Search results for: emotional intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3110

Search results for: emotional intelligence

1280 Virtual Reality for Social Impact: Exploring the Potential of a 360-degree VR Documentary ‘The Hidden’ based on Bonded Laborers in India

Authors: Kannan Subramani, Twinkle Sara Joseph

Abstract:

Virtual Reality (VR) has emerged as a promising tool to create immersive experiences for social impact. This study examines the capacity of virtual reality (VR) as a means of creating social change. It does so by analyzing a 360-degree VR documentary called ‘The Hidden,’ which specifically addresses the problem of bonded labour in India. Bonded labour is a contemporary manifestation of slavery in which individuals are coerced into working to repay debts that can endure for many generations. The documentary seeks to enhance awareness and elicit empathy towards this matter. The study utilizes a combination of qualitative and quantitative methodologies to investigate the influence of ‘The Hidden’ on the audience's views and their inclination to combat bonded labour. A total of ninety-six individuals used Oculus Quest 2 VR headsets to watch the documentary and subsequently engaged in interviews to discuss their encounters. The data underwent analysis using linear regression to discover any noteworthy trends in the replies. The results indicate that virtual reality (VR) has the potential to greatly amplify viewers' emotional involvement and facilitate societal transformation by offering immersive, direct encounters with crucial social matters.

Keywords: virtual reality, societal influence, indentured servitude, 360-degree virtual reality documentary, immersive media, societal transformation

Procedia PDF Downloads 17
1279 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography

Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu

Abstract:

Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.

Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli

Procedia PDF Downloads 258
1278 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth

Authors: Caroline Atef Shoukry Tadros

Abstract:

Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.

Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science

Procedia PDF Downloads 76
1277 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 325
1276 Inclusive Education in Jordanian Double-Shift Schools: Attitudes of Teacher and Students

Authors: David Ross Cameron

Abstract:

In an attempt to alleviate the educational planning problem, double-shift schools have been created throughout various regions in Jordan, namely communities closer to the Syrian border, where a large portion of the refugee population settled, allowing Jordanians to attend the morning-shift and Syrians to attend the afternoon-shift. Subsequently, overcrowded classrooms have added a significant amount of stress on school facilities and teacher capacities. Established national policies and the implementation of inclusive educational practices have been jeopardized. In particular, teachers’ and student’s attitudes of the importance of inclusive education provisions in the classroom have deteriorated. To have a more comprehensive understanding of the current situation and possible plan for intervention, a focus study was carried out at a double-shift Jordanian/Syrian girls’ public school in Irbid, Jordan. Interviews and surveys of 29 students with physical, learning, emotional and behavioral disabilities, 33 students without any special needs and nine teachers were included with a mixed-method social research approach to highlight the current attitudes that students and teachers held and factors that contributed to shaping their inclinations and beliefs of inclusive education.

Keywords: capacity building, development, double-shift, Irbid, inclusive education, Jordan, pedagogy, planning, policy, refugee, special education, special needs, vulnerable population

Procedia PDF Downloads 260
1275 The Consumption of Limited Edition Products in Soccer Clubs of Southern Brazil

Authors: Eduardo Wiebbelling, Marcelo Curth

Abstract:

Among the sporting modalities, soccer stands out as the one that reached the world's largest spray today, moving large monetary sums. However, the modality presents potential to be explored by the agents inserted in it. New advertising campaigns have overwhelmed the media and the consumption of sports goods, especially soccer, has increased over the years by having experts increase their marketing projects linked to this specific area. However, little is studied about consumer behavior regarding the purchase of specific products linked to the club. In this sense, the research aims to understand the reasons that lead the fans of two rival clubs in southern Brazil to consume limited edition products from their respective soccer clubs. The method used was an in-depth exploratory survey with thirty memberships and non-memberships. The results showed that in the group of memberships the main motivations are emotional, of historical rescue from memories and feelings that arouse in the fan when they remember their idols and the titles conquered by the club. In the group of non-memberships, a more rational and objective view was perceived, involving aspects such as promotion, utility and extra benefits. Finally, it is realized that fans generally do not value the products to be limited edition. It is believed that this is due to the fact that the products are usually marketed at a higher price when compared to similar products offered on a regular basis.

Keywords: consumer behavior, limited edition, soccer, sports marketing

Procedia PDF Downloads 342
1274 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 296
1273 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations

Authors: Sarra Hasni, Sami Faiz

Abstract:

In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.

Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation

Procedia PDF Downloads 32
1272 Obstetric Violence Consequences And Coping Strategies: Insights Through The Voices Of Arab And Jewish Women In Israel

Authors: Dganit Sharon, Raghda Alnabilsy

Abstract:

The goal of this qualitative research was to sound the voices of Jewish and Arab women in Israel who had experienced obstetric violence, to learn the consequences of the violence to them on different levels and over time, and to present their coping strategies from their perspective. Another goal was to expand the research knowledge on an issue that has not been studied among Arab and Jewish women in Israel. The premise of this study is the feminist approach that aims to promote human rights, and to eradicate phenomena related to cultural, structural, gender and patriarchal structures of women, their bodies, and their health. The research was based on the qualitative-constructivist methodology, by means of thematic analysis of 20 in-depth semi-structured interviews. Two main themes emerged from the analysis. First, the physical and emotional consequences of obstetric violence, consequences to spousal relationships, and mistrust of the health system and service providers. Second, women’s coping strategies with obstetric violence that included repression and avoidance as a way of coping with the pain and trauma of the abuse; garnering inner strengths, resilience, knowledge and awareness of the delivery process; recruiting and relying on external help; sharing on social media, and discussions with other women who had similar experiences; or reaching out to therapists / legal aid / public complaints.

Keywords: obstetric violence, Jewish and arab women in israel, consequences, coping strategies, gender-related perspective

Procedia PDF Downloads 72
1271 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 301
1270 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach

Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim

Abstract:

De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation

Keywords: De novo malignancy, bilirubin, data mining, transplantation

Procedia PDF Downloads 107
1269 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm

Procedia PDF Downloads 446
1268 Digital Transformation of Payment Systems Using Field Service Management

Authors: Hamze Torabian, Mohammad Mehrabioun Mohammadi

Abstract:

Like many other industries, the payment industry has been affected by digital transformation. The importance of digital transformation in the payment industry is very crucial. Because the payment industry is considered a leading industry in digital and emerging technologies, and the digitalization of other industries such as retail, health, and telecommunication, it also depends on the growth rate of digitalized payment systems. One of the technological innovations in service management is Field Service Management (FSM). Despite the widespread use of FSM in various industries such as petrochemical, health, maintenance, etc., this technology can also be recruited in the payment industry, transforming the payment industry into a more agile and efficient one. Accordingly, the present study pays close attention to the application of FSM in the payment industry. Given the importance of merchants' bargaining power in the payment industry, this study aims to use FSM in the digital transformation initiative with a targeted focus on providing real-time services to merchants. The research method consists of three parts. Firstly, conducting the review of past research, applications of FSM in the payment industry are considered. In the next step, merchants' benefits such as emotional, functional, economic, and social benefits in using FSM are identified using in-depth interviews and content analysis methods. The related business model in helping the payment industry transforming into a more agile and efficient industry is considered in the following step. The results revealed the 10 main pillars required to realize the digital transformation of payment systems using FSM.

Keywords: digital transformation, field service management, merchant support systems, payment industry

Procedia PDF Downloads 176
1267 Steps to Create a Wine Tourism Product Based on Storytelling

Authors: Yorgos Darlas

Abstract:

This original research aims at creating a wine tourism experience specially designed for Thessaloniki, based on retsina, a traditional Greek wine produced continuously since 5400 BC. Wine is a staple of the Greek dinner table, and this is particularly true for Thessaloniki, a city with a rich culinary tradition member of the UNESCO Creative Cities Network for gastronomy. Our methodology is based on historical and folklore research in order to shed light on the history and culture around the production and enjoyment of wine. In addition, we use quantitative and qualitative market research with the aim of recording modern habits and trends related to wine enjoyment. The above research has revealed the habits, rules, and rituals of the people of Thessaloniki, demonstrating the close link between the city’s culinary heritage and retsina. Thanks to this close link, the people of the city have a strong emotional bond with retsina, always ready to share a relevant story loaded with memories. Based on the findings of the research, our aim is to create a new wine tourism product for Thessaloniki based on storytelling. This wine tourism experience will provide visitors with the opportunity to discover the city through the personal stories of locals. At the same time, they will be acquainted with the history and the culture of retsina by visiting landmarks associated with its production and consumption and discovering the city’s multifaceted gastronomic heritage through pairings with retsina.

Keywords: retsina, Thessaloniki, wine tourism, marketing, storytelling

Procedia PDF Downloads 78
1266 The Role of Psychology in Language Teaching

Authors: Elahesadat Emrani

Abstract:

The role of psychology in language teaching has gained significant recognition and importance in recent years. This article explores the intersection of psychology and language teaching and highlights the profound impact that psychological principles and theories have on language learning and instruction. It discusses how an understanding of learners' cognitive processes, motivations, and affective factors can inform instructional strategies, curriculum design, and assessment practices. Additionally, the article sheds light on the importance of considering individual differences and diverse learning styles within the psychological framework of language teaching. This article emphasizes the significance of incorporating psychological insights into language classrooms to create a supportive and effective learning environment. Furthermore, it acknowledges the role of psychology in fostering learner autonomy, enhancing learner motivation, promoting effective communication, and facilitating language acquisition. Overall, this article underscores the necessity of integrating psychology into language teaching practices to optimize learning outcomes and nurture learners' linguistic and socio-emotional development. So far, no complete research has been done in this regard, and this article deals with this important issue for the first time. The research method is based on qualitative method and case studies, and the role of psychological principles in strengthening the learner's independence, increasing motivation, and facilitating language learning. Also, the optimization of learning results and fostering language and social development are among the findings of the research.

Keywords: language, teaching, psychology, methods

Procedia PDF Downloads 70
1265 Exploratory Study on Psychosocial Influences of Spinal Cord Injury to Patients: Basis for Medical Social Work Intervention Plan

Authors: Delies L. Alejo

Abstract:

This study explores the psychosocial influences of Spinal Cord Injury (SCI) on patients in the Philippine Orthopedic Center Hospital in the Philippines, examining their social functioning and proposing interventions for reintegration. Quantitative data were collected through surveys using a concurrent triangulation research design, while qualitative insights were obtained via interviews. Findings revealed significant psychosocial challenges among SCI patients, impacting relationships, family dynamics, work, friendships, parenting, education, and self-care. Demographic profiles indicated variations in psychosocial functioning. The study underscores the importance of tailored interventions for SCI patients based on age, marital status, gender, education, and occupation. Triangulation of data enhanced understanding, revealing four themes: ‘Resilient Navigation of Intimacy and Connection,’ ‘Family Dynamics and Care Challenges,’ ‘Occupational Hurdles and Work Engagement,’ and ‘Social and Community Integration Obstacles.’ The study proposes a holistic intervention plan, addressing emotional challenges, creating support networks, implementing vocational rehabilitation, promoting community engagement, and sustaining collaboration with healthcare professionals.

Keywords: spinal cord injury, psychosocial influences, social functioning, concurrent triangulation, intervention plan

Procedia PDF Downloads 52
1264 Using AI Based Software as an Assessment Aid for University Engineering Assignments

Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth

Abstract:

As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.

Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)

Procedia PDF Downloads 127
1263 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 135
1262 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip

Authors: Sina Saadati

Abstract:

Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.

Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence

Procedia PDF Downloads 106
1261 The Effectiveness of Anti-Smoking Campaign towards Young Adults (A Case Study in Bandar Sunway Institution)

Authors: Intan Abida Abu Bakar

Abstract:

This paper investigates the effectiveness of anti-smoking campaign towards youth in Bandar Sunway institution. Based from the Ministry of Health, Malaysia and the national newspapers in the country reveal that the campaigns were not effective enough to curb smoking in Malaysia. In the past, from the year 2004 to 2014, the Malaysian Health Ministry were determined to curb the smoking issue that were arising in the country especially among the youths. “Tak Nak” smoking campaign was launched and broadcast on all forms of media in Malaysia. The campaigns are to educate and create an awareness to encourage people to quit smoking besides discourage non-smokers from starting to smoke. The main objective of this research is to investigate and study the concept, storyline and appeal of ‘Tak Nak Merokok’ advertisement campaigns from 2004 to 2014. Data from questionnaires and focus group discussions indicate that the advertisement contained fear and emotional appeal with good concept and storyline are more appealing and effective compared to the humour and informational rational appeal. This research could be a guideline for advertisers who want to come up with creative anti-smoking campaigns in Malaysia. In the future, the focus group can be expanded and more feedbacks and reviews could contribute to marketers and advertisers to determine the most suitable advertisements to tackle this smoking issue.

Keywords: effectiveness, anti-smoking campaign, young adults, smoking

Procedia PDF Downloads 259
1260 An Evaluation of Self-Esteem in Physically Disabled Adults Who Particapated in Sports

Authors: Ummuhan Bas Aslan, Sehmus Aslan

Abstract:

Objective: Physical disability includes impairments, activity limitations, and participation restrictions. Individuals with physical disabilities have lower self-esteem compared non-disabled people. Self-esteem is widely accepted as a key indicator of emotional stability and adjustment to life demands. There is very limited study to investigate the effect of sports on self-esteem in physically disabled people. The aim of the present study was to evaluate of self-esteem in physically disabled adults who participated in sports. Methods: Fifty physically disabled adults who participated in sports aged between 18 to 35 years participated in the study. Self-esteem of the participants was assessed by Rosenberg Self-Esteem Scale. The scale is a 10-item measure of global self-esteem. The higher score on the scale indicates greater self-esteem. Scores between 15 and 25 are the normal range of and scores below 15 suggest low self-esteem. Results: Average age of participants was 25.18±6.20 years. 58% of the participants were 23 (46.0%) of the participants were wheelchair users, 8 (16.0%) were mobile with a walking aid and 19 (38.0%) were mobile without a walking aid. The length of physically disabled adults had been participating in their sports (basketball: 54%, athleticism: 32%, volleyball: 6%, cycling: 6%) was 4.94±3.86 years. The average Rosenberg Self-Esteem Scale score of the participants was 21.88 ±4.34. Conclusions: Our results suggest that physically disabled adults who participated in sports have the healthy level of self-esteem. Participating in sports could have positive effects on self-esteem in that physically, disabled people. There is needed future comparative studies on this topic.

Keywords: adult, physical disability, self-esteem, sport

Procedia PDF Downloads 268
1259 The Game of Dominoes as Teaching-Learning Method of Basic Concepts of Differential Calculus

Authors: Luis Miguel Méndez Díaz

Abstract:

In this article, a mathematics teaching-learning strategy will be presented, specifically differential calculus in one variable, in a fun and competitive space in which the action on the part of the student is manifested and not only the repetition of information on the part of the teacher. Said action refers to motivating, problematizing, summarizing, and coordinating a game of dominoes whose thematic cards are designed around the basic and main contents of differential calculus. The strategies for teaching this area are diverse and precisely the game of dominoes is one of the most used strategies in the practice of mathematics because it stimulates logical reasoning and mental abilities. The objective on this investigation is to identify the way in which the game of dominoes affects the learning and understanding of fundamentals concepts of differential calculus in one variable through experimentation carried out on students of the first semester of the School of Engineering and Sciences of the Technological Institute of Monterrey Campus Querétaro. Finally, the results of this study will be presented and the use of this strategy in other topics around mathematics will be recommended to facilitate logical and meaningful learning in students.

Keywords: collaborative learning, logical-mathematical intelligence, mathematical games, multiple intelligences

Procedia PDF Downloads 86
1258 Spatial Optimization of Riverfront Street Based on Inclusive Design

Authors: Lianxue Shi

Abstract:

Riverfront street has the dual characteristics of street space and waterfront space, which is not only a vital place for residents to travel and communicate but also a high-frequency space for people's leisure and entertainment. However, under the development of cities and towns pursuing efficiency, riverfront streets appear to have a variety of problems, such as a lack of multifunctionality, insufficient facilities, and loss of characteristics, which fail to meet the needs of various groups of people, and their inclusiveness is facing a great challenge. It is, therefore, evident that the optimization of riverfront street space from an inclusivity perspective is important to the establishment of a human-centered, high-quality urban space. Therefore, this article starts by exploring the interactive relationship between inclusive design and street space. Based on the analysis of the characteristics of the riverfront street space and people's needs, it proposes the four inclusive design orientations of natural inclusion, group inclusion, spatial inclusion, and social inclusion. It then constructs a design framework for the inclusive optimization of riverfront street space, aiming to create streets that are “safe and accessible, diverse and shared, distinctive and friendly, green and sustainable”. Riverfront streets in Wansheng District, Chongqing, are selected as a practice case, and specific strategies are put forward in four aspects: the creation of an accessible slow-traffic system, the provision of diversified functional services, the reshaping of emotional bonds and the integration of ecological spaces.

Keywords: inclusiveness design, riverfront street, spatial optimization, street spaces

Procedia PDF Downloads 40
1257 An Aesthetic Spatial Turn - AI and Aesthetics in the Physical, Psychological, and Symbolic Spaces of Brand Advertising

Authors: Yu Chen

Abstract:

In line with existing philosophical approaches, this research proposes a conceptual model with an innovative spatial vision and aesthetic principles for Artificial Intelligence (AI) application in brand advertising. The model first identifies the major constituencies in contemporary advertising on three spatial levels—physical, psychological, and symbolic. The model further incorporates the relationships among AI, aesthetics, branding, and advertising and their interactions with the major actors in all spaces. It illustrates that AI may follow the aesthetic principles-- beauty, elegance, and simplicity-- to reinforce brand identity and consistency in advertising, to collaborate with stakeholders, and to satisfy different advertising objectives on each level. It proposes that, with aesthetic guidelines, AI may assist consumers to emerge into the physical, psychological, and symbolic advertising spaces and helps transcend the tangible advertising messages to meaningful brand symbols. Conceptually, the research illustrates that even though consumers’ engagement with brand mostly begins with physical advertising and later moves to psychological-symbolic, AI-assisted advertising should start with the understanding of brand symbolic-psychological and consumer aesthetic preferences before the physical design to better resonate. Limits of AI and future AI functions in advertising are discussed.

Keywords: AI, spatial, aesthetic, brand advertising

Procedia PDF Downloads 83
1256 The Effectiveness of the Counselling Module in Counseling Interventions for Low Performance Employees

Authors: Hazaila Hassan

Abstract:

This research aims and discusses about the effectiveness of the Psynnova i-Behaviour Modification Technique (iBMT) module towards the change in behaviour of low-performing employees. The purpose of the study is to examine the effectiveness of the Psynnova Module on changing behaviour through five factors among low-performing employees in the public sector. The five main factors/constructs were cognitive enhancement and rationality, emotional stability, attitude alignment and adjustment, social skills development and psycho-spirituality enhancement. In this research, 5 main constructs will be using to indicate behaviour changing performance of the employees after attending The Psynnova Program that using this Psynnova IBMT Module. The respondents are among those who have low scores in terms of annual performance through annual performance value reports and have gone through various stages before being required to attend Psynnova Program. Besides that, the research plan was also to critically examine and understand the change in behaviour among the low-performing employees through the five dimensions in the Psynnova Module. A total of 50 respondent will purposively sampled to be the respondents of this research. This study will use the Experimental Method to One Group Purposively Pre and Post Test using the Time Series Design. Experimental SPSS software version 22.0 will be used to analyse this data. Hopefully this research can see the changing of their behaviour in five factors as an indicator to the respondent after attending the Psynnova Programme. Findings from this study are also used to propose to assisting psychologist to see the changes that occurred to the respondents with the best framework of behaviour changing for them.

Keywords: five dimension of behaviour changing, among adult, low performance, modul effectiveness

Procedia PDF Downloads 173
1255 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection

Authors: Leah Ning

Abstract:

This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.

Keywords: breast cancer detection, AI, machine learning, algorithm

Procedia PDF Downloads 96
1254 Prevalence and Associated Factors with Burnout Among Secondary School Teachers in the City of Cotonou in Benin in 2022

Authors: Antoine Vikkey Hinson, Ranty Jolianelle Dassi, Menonli Adjobimey, Rose Mikponhoue, Paul Ayelo

Abstract:

Introduction: The psychological hardship of the teaching profession maintains a chronic stress that inevitably evolves into burnout (BO) in the absence of adequate preventive measures. The objective of this study is to study the prevalence and factors associated with burnout among secondary school teachers in the city of Cotonou in 2022. Methods: This was a descriptive cross-sectional study with an analytical aim and prospective data collection that took place over a period of 2 months, from July 19 to August 19 and from October 1 to October 31, 2022. Sampling was done using a three-stage probability sampling technique. Data analysis was performed using R 4.1.1 software. Bivariate logistic regression was used to identify associated factors. The significance level chosen was 5% (p < 0.05). Results: A total of 270 teachers were included in the study, of whom 208 (77.00%) were men. The mean age of the workers was 38.03 ± 8.30 years. According to the Maslach Burnout Inventory, 58.51% of the teachers had burnout, with 41.10% of teachers in emotional exhaustion, 27.40% in depersonalization and 21.90% in loss of personal accomplishment. The severity of the syndrome was low to moderate in almost all teachers. The occurrence of BO was associated with), not practicing sports (ORa= 2,38 [1,32; 4,28]), jobs training (ORa= 1,86 [1,04; 3,34]) and an imbalance of effort/reward (ORa= 5,98 [2,24;15,98]). Conclusion: The prevalence of BO is high among secondary school teachers in the city of Cotonou. A larger scale study, including research on its consequences on the teacher and the learner, is necessary in order to act quickly to implement a prevention program.

Keywords: burnout, teachers, Maslach burnout inventory, associated factors, Benin

Procedia PDF Downloads 80
1253 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 83
1252 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments

Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein

Abstract:

Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.

Keywords: virtual reality, effective computing, effective VR, emotion-based effective physiological database

Procedia PDF Downloads 236
1251 A Study on Learning Styles and Academic Performance in Relation with Kinesthetic, Verbal and Visual Intelligences

Authors: Salina Budin, Nor Liawati Abu Othman, Shaira Ismail

Abstract:

This study attempts to determine kinesthetic, verbal and visual intelligences among mechanical engineering undergraduate students and explores any probable relation with students’ learning styles and academic performance. The questionnaire used in this study is based on Howard Gardner’s multiple intelligences theory comprising of five elements of learning style; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering. Additional questions on students’ perception of learning styles and their academic performance are included in the questionnaire. The results show that one third of the students are strongly dominant in the kinesthetic intelligent (33%), followed by a combination of kinesthetic and visual intelligences (29%) and 21% are strongly dominant in all three types of intelligences. There is a statistically significant correlation between kinesthetic, verbal and visual intelligences and students learning styles and academic performances. The ANOVA analysis supports that there is a significant relationship between academic performances and level of kinesthetic, verbal and visual intelligences. In addition, it has also proven a remarkable relationship between academic performances and kinesthetic, verbal and visual learning styles amongst the male and female students. Thus, it can be concluded that, academic achievements can be enhanced by understanding as well as capitalizing the students’ types of intelligences and learning styles.

Keywords: kinesthetic intelligent, verbal intelligent, visual intelligent, learning style, academic performances

Procedia PDF Downloads 304