [¹⁸F]FMISO was synthesized at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN/Brazil) using an automated synthesizer (TRACERlab® MXFDG, GE) adapted for the production of [¹⁸F]FMISO. The FMISO chemical standard was purchased from ABX. 18O- enriched water was acquired from Center of Molecular Research. Reagent kits containing eluent solution, acetonitrile, ethanol, 2.0 M HCl solution, buffer solution, water for injections and [¹⁸F]FMISO precursor (dissolved in 2 ml acetonitrile) were purchased from ABX. The [¹⁸F]FMISO samples were purified by Solid Phase Extraction method. The quality requirements of [¹⁸F]FMISO are established in the European Pharmacopeia. According to that reference, quality control of [¹⁸F]FMISO should include appearance, pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins, and sterility. The duration of the synthesis process was 53 min, with radiochemical yield of (37.00 ± 0.01) % and the specific activity was more than 70 GBq/µmol. The syntheses were reproducible and showed satisfactory results. In relation to the quality control analysis, the samples were clear and colorless at pH 6.0. The spectrum emission, measured by using a High-Purity Germanium Detector (HPGe), presented a single peak at 511 keV and the half-life, determined by the decay method in an activimeter, was (111.0 ± 0.5) min, indicating no presence of radioactive contaminants, besides the desirable radionuclide (¹⁸F). The samples showed concentration of tetrabutylammonium (TBA) < 50μg/mL, assessed by visual comparison to TBA standard applied in the same thin layer chromatographic plate. Radiochemical purity was determined by high performance liquid chromatography (HPLC) and the results were 100%. Regarding the residual solvents tested, ethanol and acetonitrile presented concentration lower than 10% and 0.04%, respectively. Healthy female mice were injected via lateral tail vein with [¹⁸F]FMISO, microPET imaging studies (15 min) were performed after 2 h post injection (p.i), and the biodistribution was analyzed in five-time points (30, 60, 90, 120 and 180 min) after injection. Subsequently, organs/tissues were assayed for radioactivity with a gamma counter. All parameters of quality control test were in agreement to quality criteria confirming that [¹⁸F]FMISO was suitable for use in non-clinical and clinical trials, following the legal requirements for the production of new radiopharmaceuticals in Brazil.

Keywords: automatic radiosynthesis, hypoxic tumors, pharmacopeia, positron emitters, quality requirements

Procedia PDF Downloads 193
49 Interactions between Sodium Aerosols and Fission Products: A Theoretical Chemistry and Experimental Approach

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

Safety requirements for Generation IV nuclear reactor designs, especially the new generation sodium-cooled fast reactors (SFR) require a risk-informed approach to model severe accidents (SA) and their consequences in case of outside release. In SFRs, aerosols are produced during a core disruptive accident when primary system sodium is ejected into the containment and burn in contact with the air; producing sodium aerosols. One of the key aspects of safety evaluation is the in-containment sodium aerosol behavior and their interaction with fission products. The study of the effects of sodium fires is essential for safety evaluation as the fire can both thermally damage the containment vessel and cause an overpressurization risk. Besides, during the fire, airborne fission product first dissolved in the primary sodium can be aerosolized or, as it can be the case for fission products, released under the gaseous form. The objective of this work is to study the interactions between sodium aerosols and fission products (Iodine, toxic and volatile, being the primary concern). Sodium fires resulting from an SA would produce aerosols consisting of sodium peroxides, hydroxides, carbonates, and bicarbonates. In addition to being toxic (in oxide form), this aerosol will then become radioactive. If such aerosols are leaked into the environment, they can pose a danger to the ecosystem. Depending on the chemical affinity of these chemical forms with fission products, the radiological consequences of an SA leading to containment leak tightness loss will also be affected. This work is split into two phases. Firstly, a method to theoretically understand the kinetics and thermodynamics of the heterogeneous reaction between sodium aerosols and fission products: I2 and HI are proposed. Ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package are carried out to develop an understanding of the surfaces of sodium carbonate (Na2CO3) aerosols and hence provide insight on its affinity towards iodine species. A comprehensive study of I2 and HI adsorption, as well as bicarbonate formation on the calculated lowest energy surface of Na2CO3, was performed which provided adsorption energies and description of the optimized configuration of adsorbate on the stable surface. Secondly, the heterogeneous reaction between (I2)g and Na2CO3 aerosols were investigated experimentally. To study this, (I2)g was generated by heating a permeation tube containing solid I2, and, passing it through a reaction chamber containing Na2CO3 aerosol deposit. The concentration of iodine was then measured at the exit of the reaction chamber. Preliminary observations indicate that there is an effective uptake of (I2)g on Na2CO3 surface, as suggested by our theoretical chemistry calculations. This work is the first step in addressing the gaps in knowledge of in-containment and atmospheric source term which are essential aspects of safety evaluation of SFR SA. In particular, this study is aimed to determine and characterize the radiological and chemical source term. These results will then provide useful insights for the developments of new models to be implemented in integrated computer simulation tool to analyze and evaluate SFR safety designs.

Keywords: iodine adsorption, sodium aerosols, sodium cooled reactor, DFT calculations, sodium carbonate

Procedia PDF Downloads 215
48 Estimated Heat Production, Blood Parameters and Mitochondrial DNA Copy Number of Nellore Bulls with High and Low Residual Feed Intake

Authors: Welder A. Baldassini, Jon J. Ramsey, Marcos R. Chiaratti, Amália S. Chaves, Renata H. Branco, Sarah F. M. Bonilha, Dante P. D. Lanna

Abstract:

With increased production costs there is a need for animals that are more efficient in terms of meat production. In this context, the role of mitochondrial DNA (mtDNA) on physiological processes in liver, muscle and adipose tissues may account for inter-animal variation in energy expenditures and heat production. The purpose this study was to investigate if the amounts of mtDNA in liver, muscle and adipose tissue (subcutaneous and visceral depots) of Nellore bulls are associated with residual feed intake (RFI) and estimated heat production (EHP). Eighteen animals were individually fed in a feedlot for 90 days. RFI values were obtained by regression of dry matter intake (DMI) in relation to average daily gain (ADG) and mid-test metabolic body weight (BW). The animals were classified into low (more efficient) and high (less efficient) RFI groups. The bulls were then randomly distributed in individual pens where they were given excess feed twice daily to result in 5 to 10% orts for 90 d with diet containing 15% crude protein and 2.7 Mcal ME/kg DM. The heart rate (HR) of bulls was monitored for 4 consecutive days and used for calculation of EHP. Electrodes were fitted to bulls with stretch belts (POLAR RS400; Kempele, Finland). To calculate oxygen pulse (O2P), oxygen consumption was obtained using a facemask connected to the gas analyzer (EXHALYZER, ECOMedics, Zurich, Switzerland) and HR were simultaneously measured for 15 minutes period. Daily oxygen (O2) consumption was calculated by multiplying the volume of O2 per beat by total daily beats. EHP was calculated multiplying O2P by the average HR obtained during the 4 days, assuming 4.89 kcal/L of O2 to measure daily EHP that was expressed in kilocalories/day/kilogram metabolic BW (kcal/day/kg BW0.75). Blood samples were collected between days 45 and 90th after the beginning of the trial period in order to measure the concentration of hemoglobin and hematocrit. The bulls were slaughtered in an experimental slaughter house in accordance with current guidelines. Immediately after slaughter, a section of liver, a portion of longissimus thoracis (LT) muscle, plus a portion of subcutaneous fat (surrounding LT muscle) and portions of visceral fat (kidney, pelvis and inguinal fat) were collected. Samples of liver, muscle and adipose tissues were used to quantify mtDNA copy number per cell. The number of mtDNA copies was determined by normalization of mtDNA amount against a single copy nuclear gene (B2M). Mean of EHP, hemoglobin and hematocrit of high and low RFI bulls were compared using two-sample t-tests. Additionally, the one-way ANOVA was used to compare mtDNA quantification considering the mains effects of RFI groups. We found lower EHP (83.047 vs. 97.590 kcal/day/kgBW0.75; P < 0.10), hemoglobin concentration (13.533 vs. 15.108 g/dL; P < 0.10) and hematocrit percentage (39.3 vs. 43.6 %; P < 0.05) in low compared to high RFI bulls, respectively, which may be useful traits to identify efficient animals. However, no differences were observed between the mtDNA content in liver, muscle and adipose tissue of Nellore bulls with high and low RFI.

Keywords: bioenergetics, Bos indicus, feed efficiency, mitochondria

Procedia PDF Downloads 246
47 Readout Development of a LGAD-based Hybrid Detector for Microdosimetry (HDM)

Authors: Pierobon Enrico, Missiaggia Marta, Castelluzzo Michele, Tommasino Francesco, Ricci Leonardo, Scifoni Emanuele, Vincezo Monaco, Boscardin Maurizio, La Tessa Chiara

Abstract:

Clinical outcomes collected over the past three decades have suggested that ion therapy has the potential to be a treatment modality superior to conventional radiation for several types of cancer, including recurrences, as well as for other diseases. Although the results have been encouraging, numerous treatment uncertainties remain a major obstacle to the full exploitation of particle radiotherapy. To overcome therapy uncertainties optimizing treatment outcome, the best possible radiation quality description is of paramount importance linking radiation physical dose to biological effects. Microdosimetry was developed as a tool to improve the description of radiation quality. By recording the energy deposition at the micrometric scale (the typical size of a cell nucleus), this approach takes into account the non-deterministic nature of atomic and nuclear processes and creates a direct link between the dose deposited by radiation and the biological effect induced. Microdosimeters measure the spectrum of lineal energy y, defined as the energy deposition in the detector divided by most probable track length travelled by radiation. The latter is provided by the so-called “Mean Chord Length” (MCL) approximation, and it is related to the detector geometry. To improve the characterization of the radiation field quality, we define a new quantity replacing the MCL with the actual particle track length inside the microdosimeter. In order to measure this new quantity, we propose a two-stage detector consisting of a commercial Tissue Equivalent Proportional Counter (TEPC) and 4 layers of Low Gain Avalanche Detectors (LGADs) strips. The TEPC detector records the energy deposition in a region equivalent to 2 um of tissue, while the LGADs are very suitable for particle tracking because of the thickness thinnable down to tens of micrometers and fast response to ionizing radiation. The concept of HDM has been investigated and validated with Monte Carlo simulations. Currently, a dedicated readout is under development. This two stages detector will require two different systems to join complementary information for each event: energy deposition in the TEPC and respective track length recorded by LGADs tracker. This challenge is being addressed by implementing SoC (System on Chip) technology, relying on Field Programmable Gated Arrays (FPGAs) based on the Zynq architecture. TEPC readout consists of three different signal amplification legs and is carried out thanks to 3 ADCs mounted on a FPGA board. LGADs activated strip signal is processed thanks to dedicated chips, and finally, the activated strip is stored relying again on FPGA-based solutions. In this work, we will provide a detailed description of HDM geometry and the SoC solutions that we are implementing for the readout.

Keywords: particle tracking, ion therapy, low gain avalanche diode, tissue equivalent proportional counter, microdosimetry

Procedia PDF Downloads 175
46 Challenging Airway Management for Tracheal Compression Due to a Rhabdomyosarcoma

Authors: Elena Parmentier, Henrik Endeman

Abstract:

Introduction: Large mediastinal masses often present with diagnostic and clinical challenges due to compression of the respiratory and hemodynamic system. We present a case of a mediastinal mass with symptomatic mechanical compression of the trachea, resulting in challenging airway management. Methods: We present a case of 66-year-old male, complaining of progressive dysphagia. Initial esophagogastroscopy revealed a stenosis secondary to external compression, biopsies were inconclusive. Additional CT scan showed a large mediastinal mass of unknown origin, situated between the vertebrae and esophagus. Symptoms progressed and patient developed dyspnea and stridor. A new CT showed quick growth of the mass with compression of the trachea, subglottic to just above the carina. A tracheal covered stent was successfully placed. Endobronchial ultrasound revealed a large irregular mass without tracheal invasion, biopsies were taken. 4 days after stent placement, the patients’ condition deteriorated with worsening of stridor, dyspnea and desaturation. Migration of the tracheal stent into the right main bronchus was seen on chest X ray, with obstruction of the left main bronchus and secondary atelectasis. Different methods have been described in the literature for tracheobronchial stent removal (surgical, endoscopic, fluoroscopyguided), our first choice in this case was flexible bronchoscopy. However, this revealed tracheal compression above the migrated stent and passage of the scope occurred impossible. Patient was admitted to the ICU, high-flow nasal oxygen therapy was started and the situation stabilized, giving time for extensive assessment and preparation of the airway management approach. Close cooperation between the intensivist, pulmonologist, anesthesiologist and otorhinolaryngologist was essential. Results: In case of sudden deterioration, a protocol for emergency situations was made. Given the increased risk of additional tracheal compression after administration of neuromuscular blocking agents, an approach with awake fiberoptic intubation maintaining spontaneous ventilation was proposed. However, intubation without retrieval of the tracheal stent was found undesirable due to expected massive shunting over the left atelectatic lung. As rescue option, assistance of extracorporeal circulation was considered and perfusionist was kept on standby. The patient stayed stable and was transferred to the operating theatre. High frequency jet ventilation under general anesthesia resulted in desaturations up to 50%, making rigid bronchoscopy impossible. Subsequently an endotracheal tube size 8 could be placed successfully and the stent could be retrieved via bronchoscopy over (and with) the tube, after which the patient was reintubated. Finally, a tracheostomy (Shiley™ Tracheostomy Tube With Cuff, size 8) was placed, fiberoptic control showed a patent airway. Patient was readmitted to the ICU and could be quickly weaned of the ventilator. Pathology was positive for rhabdomyosarcoma, without indication for systemic therapy. Extensive surgery (laryngectomy, esophagectomy) was suggested, but patient refused and palliative care was started. Conclusion: Due to meticulous planning in an interdisciplinary team, we showed a successful airway management approach in this complicated case of critical airway compression secondary to a rare rhabdomyosarcoma, complicated by tracheal stent migration. Besides presenting our thoughts and considerations, we support exploring other possible approaches of this specific clinical problem.

Keywords: airway management, rhabdomyosarcoma, stent displacement, tracheal stenosis

Procedia PDF Downloads 104
45 A Novel Upregulated circ_0032746 on Sponging with MIR4270 Promotes the Proliferation and Migration of Esophageal Squamous Cell Carcinoma

Authors: Sachin Mulmi Shrestha, Xin Fang, Hui Ye, Lihua Ren, Qinghua Ji, Ruihua Shi

Abstract:

Background: Esophageal squamous cell carcinoma (ESCC) is a tumor arising from esophageal epithelial cells and is one of the major disease subtype in Asian countries, including China. Esophageal cancer is the 7th highest incidence based on the 2020 data of GLOBOCAN. The pathogenesis of cancer is still not well understood as many molecular and genetic basis of esophageal carcinogenesis has yet to be clearly elucidated. Circular RNAs are RNA molecules that are formed by back-splicing covalently joined 3′- and 5′-endsrather than canonical splicing, and recent data suggest circular RNAs could sponge miRNAs and are enriched with functional miRNA binding sites. Hence, we studied the mechanism of circular RNA, its biological function, and the relationship between microRNA in the carcinogenesis of ESCC. Methods: 4 pairs of normal and esophageal cancer tissues were collected in Zhongda hospital, affiliated to Southeast University, and high-throughput RNA sequencing was done. The result revealed that circ_0032746 was upregulated, and thus we selected circ_0032746 for further study. The backsplice junction of circRNA was validated by sanger sequence, and stability was determined by RNASE R assay. The binding site of circRNA and microRNA was predicted by circinteractome,mirandaand RNAhybrid database. Furthermore, circRNA was silenced by siRNA and then by lentivirus. The regulatory axis of circ0032746/miR4270 was validated by shRNA, mimic, and inhibitor transfection. Then, in vitro experiments were performed to assess the role of circ0032746 on proliferation (CCK-8 assay and colon formation assay), migration and invasion (Transewell assay), and apoptosis of ESCC. Results: The upregulated circ0032746 was validated in 9 pairs of tissues and 5 types of cell lines by qPCR, which showed high expression and was statistically significant (P<0.005) ). Upregulated circ0032746 was silenced by shRNA, which showed significant knockdown in KYSE 30 and TE-1 cell lines expression compared to control. Nuclear and cytoplasmic mRNA fraction experiment displayed the cytoplasmic location of circ0032746. The sponging of miR4270 was validated by co-transfection of sh-circ0032746 and mimic or inhibitor. Transfection with mimic showed the decreased expression of circ_0032746, whereas inhibitor inhibited the result. In vitro experiments showed that silencing of circ_0032746 inhibited the proliferation, migration, and invasion compared to the negative control group. The apoptosis was seen higher in a knockdown group than in the control group. Furthermore, 11 common mircoRNA target mRNAs were predicted by Targetscan, MirTarbase, and miRanda database, which may further play role in the pathogenesis. Conclusion: Our results showed that novel circ_0032746 is upregulated in ESCC and plays role in itsoncogenicity. Silencing of circ_0032746 inhibits the proliferation and migration of ESCC whereas increases the apoptosis of cancer cells. Hence, circ0032746 acts as an oncogene in ESCC by sponging with miR4270 and could be a potential biomarker in the diagnosis of ESCC in the future.

Keywords: circRNA, esophageal squamous cell carcinoma, microRNA, upregulated

Procedia PDF Downloads 113
44 Nephrotoxicity and Hepatotoxicity Induced by Chronic Aluminium Exposure in Rats: Impact of Nutrients Combination versus Social Isolation and Protein Malnutrition

Authors: Azza A. Ali, Doaa M. Abd El-Latif, Amany M. Gad, Yasser M. A. Elnahas, Karema Abu-Elfotuh

Abstract:

Background: Exposure to Aluminium (Al) has been increased recently. It is found in food products, food additives, drinking water, cosmetics and medicines. Chronic consumption of Al causes oxidative stress and has been implicated in several chronic disorders. Liver is considered as the major site for detoxification while kidney is involved in the elimination of toxic substances and is a target organ of metal toxicity. Social isolation (SI) or protein malnutrition (PM) also causes oxidative stress and has negative impact on Al-induced nephrotoxicity as well as hepatotoxicity. Coenzyme Q10 (CoQ10) is a powerful intracellular antioxidant with mitochondrial membrane stabilizing ability while wheat grass is a natural product with antioxidant, anti-inflammatory and different protective activities, cocoa is also potent antioxidants and can protect against many diseases. They provide different degrees of protection from the impact of oxidative stress. Objective: To study the impact of social isolation together with Protein malnutrition on nephro- and hepato-toxicity induced by chronic Al exposure in rats as well as to investigate the postulated protection using a combination of Co Q10, wheat grass and cocoa. Methods: Eight groups of rats were used; four served as protected groups and four as un-protected. Each of them received daily for five weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except one group served as control. Al-toxicity model groups were divided to Al-toxicity alone, SI- associated PM (10% casein diet) and Al- associated SI&PM groups. Protection was induced by oral co-administration of CoQ10 (200mg/kg), wheat grass (100mg/kg) and cocoa powder (24mg/kg) combination together with Al. Biochemical changes in total bilirubin, lipids, cholesterol, triglycerides, glucose, proteins, creatinine and urea as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate deshydrogenase (LDH) were measured in serum of all groups. Specimens of kidney and liver were used for assessment of oxidative parameters (MDA, SOD, TAC, NO), inflammatory mediators (TNF-α, IL-6β, nuclear factor kappa B (NF-κB), Caspase-3) and DNA fragmentation in addition to evaluation of histopathological changes. Results: SI together with PM severely enhanced nephro- and hepato-toxicity induced by chronic Al exposure. Co Q10, wheat grass and cocoa combination showed clear protection against hazards of Al exposure either alone or when associated with SI&PM. Their protection were indicated by the significant decrease in Al-induced elevations in total bilirubin, lipids, cholesterol, triglycerides, glucose, creatinine and urea levels as well as ALT, AST, ALP, LDH. Liver and kidney of the treated groups also showed significant decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation, together with significant increase in total proteins, SOD and TAC. Biochemical results were confirmed by the histopathological examinations. Conclusion: SI together with PM represents a risk factor in enhancing nephro- and hepato-toxicity induced by Al in rats. CoQ10, wheat grass and cocoa combination provide clear protection against nephro- and hepatotoxicity as well as the consequent degenerations induced by chronic Al-exposure even when associated with the risk of SI together with PM.

Keywords: aluminum, nephrotoxicity, hepatotoxicity, isolation and protein malnutrition, coenzyme Q10, wheatgrass, cocoa, nutrients combinations

Procedia PDF Downloads 247
43 Peculiarities of Absorption near the Edge of the Fundamental Band of Irradiated InAs-InP Solid Solutions

Authors: Nodar Kekelidze, David Kekelidze, Elza Khutsishvili, Bela Kvirkvelia

Abstract:

The semiconductor devices are irreplaceable elements for investigations in Space (artificial Earth satellite, interplanetary space craft, probes, rockets) and for investigation of elementary particles on accelerators, for atomic power stations, nuclear reactors, robots operating on heavily radiation contaminated territories (Chernobyl, Fukushima). Unfortunately, the most important parameters of semiconductors dramatically worsen under irradiation. So creation of radiation-resistant semiconductor materials for opto and microelectronic devices is actual problem, as well as investigation of complicated processes developed in irradiated solid states. Homogeneous single crystals of InP-InAs solid solutions were grown with zone melting method. There has been studied the dependence of the optical absorption coefficient vs photon energy near fundamental absorption edge. This dependence changes dramatically with irradiation. The experiments were performed on InP, InAs and InP-InAs solid solutions before and after irradiation with electrons and fast neutrons. The investigations of optical properties were carried out on infrared spectrophotometer in temperature range of 10K-300K and 1mkm-50mkm spectral area. Radiation fluencies of fast neutrons was equal to 2·1018neutron/cm2 and electrons with 3MeV, 50MeV up to fluxes of 6·1017electron/cm2. Under irradiation, there has been revealed the exponential type of the dependence of the optical absorption coefficient vs photon energy with energy deficiency. The indicated phenomenon takes place at high and low temperatures as well at impurity different concentration and practically in all cases of irradiation by various energy electrons and fast neutrons. We have developed the common mechanism of this phenomenon for unirradiated materials and implemented the quantitative calculations of distinctive parameter; this is in a satisfactory agreement with experimental data. For the irradiated crystals picture get complicated. In the work, the corresponding analysis is carried out. It has been shown, that in the case of InP, irradiated with electrons (Ф=1·1017el/cm2), the curve of optical absorption is shifted to lower energies. This is caused by appearance of the tails of density of states in forbidden band due to local fluctuations of ionized impurity (defect) concentration. Situation is more complicated in the case of InAs and for solid solutions with composition near to InAs when besides noticeable phenomenon there takes place Burstein effect caused by increase of electrons concentration as a result of irradiation. We have shown, that in certain conditions it is possible the prevalence of Burstein effect. This causes the opposite effect: the shift of the optical absorption edge to higher energies. So in given solid solutions there take place two different opposite directed processes. By selection of solid solutions composition and doping impurity we obtained such InP-InAs, solid solution in which under radiation mutual compensation of optical absorption curves displacement occurs. Obtained result let create on the base of InP-InAs, solid solution radiation-resistant optical materials. Conclusion: It was established the nature of optical absorption near fundamental edge in semiconductor materials and it was created radiation-resistant optical material.

Keywords: InAs-InP, electrons concentration, irradiation, solid solutions

Procedia PDF Downloads 201
42 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 344
41 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease

Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette

Abstract:

Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.

Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment

Procedia PDF Downloads 338
40 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 188
39 Utilizing Extended Reality in Disaster Risk Reduction Education: A Scoping Review

Authors: Stefano Scippo, Damiana Luzzi, Stefano Cuomo, Maria Ranieri

Abstract:

Background: In response to the rise in natural disasters linked to climate change, numerous studies on Disaster Risk Reduction Education (DRRE) have emerged since the '90s, mainly using a didactic transmission-based approach. Effective DRRE should align with an interactive, experiential, and participatory educational model, which can be costly and risky. A potential solution is using simulations facilitated by eXtended Reality (XR). Research Question: This study aims to conduct a scoping review to explore educational methodologies that use XR to enhance knowledge among teachers, students, and citizens about environmental risks, natural disasters (including climate-related ones), and their management. Method: A search string of 66 keywords was formulated, spanning three domains: 1) education and target audience, 2) environment and natural hazards, and 3) technologies. On June 21st, 2023, the search string was used across five databases: EBSCOhost, IEEE Xplore, PubMed, Scopus, and Web of Science. After deduplication and removing papers without abstracts, 2,152 abstracts (published between 2013 and 2023) were analyzed and 2,062 papers were excluded, followed by the exclusion of 56 papers after full-text scrutiny. Excluded studies focused on unrelated technologies, non-environmental risks, and lacked educational outcomes or accessible texts. Main Results: The 34 reviewed papers were analyzed for context, risk type, research methodology, learning objectives, XR technology use, outcomes, and educational affordances of XR. Notably, since 2016, there has been a rise in scientific publications, focusing mainly on seismic events (12 studies) and floods (9), with a significant contribution from Asia (18 publications), particularly Japan (7 studies). Methodologically, the studies were categorized into empirical (26) and non-empirical (8). Empirical studies involved user or expert validation of XR tools, while non-empirical studies included systematic reviews and theoretical proposals without experimental validation. Empirical studies were further classified into quantitative, qualitative, or mixed-method approaches. Six qualitative studies involved small groups of users or experts, while 20 quantitative or mixed-method studies used seven different research designs, with most (17) employing a quasi-experimental, one-group post-test design, focusing on XR technology usability over educational effectiveness. Non-experimental studies had methodological limitations, making their results hypothetical and in need of further empirical validation. Educationally, the learning objectives centered on knowledge and skills for surviving natural disaster emergencies. All studies recommended XR technologies for simulations or serious games but did not develop comprehensive educational frameworks around these tools. XR-based tools showed potential superiority over traditional methods in teaching risk and emergency management skills. However, conclusions were more valid in studies with experimental designs; otherwise, they remained hypothetical without empirical evidence. The educational affordances of XR, mainly user engagement, were confirmed by the studies. Authors’ Conclusions: The analyzed literature lacks specific educational frameworks for XR in DRRE, focusing mainly on survival knowledge and skills. There is a need to expand educational approaches to include uncertainty education, developing competencies that encompass knowledge, skills, and attitudes like risk perception.

Keywords: disaster risk reduction education, educational technologies, scoping review, XR technologies

Procedia PDF Downloads 24
38 A Lightning Strike Mimic: The Abusive Use of Dog Shock Collar Presents as Encephalopathy, Respiratory Arrest, Cardiogenic Shock, Severe Hypernatremia, Rhabdomyolysis, and Multiorgan Injury

Authors: Merrick Lopez, Aashish Abraham, Melissa Egge, Marissa Hood, Jui Shah

Abstract:

A 3 year old male with unknown medical history presented initially with encephalopathy, intubated for respiratory failure, and admitted to the pediatric intensive care unit (PICU) with refractory shock. During resuscitation in the emergency department, he was found to be in severe metabolic acidosis with a pH of 7.03 and escalated on vasopressor drips for hypotension. His initial sodium was 174. He was noted to have burn injuries to his scalp, forehead, right axilla, bilateral arm creases and lower legs. He had rhabdomyolysis (initial creatinine kinase 5,430 U/L with peak levels of 62,340 normal <335 U/L), cardiac injury (initial troponin 88 ng/L with peak at 145 ng/L, normal <15ng/L), hypernatremia (peak 174, normal 140), hypocalcemia, liver injury, acute kidney injury, and neuronal loss on magnetic resonance imaging (MRI). Soft restraints and a shock collar were found in the home. He was critically ill for 8 days, but was gradually weaned off drips, extubated, and started on feeds. Discussion Electrical injury, specifically lightning injury is an uncommon but devastating cause of injury in pediatric patients. This patient with suspected abusive use of a dog shock collar presented similar to a lightning strike. Common entrance points include the hands and head, similar to our patient with linear wounds on his forehead. When current enters, it passes through tissues with the least resistance. Nerves, blood vessels, and muscles, have high fluid and electrolyte content and are commonly affected. Exit points are extremities: our child who had circumferential burns around his arm creases and ankles. Linear burns preferentially follow areas of high sweat concentration, and are thought to be due to vaporization of water on the skin’s surface. The most common cause of death from a lightning strike is due to cardiopulmonary arrest. The massive depolarization of the myocardium can result in arrhythmias and myocardial necrosis. The patient presented in cardiogenic shock with evident cardiac damage. Electricity going through vessels can lead to vaporization of intravascular water. This can explain his severe hypernatremia. He also sustained other internal organ injuries (adrenal glands, pancreas, liver, and kidney). Electrical discharge also leads to direct skeletal muscle injury in addition to prolonged muscular spasm. Rhabdomyolysis, the acute damage of muscle, leads to release of potentially toxic components into the circulation which could lead to acute renal failure. The patient had severe rhabdomyolysis and renal injury. Early hypocalcemia has been consistently demonstrated in patients with rhabdomyolysis. This was present in the patient and led to increased vasopressor needs. Central nervous system injuries are also common which can include encephalopathy, hypoxic injury, and cerebral infarction. The patient had evidence of brain injury as seen on MRI. Conclusion Electrical injuries due to lightning strikes and abusive use of a dog shock collar are rare, but can both present in similar ways with respiratory failure, shock, hypernatremia, rhabdomyolysis, brain injury, and multiorgan damage. Although rare, it is essential for early identification and prompt management for acute and chronic complications in these children.

Keywords: cardiogenic shock, dog shock collar, lightning strike, rhabdomyolysis

Procedia PDF Downloads 88
37 Recurrent Torsades de Pointes Post Direct Current Cardioversion for Atrial Fibrillation with Rapid Ventricular Response

Authors: Taikchan Lildar, Ayesha Samad, Suraj Sookhu

Abstract:

Atrial fibrillation with rapid ventricular response results in the loss of atrial kick and shortened ventricular filling time, which often leads to decompensated heart failure. Pharmacologic rhythm control is the treatment of choice, and patients frequently benefit from the restoration of sinus rhythm. When pharmacologic treatment is unsuccessful or a patient declines hemodynamically, direct cardioversion is the treatment of choice. Torsades de pointes or “twisting of the points'' in French, is a rare but under-appreciated risk of cardioversion therapy and accounts for a significant number of sudden cardiac death each year. A 61-year-old female with no significant past medical history presented to the Emergency Department with worsening dyspnea. An electrocardiogram showed atrial fibrillation with rapid ventricular response, and a chest X-ray was significant for bilateral pulmonary vascular congestion. Full-dose anticoagulation and diuresis were initiated with moderate improvement in symptoms. A transthoracic echocardiogram revealed biventricular systolic dysfunction with a left ventricular ejection fraction of 30%. After consultation with an electrophysiologist, the consensus was to proceed with the restoration of sinus rhythm, which would likely improve the patient’s heart failure symptoms and possibly the ejection fraction. A transesophageal echocardiogram was negative for left atrial appendage thrombus; the patient was treated with a loading dose of amiodarone and underwent successful direct current cardioversion with 200 Joules. The patient was placed on telemetry monitoring for 24 hours and was noted to have frequent premature ventricular contractions with subsequent degeneration to torsades de pointes. The patient was found unresponsive and pulseless; cardiopulmonary resuscitation was initiated with cardioversion, and return of spontaneous circulation was achieved after four minutes to normal sinus rhythm. Post-cardiac arrest electrocardiogram showed sinus bradycardia with heart-rate corrected QT interval of 592 milliseconds. The patient continued to have frequent premature ventricular contractions and required two additional cardioversions to achieve a return of spontaneous circulation with intravenous magnesium and lidocaine. An automatic implantable cardioverter-defibrillator was subsequently implanted for secondary prevention of sudden cardiac death. The backup pacing rate of the automatic implantable cardioverter-defibrillator was set higher than usual in an attempt to prevent premature ventricular contractions-induced torsades de pointes. The patient did not have any further ventricular arrhythmias after implantation of the automatic implantable cardioverter-defibrillator. Overdrive pacing is a method utilized to treat premature ventricular contractions-induced torsades de pointes by preventing a patient’s susceptibility to R on T-wave-induced ventricular arrhythmias. Pacing at a rate of 90 beats per minute succeeded in controlling the arrhythmia without the need for traumatic cardiac defibrillation. In our patient, conversion of atrial fibrillation with rapid ventricular response to normal sinus rhythm resulted in a slower heart rate and an increased probability of premature ventricular contraction occurring on the T-wave and ensuing ventricular arrhythmia. This case highlights direct current cardioversion for atrial fibrillation with rapid ventricular response resulting in persistent ventricular arrhythmia requiring an automatic implantable cardioverter-defibrillator placement with overdrive pacing to prevent a recurrence.

Keywords: refractory atrial fibrillation, atrial fibrillation, overdrive pacing, torsades de pointes

Procedia PDF Downloads 147
36 Decision Making on Smart Energy Grid Development for Availability and Security of Supply Achievement Using Reliability Merits

Authors: F. Iberraken, R. Medjoudj, D. Aissani

Abstract:

The development of the smart grids concept is built around two separate definitions, namely: The European one oriented towards sustainable development and the American one oriented towards reliability and security of supply. In this paper, we have investigated reliability merits enabling decision-makers to provide a high quality of service. It is based on system behavior using interruptions and failures modeling and forecasting from one hand and on the contribution of information and communication technologies (ICT) to mitigate catastrophic ones such as blackouts from the other hand. It was found that this concept has been adopted by developing and emerging countries in short and medium terms followed by sustainability concept at long term planning. This work has highlighted the reliability merits such as: Benefits, opportunities, costs and risks considered as consistent units of measuring power customer satisfaction. From the decision making point of view, we have used the analytic hierarchy process (AHP) to achieve customer satisfaction, based on the reliability merits and the contribution of such energy resources. Certainly nowadays, fossil and nuclear ones are dominating energy production but great advances are already made to jump into cleaner ones. It was demonstrated that theses resources are not only environmentally but also economically and socially sustainable. The paper is organized as follows: Section one is devoted to the introduction, where an implicit review of smart grids development is given for the two main concepts (for USA and Europeans countries). The AHP method and the BOCR developments of reliability merits against power customer satisfaction are developed in section two. The benefits where expressed by the high level of availability, maintenance actions applicability and power quality. Opportunities were highlighted by the implementation of ICT in data transfer and processing, the mastering of peak demand control, the decentralization of the production and the power system management in default conditions. Costs were evaluated using cost-benefit analysis, including the investment expenditures in network security, becoming a target to hackers and terrorists, and the profits of operating as decentralized systems, with a reduced energy not supplied, thanks to the availability of storage units issued from renewable resources and to the current power lines (CPL) enabling the power dispatcher to manage optimally the load shedding. For risks, we have razed the adhesion of citizens to contribute financially to the system and to the utility restructuring. What is the degree of their agreement compared to the guarantees proposed by the managers about the information integrity? From technical point of view, have they sufficient information and knowledge to meet a smart home and a smart system? In section three, an application of AHP method is made to achieve power customer satisfaction based on the main energy resources as alternatives, using knowledge issued from a country that has a great advance in energy mutation. Results and discussions are given in section four. It was given us to conclude that the option to a given resource depends on the attitude of the decision maker (prudent, optimistic or pessimistic), and that status quo is neither sustainable nor satisfactory.

Keywords: reliability, AHP, renewable energy resources, smart grids

Procedia PDF Downloads 442
35 Smart Interior Design: A Revolution in Modern Living

Authors: Fatemeh Modirzare

Abstract:

Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.

Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design

Procedia PDF Downloads 70
34 Study on Aerosol Behavior in Piping Assembly under Varying Flow Conditions

Authors: Anubhav Kumar Dwivedi, Arshad Khan, S. N. Tripathi, Manish Joshi, Gaurav Mishra, Dinesh Nath, Naveen Tiwari, B. K. Sapra

Abstract:

In a nuclear reactor accident scenario, a large number of fission products may release to the piping system of the primary heat transport. The released fission products, mostly in the form of the aerosol, get deposited on the inner surface of the piping system mainly due to gravitational settling and thermophoretic deposition. The removal processes in the complex piping system are controlled to a large extent by the thermal-hydraulic conditions like temperature, pressure, and flow rates. These parameters generally vary with time and therefore must be carefully monitored to predict the aerosol behavior in the piping system. The removal process of aerosol depends on the size of particles that determines how many particles get deposit or travel across the bends and reach to the other end of the piping system. The released aerosol gets deposited onto the inner surface of the piping system by various mechanisms like gravitational settling, Brownian diffusion, thermophoretic deposition, and by other deposition mechanisms. To quantify the correct estimate of deposition, the identification and understanding of the aforementioned deposition mechanisms are of great importance. These mechanisms are significantly affected by different flow and thermodynamic conditions. Thermophoresis also plays a significant role in particle deposition. In the present study, a series of experiments were performed in the piping system of the National Aerosol Test Facility (NATF), BARC using metal aerosols (zinc) in dry environments to study the spatial distribution of particles mass and number concentration, and their depletion due to various removal mechanisms in the piping system. The experiments were performed at two different carrier gas flow rates. The commercial CFD software FLUENT is used to determine the distribution of temperature, velocity, pressure, and turbulence quantities in the piping system. In addition to the in-built models for turbulence, heat transfer and flow in the commercial CFD code (FLUENT), a new sub-model PBM (population balance model) is used to describe the coagulation process and to compute the number concentration along with the size distribution at different sections of the piping. In the sub-model coagulation kernels are incorporated through user-defined function (UDF). The experimental results are compared with the CFD modeled results. It is found that most of the Zn particles (more than 35 %) deposit near the inlet of the plenum chamber and a low deposition is obtained in piping sections. The MMAD decreases along the length of the test assembly, which shows that large particles get deposited or removed in the course of flow, and only fine particles travel to the end of the piping system. The effect of a bend is also observed, and it is found that the relative loss in mass concentration at bends is more in case of a high flow rate. The simulation results show that the thermophoresis and depositional effects are more dominating for the small and larger sizes as compared to the intermediate particles size. Both SEM and XRD analysis of the collected samples show the samples are highly agglomerated non-spherical and composed mainly of ZnO. The coupled model framed in this work could be used as an important tool for predicting size distribution and concentration of some other aerosol released during a reactor accident scenario.

Keywords: aerosol, CFD, deposition, coagulation

Procedia PDF Downloads 144
33 Case Report: Peripartum Cardiomyopathy, a Rare but Fatal Condition in Pregnancy and Puerperium

Authors: Sadaf Abbas, HimGauri Sabnis

Abstract:

Introduction: Peripartum cardiomyopathy is a rare but potentially life-threatening condition that presents as heart failure during the last month of pregnancy or within five months postpartum. The incidence of postpartum cardiomyopathy ranges from 1 in 1300 to 1 in 15,000 pregnancies. Risk factors include multiparty, advanced maternal age, multiple pregnancies, pre-eclampsia, and chronic hypertension. Study: A 30-year-old Para3+0 presented to the Emergency Department of St’Marry Hospital, Isle of Wight, on the seventh day postpartum, with acute shortness of breath (SOB), chest pain, cough, and a temperature of 38 degrees. The risk factors were smoking and class II obesity (BMI of 40.62). The patient had mild pre-eclampsia in the last pregnancy and was on labetalol and aspirin during an antenatal period, which was stopped postnatally. There was also a history of pre-eclampsia and haemolysis, elevated liver enzymes, low platelets (HELLP syndrome) in previous pregnancies, which led to preterm delivery at 35 weeks in the second pregnancy, and the first baby was stillborn at 24 weeks. On assessment, there was a national early warning score (NEWS score) of 3, persistent tachycardia, and mild crepitation in the lungs. Initial investigations revealed an enlarged heart on chest X-ray, and a CT pulmonary angiogram indicated bilateral basal pulmonary congestion without pulmonary embolism, suggesting fluid overload. Laboratory results showed elevated CRP and normal troponin levels initially, which later increased, indicating myocardial involvement. Echocardiography revealed a severely dilated left ventricle with an ejection fraction (EF) of 31%, consistent with severely impaired systolic function. The cardiology team reviewed the patient and admitted to the Coronary Care Unit. As sign and symptoms were suggestive of fluid overload and congestive cardiac failure, management was done with diuretics, beta-blockers, angiotensin-converting enzyme inhibitors (ACE inhibitors), proton pump inhibitors, and supportive care. During admission, there was complications such as acute kidney injury, but then recovered well. Chest pain had resolved following the treatment. After being admitted for eight days, there was an improvement in the symptoms, and the patient was discharged home with a further plan of cardiac MRI and genetic testing due to a family history of sudden cardiac death. Regular appointment has been made with the Cardiology team to follow-up on the symptoms. Since discharge, the patient made a good recovery. A cardiac MRI was done, which showed severely impaired left ventricular function, ejection fraction (EF) of 38% with mild left ventricular dilatation, and no evidence of previous infarction. Overall appearance is of non-ischemic dilated cardiomyopathy. The main challenge at the time of admission was the non-availability of a cardiac radiology team, so the definitive diagnosis was delayed. The long-term implications include risk of recurrence, chronic heart failure, and, consequently, an effect on quality of life. Therefore, regular follow-up is critical in patient’s management. Conclusions: Peripartum cardiomyopathy is one of the cardiovascular diseases whose causes are still unknown yet and, in some cases, are uncontrolled. By raising awareness about the symptoms and management of this complication it will reduce morbidity and mortality rates and also the length of stay in the hospital.

Keywords: cardiomyopathy, cardiomegaly, pregnancy, puerperium

Procedia PDF Downloads 29
32 Low-Cost Aviation Solutions to Strengthen Counter-Poaching Efforts in Kenya

Authors: Kuldeep Rawat, Michael O'Shea, Maureen McGough

Abstract:

The paper will discuss a National Institute of Justice (NIJ) funded project to provide cost-effective aviation technologies and research to support counter-poaching operations related to endangered, protected, and/or regulated wildlife. The goal of this project is to provide cost-effective aviation technology and research support to Kenya Wildlife Service (KWS) in their counter-poaching efforts. In pursuit of this goal, Elizabeth City State University (ECSU) is assisting the National Institute of Justice (NIJ) in enhancing the Kenya Wildlife Service’s aviation technology and related capacity to meet its counter-poaching mission. Poaching, at its core, is systemic as poachers go to the most extreme lengths to kill high target species such as elephant and rhino. These high target wildlife species live in underdeveloped or impoverished nations, where poachers find fewer barriers to their operations. In Kenya, with fifty-nine (59) parks and reserves, spread over an area of 225,830 square miles (584,897 square kilometers) adequate surveillance on the ground is next to impossible. Cost-effective aviation surveillance technologies, based on a comprehensive needs assessment and operational evaluation, are needed to curb poaching and effectively prevent wildlife trafficking. As one of the premier law enforcement Air Wings in East Africa, KWS plays a crucial role in Kenya, not only in counter-poaching and wildlife conservation efforts, but in aerial surveillance, counterterrorism and national security efforts as well. While the Air Wing has done, a remarkable job conducting aerial patrols with limited resources, additional aircraft and upgraded technology should significantly advance the Air Wing’s ability to achieve its wildlife protection mission. The project includes: (i) Needs Assessment of the KWS Air Wing, to include the identification of resources, current and prospective capacity, operational challenges and priority goals for expansion, (ii) Acquisition of Low-Cost Aviation Technology to meet priority needs, and (iii) Operational Evaluation of technology performance, with a focus on implementation and effectiveness. The Needs Assessment reflects the priorities identified through two site visits to the KWS Air Wing in Nairobi, Kenya, as well as field visits to multiple national parks receiving aerial support and interviewing/surveying KWS Air wing pilots and leadership. Needs Assessment identified some immediate technology needs that includes, GPS with upgrades, including weather application, Night flying capabilities, to include runway lights and night vision technology, Cameras and surveillance equipment, Flight tracking system and/or Emergency Position Indicating Radio Beacon, Lightweight ballistic-resistant body armor, and medical equipment, to include a customized stretcher and standard medical evacuation equipment. Results of this assessment, along with significant input from the KWS Air Wing, will guide the second phase of this project: technology acquisition. Acquired technology will then be evaluated in the field, with a focus on implementation and effectiveness. Results will ultimately be translated for any rural or tribal law enforcement agencies with comparable aerial surveillance missions and operational environments, and jurisdictional challenges, seeking to implement low-cost aviation technology. Results from Needs Assessment phase, including survey results and our ongoing technology acquisition and baseline operational evaluation will be discussed in the paper.

Keywords: aerial surveillance mission, aviation technology, counter-poaching, wildlife protection

Procedia PDF Downloads 275
31 Pulmonary Complication of Chronic Liver Disease and the Challenges Identifying and Managing Three Patients

Authors: Aidan Ryan, Nahima Miah, Sahaj Kaur, Imogen Sutherland, Mohamed Saleh

Abstract:

Pulmonary symptoms are a common presentation to the emergency department. Due to a lack of understanding of the underlying pathophysiology, chronic liver disease is not often considered a cause of dyspnea. We present three patients who were admitted with significant respiratory distress secondary to hepatopulmonary syndrome, portopulmonary hypertension, and hepatic hydrothorax. The first is a 27-year-old male with a 6-month history of progressive dyspnea. The patient developed a severe type 1 respiratory failure with a PaO₂ of 6.3kPa and was escalated to critical care, where he was managed with non-invasive ventilation to maintain oxygen saturation. He had an agitated saline contrast echocardiogram, which showed the presence of a possible shunt. A CT angiogram revealed significant liver cirrhosis, portal hypertension, and large para esophageal varices. Ultrasound of the abdomen showed coarse liver echo patter and enlarged spleen. Along with these imaging findings, his biochemistry demonstrated impaired synthetic liver function with an elevated international normalized ratio (INR) of 1.4 and hypoalbuminaemia of 28g/L. The patient was then transferred to a tertiary center for further management. Further investigations confirmed a shunt of 56%, and liver biopsy confirmed cirrhosis suggestive of alpha-1-antitripsyin deficiency. The findings were consistent with a diagnosis of hepatopulmonary syndrome, and the patient is awaiting a liver transplant. The second patient is a 56-year-old male with a 12-month history of worsening dyspnoea, jaundice, confusion. His medical history included liver cirrhosis, portal hypertension, and grade 1 oesophageal varices secondary to significant alcohol excess. On admission, he developed a type 1 respiratory failure with PaO₂ of 6.8kPa requiring 10L of oxygen. CT pulmonary angiogram was negative for pulmonary embolism but showed evidence of chronic pulmonary hypertension, liver cirrhosis, and portal hypertension. An echocardiogram revealed a grossly dilated right heart with reduced function, pulmonary and tricuspid regurgitation, and pulmonary artery pressures estimated at 78mmHg. His biochemical markers showed impaired synthetic liver function with an INR of 3.2, albumin of 29g/L, along with raised bilirubin of 148mg/dL. During his long admission, he was managed with diuretics with little improvement. After three weeks, he was diagnosed with portopulmonary hypertension and was commenced on terlipressin. This resulted in successfully weaning off oxygen, and he was discharged home. The third patient is a 61-year-old male who presented to the local ambulatory care unit for therapeutic paracentesis on a background of decompensated liver cirrhosis. On presenting, he complained of a 2-day history of worsening dyspnoea and a productive cough. Chest x-ray showed a large pleural effusion, increasing in size over the previous eight months, and his abdomen was visibly distended with ascitic fluid. Unfortunately, the patient deteriorated, developing a larger effusion along with an increase in oxygen demand, and passed away. Without underlying cardiorespiratory disease, in the presence of a persistent pleural effusion with underlying decompensated cirrhosis, he was diagnosed with hepatic hydrothorax. While each presented with dyspnoea, the cause and underlying pathophysiology differ significantly from case to case. By describing these complications, we hope to improve awareness and aid prompt and accurate diagnosis, vital for improving outcomes.

Keywords: dyspnea, hepatic hydrothorax, hepatopulmonary syndrome, portopulmonary syndrome

Procedia PDF Downloads 121
30 The Regulation of the Cancer Epigenetic Landscape Lies in the Realm of the Long Non-coding RNAs

Authors: Ricardo Alberto Chiong Zevallos, Eduardo Moraes Rego Reis

Abstract:

Pancreatic adenocarcinoma (PDAC) patients have a less than 10% 5-year survival rate. PDAC has no defined diagnostic and prognostic biomarkers. Gemcitabine is the first-line drug in PDAC and several other cancers. Long non-coding RNAs (lncRNAs) contribute to the tumorigenesis and are potential biomarkers for PDAC. Although lncRNAs aren’t translated into proteins, they have important functions. LncRNAs can decoy or recruit proteins from the epigenetic machinery, act as microRNA sponges, participate in protein translocation through different cellular compartments, and even promote chemoresistance. The chromatin remodeling enzyme EZH2 is a histone methyltransferase that catalyzes the methylation of histone 3 at lysine 27, silencing local expression. EZH2 is ambivalent, it can also activate gene expression independently of its histone methyltransferase activity. EZH2 is overexpressed in several cancers and interacts with lncRNAs, being recruited to a specific locus. EZH2 can be recruited to activate an oncogene or silence a tumor suppressor. The lncRNAs misregulation in cancer can result in the differential recruitment of EZH2 and in a distinct epigenetic landscape, promoting chemoresistance. The relevance of the EZH2-lncRNAs interaction to chemoresistant PDAC was assessed by Real Time quantitative PCR (RT-qPCR) and RNA Immunoprecipitation (RIP) experiments with naïve and gemcitabine-resistant PDAC cells. The expression of several lncRNAs and EZH2 gene targets was evaluated contrasting naïve and resistant cells. Selection of candidate genes was made by bioinformatic analysis and literature curation. Indeed, the resistant cell line showed higher expression of chemoresistant-associated lncRNAs and protein coding genes. RIP detected lncRNAs interacting with EZH2 with varying intensity levels in the cell lines. During RIP, the nuclear fraction of the cells was incubated with an antibody for EZH2 and with magnetic beads. The RNA precipitated with the beads-antibody-EZH2 complex was isolated and reverse transcribed. The presence of candidate lncRNAs was detected by RT-qPCR, and the enrichment was calculated relative to INPUT (total lysate control sample collected before RIP). The enrichment levels varied across the several lncRNAs and cell lines. The EZH2-lncRNA interaction might be responsible for the regulation of chemoresistance-associated genes in multiple cancers. The relevance of the lncRNA-EZH2 interaction to PDAC was assessed by siRNA knockdown of a lncRNA, followed by the analysis of the EZH2 target expression by RT-qPCR. The chromatin immunoprecipitation (ChIP) of EZH2 and H3K27me3 followed by RT-qPCR with primers for EZH2 targets also assess the specificity of the EZH2 recruitment by the lncRNA. This is the first report of the interaction of EZH2 and lncRNAs HOTTIP and PVT1 in chemoresistant PDAC. HOTTIP and PVT1 were described as promoting chemoresistance in several cancers, but the role of EZH2 is not clarified. For the first time, the lncRNA LINC01133 was detected in a chemoresistant cancer. The interaction of EZH2 with LINC02577, LINC00920, LINC00941, and LINC01559 have never been reported in any context. The novel lncRNAs-EZH2 interactions regulate chemoresistant-associated genes in PDAC and might be relevant to other cancers. Therapies targeting EZH2 alone weren’t successful, and a combinatorial approach also targeting the lncRNAs interacting with it might be key to overcome chemoresistance in several cancers.

Keywords: epigenetics, chemoresistance, long non-coding RNAs, pancreatic cancer, histone modification

Procedia PDF Downloads 96
29 Mining and Ecological Events and its Impact on the Genesis and Geo-Distribution of Ebola Outbreaks in Africa

Authors: E Tambo, O. O. Olalubi, E. C. Ugwu, J. Y. Ngogang

Abstract:

Despite the World Health Organization (WHO) declaration of international health emergency concern, the status quo of responses and efforts to stem the worst-recorded Ebola epidemic Ebola outbreak is still precariously inadequate in most of the affected in West. Mining natural resources have been shown to play a key role in both motivating and fuelling ethnic, civil and armed conflicts that have plagued a number of African countries over the last decade. Revenues from the exploitation of natural resources are not only used in sustaining the national economy but also armies, personal enrichment and building political support. Little is documented on the mining and ecological impact on the emergence and geographical distribution of Ebola in Africa over time and space. We aimed to provide a better understanding of the interconnectedness among issues of mining natural, resource management, mining conflict and post-conflict on Ebola outbreak and how wealth generated from abundant natural resources could be better managed in promoting research and development towards strengthening environmental, socioeconomic and health systems sustainability on Ebola outbreak and other emerging diseases surveillance and responses systems prevention and control, early warning alert, durable peace and sustainable development rather than to fuel conflicts, resurgence and emerging diseases epidemics in the perspective of community and national/regional approach. Our results showed the first assessment of systematic impact of all major minerals conflict events diffusion over space and time and mining activities on nine Ebola genesis and geo-distribution in affected countries across Africa. We demonstrate how, where and when mining activities in Africa increase ecological degradation, conflicts at the local level and then spreads violence across territory and time by enhancing the financial capacities of fighting groups/ethnics and diseases onset. In addition, led process of developing minimum standards for natural resource governance; improving governmental and civil society capacity for natural resource management, including the strengthening of monitoring and enforcement mechanisms; understanding the post-mining and conflicts community or national reconstruction and rehabilitation programmes in strengthening or developing community health systems and regulatory mechanisms. In addition the quest for the control over these resources and illegal mining across the landscape forest incursion provided increase environmental and ecological instability and displacement and disequilibrium, therefore affecting the intensity and duration of mining and conflict/wars and episode of Ebola outbreaks over time and space. We highlight the key findings and lessons learnt in promoting country or community-led process in transforming natural resource wealth from a peace liability to a peace asset. The imperative necessity for advocacy and through facilitating intergovernmental deliberations on critical issues and challenges affecting Africa community transforming exploitation of natural resources from a peace liability to outbreak prevention and control. The vital role of mining in increasing government revenues and expenditures, equitable distribution of wealth and health to all stakeholders, in particular local communities requires coordination, cooperative leadership and partnership in fostering sustainable developmental initiatives from mining context to outbreak and other infectious diseases surveillance responses systems in prevention and control, and judicious resource management.

Keywords: mining, mining conflicts, mines, ecological, Ebola, outbreak, mining companies, miners, impact

Procedia PDF Downloads 301
28 Benefits of Environmental Aids to Chronobiology Management and Its Impact on Depressive Mood in an Operational Setting

Authors: M. Trousselard, D. Steiler, C. Drogou, P. van-Beers, G. Lamour, S. N. Crosnier, O. Bouilland, P. Dubost, M. Chennaoui, D. Léger

Abstract:

According to published data, undersea navigation for long periods (nuclear-powered ballistic missile submarine, SSBN) constitutes an extreme environment in which crews are subjected to multiple stresses, including the absence of natural light, illuminance below 1,000 lux, and watch schedules that do not respect natural chronobiological rhythms, for a period of 60-80 days. These stresses seem clearly detrimental to the submariners’ sleep, with consequences for their affective (seasonal affective disorder-like) and cognitive functioning. In the long term, there are abundant publications regarding the consequences of sleep disruption for the occurrence of organic cardiovascular, metabolic, immunological or malignant diseases. It seems essential to propose countermeasures for the duration of the patrol in order to reduce the negative physiological effects on the sleep and mood of submariners. Light therapy, the preferred treatment for dysfunctions of the internal biological clock and the resulting seasonal depression, cannot be used without data to assist knowledge of submariners’ chronobiology (melatonin secretion curve) during patrols, given the unusual characteristics of their working environment. These data are not available in the literature. The aim of this project was to assess, in the course of two studies, the benefits of two environmental techniques for managing chronobiological stress: techniques for optimizing potential (TOP; study 1)3, an existing programme to help in the psychophysiological regulation of stress and sleep in the armed forces, and dawn and dusk simulators (DDS, study 2). For each experiment, psychological, physiological (sleep) or biological (melatonin secretion) data were collected on D20 and D50 of patrol. In the first experiment, we studied sleep and depressive distress in 19 submariners in an operational setting on board an SSBM during a first patrol, and assessed the impact of TOP on the quality of sleep and depressive distress in these same submariners over the course of a second patrol. The submariners were trained in TOP between the two patrols for a 2-month period, at a rate of 1 h of training per week, and assigned daily informal exercises. Results show moderate disruptions in sleep pattern and duration associated with the intensity of depressive distress. The use of TOP during the following patrol improved sleep and depressive mood only in submariners who regularly practiced the techniques. In light of these limited benefits, we assessed, in a second experiment, the benefits of DDS on chronobiology (daily secretion of melatonin) and depressive distress. Ninety submariners were randomly allocated to two groups, group 1 using DDS daily, and group 2 constituting the control group. Although the placebo effect was not controlled, results showed a beneficial effect on chronobiology and depressive mood for submariners with a morning chronotype. Conclusions: These findings demonstrate the difficulty of practicing the tools of psychophysiological management in real life. They raise the question of the subjects’ autonomy with respect to using aids that involve regular practice. It seems important to study autonomy in future studies, as a cognitive resource resulting from the interaction between internal positive resources and “coping” resources, to gain a better understanding of compliance problems.

Keywords: chronobiology, light therapy, seasonal affective disorder, sleep, stress, stress management, submarine

Procedia PDF Downloads 456
27 Design, Implementation and Evaluation of Health and Social Justice Trainings in Nigeria

Authors: Juliet Sorensen, Anna Maitland

Abstract:

Introduction: Characterized by lack of water and sanitation, food insecurity, and low access to hospitals and clinics, informal urban settlements in Lagos, Nigeria have very poor health outcomes. With little education and a general inability to demand basic rights, these communities are often disempowered and isolated from understanding, claiming, or owning their health needs. Utilizing community-based participatory research characterized by interdisciplinary, cross-cultural partnerships, evidence-based assessments, and both primary and secondary source research, a holistic health education and advocacy program was developed in Lagos to address health barriers for targeted communities. This includes a first of its kind guide formulated to teach community-based health educators how to transmit health information to low-literacy Nigerian audiences while supporting behavior change models and social support mechanisms. This paper discusses the interdisciplinary contributions to developing a health education program while also looking at the need for greater beneficiary ownership and implementation of health justice and access. Methods: In March 2016, an interdisciplinary group of medical, legal, and business graduate students and faculty from Northwestern University conduced a Health Needs Assessment (HNA) in Lagos with a partner and a local non-governmental organization. The HNA revealed that members of informal urban communities in Lagos were lacking basic health literacy, but desired to remedy this lacuna. Further, the HNA revealed that even where the government mandates specific services, many vulnerable populations are unable to access these services. The HNA concluded that a program focused on education, advocacy, and organizing around anatomy, maternal and sexual health, infectious disease and malaria, HIV/AIDS, emergency care, and water and sanitation would respond to stated needs while also building capacity in communities to address health barriers. Results: Based on the HNA, including both primary and secondary source research on integrated health education approaches and behavior change models and responsive, adaptive material development, a holistic program was developed for the Lagos partners and first implemented in November 2016. This program trained community-nominated health educators in adult, low-literacy, knowledge exchange approaches, utilizing information identified by communities as a priority. After a second training in March 2017, these educators will teach community-based groups and will support and facilitate behavior change models and peer-support methods around basic issues like hand washing and disease transmission. They will be supported by community paralegals who will help ensure that newly trained community groups can act on education around access, such as receiving free vaccinations, maternal health care, and HIV/AIDS medicines. Materials will continue to be updated as needs and issues arise, with a focus on identifying best practices around health improvements that can be shared across these partner communities. Conclusion: These materials are the first of their kind, and address a void of health information and understanding pervasive in informal-urban Lagos communities. Initial feedback indicates high levels of commitment and interest, as well as investment by communities in these materials, largely because they are responsive, targeted, and build community capacity. This methodology is an important step in dignity-based health justice solutions, albeit in the process of refinement.

Keywords: community health educators, interdisciplinary and cross cultural partnerships, health justice and access, Nigeria

Procedia PDF Downloads 248
26 Robust Decision Support Framework for Addressing Uncertainties in Water Resources Management in the Mekong

Authors: Chusit Apirumanekul, Chayanis Krittasudthacheewa, Ratchapat Ratanavaraha, Yanyong Inmuong

Abstract:

Rapid economic development in the Lower Mekong region is leading to changes in water quantity and quality. Changes in land- and forest-use, infrastructure development, increasing urbanization, migration patterns and climate risks are increasing demands for water, within various sectors, placing pressure on scarce water resources. Appropriate policies, strategies, and planning are urgently needed for improved water resource management. Over the last decade, Thailand has experienced more frequent and intense drought situations, affecting the level of water storage in reservoirs along with insufficient water allocation for agriculture during the dry season. The Huay Saibat River Basin, one of the well-known water-scarce areas in the northeastern region of Thailand, is experiencing ongoing water scarcity that affects both farming livelihoods and household consumption. Drought management in Thailand mainly focuses on emergency responses, rather than advance preparation and mitigation for long-term solutions. Despite many efforts from local authorities to mitigate the drought situation, there is yet no long-term comprehensive water management strategy, that integrates climate risks alongside other uncertainties. This paper assesses the application in the Huay Saibat River Basin, of the Robust Decision Support framework, to explore the feasibility of multiple drought management policies; including a shift in cropping season, in crop changes, in infrastructural operations and in the use of groundwater, under a wide range of uncertainties, including climate and land-use change. A series of consultative meetings were organized with relevant agencies and experts at the local level, to understand and explore plausible water resources strategies and identify thresholds to evaluate the performance of those strategies. Three different climate conditions were identified (dry, normal and wet). Other non-climatic factors influencing water allocation were further identified, including changes from sugarcane to rubber, delaying rice planting, increasing natural retention storage and using groundwater to supply demands for household consumption and small-scale gardening. Water allocation and water use in various sectors, such as in agriculture, domestic, industry and the environment, were estimated by utilising the Water Evaluation And Planning (WEAP) system, under various scenarios developed from the combination of climatic and non-climatic factors mentioned earlier. Water coverage (i.e. percentage of water demand being successfully supplied) was defined as a threshold for water resource strategy assessment. Thresholds for different sectors (agriculture, domestic, industry, and environment) were specified during multi-stakeholder engagements. Plausible water strategies (e.g. increasing natural retention storage, change of crop type and use of groundwater as an alternative source) were evaluated based on specified thresholds in 4 sectors (agriculture, domestic, industry, and environment) under 3 climate conditions. 'Business as usual' was evaluated for comparison. The strategies considered robust, emerge when performance is assessed as successful, under a wide range of uncertainties across the river basin. Without adopting any strategy, the water scarcity situation is likely to escalate in the future. Among the strategies identified, the use of groundwater as an alternative source was considered a potential option in combating water scarcity for the basin. Further studies are needed to explore the feasibility for groundwater use as a potential sustainable source.

Keywords: climate change, robust decision support, scenarios, water resources management

Procedia PDF Downloads 170