Search results for: dry chemical fire extinguisher inspection equipment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6687

Search results for: dry chemical fire extinguisher inspection equipment

4857 4(3H)-Quinazolinone Derivatives' Synthesis and Evaluation as Antimalarial and Anti-Leishmanial Agents

Authors: Alemu Tadesse Feroche

Abstract:

In this study, some 2, 3 distributed quinazoline -4 (3H) - one derivative were synthesized using a three-step synthetic route. They were obtained in a good yield (59.5-85%) by applying different chemical reactions like cyclization and condensation reactions. The chemical structure of the final compounds was also verified by spectroscopic methods (IR, ¹HNMR) and elemental microanalysis. The in vivo antimalarial activity of these compounds on P. berghei infected mice was found to be moderate to high at an oral dose of 0.04846 mmol/kg /day. This is equal to 25 mg/kg of chloroquine phosphate, which causes 100% inhibition of the parasite. It is worth mentioning that most active compounds (E) -3 Phenyl -2- [2- (pyridine -4- yl) vinyl] -4 (3H) -quinazolinone IVa (64.02%, (E)-2-[2-(4 - Hydroxy-3 - methoxystyryl) - vinyl) -3 - phenyl -4 (3H ) - quinazolinone IVc (77.25%) and (E)-2 –[2 –(Pyridin -4-yl) –vinyl] -3 phenenylamine -4(3H) quinazolinone IVe (73.54%) showed a dose-dependent increase in present suppression in antimalarial activities. Furthermore, the synthesized compounds were screened for their in vitro antileishmanial activity against L. aethiopica isolate (CL/039/09). All tested compounds (IVa (0.03766 ug/ml), IVb (0.00538 ug/ml, IVc (0.00412 ug/ml, IVd (0.00110 ug/ml), IVe (0.03017 ug/ml) and IVf (0.03894 ug/ml)) showed excellent potency that is much better than amphotericin B (IC50 = 0,04359 ug/ml). The results of acute toxicity indicated that all test compounds (IVa –IVf) proved to be nontoxic and well tolerated by the experimental animals up to 300 mg/kg in oral and 140 mg/kg in parental studies.

Keywords: 4(3H)-quinazolinone, in vivo antimalarial activity, in vitro antileishmanial activity, acute toxicity

Procedia PDF Downloads 96
4856 Periodontal Disease or Cement Disease: New Frontier in the Treatment of Periodontal Disease in Dogs

Authors: C. Gallottini, W. Di Mari, A. Amaddeo, K. Barbaro, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo

Abstract:

A group of 10 dogs (group A) with Periodontal Disease in the third stage, were subjected to regenerative therapy of periodontal tissues, by use of nano hydroxy apatite (NHA). These animals induced by general anesthesia, where treated by ultrasonic scaling, root planning, and at the end by a mucogingival flap in which it was applied NHA. The flap was closed and sutured with simple steps. Another group of 10 dogs (group B), control group, was treated only by scaling and root planning. No patient was subjected to antibiotic therapy. After three months, a check was made by inspection of the oral cavity, radiography and bone biopsy at the alveolar level. Group A showed a total restitutio ad integrum of the periodontal structures, and in group B still mild gingivitis in 70% of cases and 30% of the state remains unchanged. Numerous experimental studies both in animals and humans have documented that the grafts of porous hydroxyapatite are rapidly invaded by fibrovascular tissue which is subsequently converted into mature lamellar bone tissue by activating osteoblast. Since we acted on the removal of necrotic cementum and rehabilitating the root tissue by polishing without intervention in the ligament but only on anatomical functional interface of cement-blasts, we can connect the positive evolution of the clinical-only component of the cement that could represent this perspective, the only reason that Periodontal Disease become a Cement Disease, while all other clinical elements as nothing more than a clinical pathological accompanying.

Keywords: nanoidroxiaphatite, parodontal disease, cement disease, regenerative therapy

Procedia PDF Downloads 444
4855 Isolation and Chemical Characterization of Residual Lignin from Areca Nut Shells

Authors: Dipti Yadav, Latha Rangan, Pinakeswar Mahanta

Abstract:

Recent fuel-development strategies to reduce oil dependency, mitigate greenhouse gas emissions, and utilize domestic resources have generated interest in the search for alternative sources of fuel supplies. Bioenergy production from lignocellulosic biomass has a great potential. Cellulose, hemicellulose and Lignin are main constituent of woods or agrowaste. In all the industries there are always left over or waste products mainly lignin, due to the heterogeneous nature of wood and pulp fibers and the heterogeneity that exists between individual fibers, no method is currently available for the quantitative isolation of native or residual lignin without the risk of structural changes during the isolation. The potential benefits from finding alternative uses of lignin are extensive, and with a double effect. Lignin can be used to replace fossil-based raw materials in a wide range of products, from plastics to individual chemical products, activated carbon, motor fuels and carbon fibers. Furthermore, if there is a market for lignin for such value-added products, the mills will also have an additional economic incentive to take measures for higher energy efficiency. In this study residual lignin were isolated from areca nut shells by acid hydrolysis and were analyzed and characterized by Fourier Transform Infrared (FTIR), LCMS and complexity of its structure investigated by NMR.

Keywords: Areca nut, Lignin, wood, bioenergy

Procedia PDF Downloads 472
4854 The Effectschemical Treatment on Alkyl Phenol Modified Sisal Fiber Reinforced Epoxy Composite

Authors: Rajesh Panda, Jimi Tjong, Sanjay K. Nayak, Mohini M. Sain

Abstract:

The aim of this manuscript was to evaluate the effect of chemical treatment of sisal fibre on the mechanical and viscoelastic properties of bio based epoxy/fibre composites. The composite samples were manufactured through a vacuum infusion process by adding alkyl phenols from cashew nutshell liquid (CSNL). Changes in the chemical structure of the sisal fibres resulting from the treatments were analyzed by Fourier transform infrared spectroscopy (FTIR). Both alkali and silane treatments produced enhancements in the mechanical properties of sisal fibre bundles. The alkali treatment, when combined with the silane treatment, the mechanical properties of epoxy composites notably improved (13%) in comparison to untreated sisal fibre reinforced composites.This was attributed to an enhanced fibre/matrix interface. The incorporation of CSNL into the sisal/epoxy composite enhanced the fibre-matrix interfacial properties because of the addition of -OH groups to the epoxy matrix. The incorporation of sisal fibre imparts stiffness to the epoxy matrix.

Keywords: phenalkamine, sisal fiber, vacuum infusion, cashew nutshell liquid, cashew nutshell liquid (CSNL)

Procedia PDF Downloads 274
4853 Human Activities Damaging the Ecosystem of Isheri Ogun River, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, O. A. Ewumi, K. Fasina, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: damage, ecosystem, human activities, Isheri ogun river

Procedia PDF Downloads 536
4852 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks

Authors: Juan A. Ferriz-Papi, Simon Thomas

Abstract:

The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.

Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling

Procedia PDF Downloads 295
4851 Studies on the Feasibility of Cow’s Urine as Non-Conventional Energy Sources

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-batteries represent an entirely new long-term, reasonable, reachable, and eco-friendly approach to generation of sustainable energy. In the present experimental work, we have studied the effect of the generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. C-Mg electrode pair shows maximum Voltage and Short Circuit Current (SCC), while C-Zn electrode pair shows less Open Circuit Voltage (OCV) and SCC. By the studies of cow urine and different electrodes, it is found that C-Zn electrode battery is more economical. The cow urine battery with C-Zn electrode provides maximum power (707.4 mW) and durability (up to 145 h). This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.

Keywords: bio-batteries, cow's urine, electrodes, non-conventional

Procedia PDF Downloads 199
4850 The Targeted Killing of Soleimani between International Law and US Domestic Law

Authors: Mohammad Yousef

Abstract:

The issue of targeted killing has become a part of modern international law topics, as its spread has been accompanied by the technological development of weapons and military equipment, especially armed drones. Until now, there is no specific definition or legal framework for targeted killing in international law, and the issue of its compatibility with international law is still subject to debate and controversy. The case of the targeted killing of General Qassem Soleimani sparked waves of reactions and discussions between legal scholars and US officials in an argument about the legality of killing him in the light of international law rules and US domestic law. This paper firstly discusses the legality of targeted killing in international law and US domestic law; after that, it studies the legal bases and the legal system that governs these operations, while in the second section, it sheds light on the case of Soleimani’s targeted killing in light of international law and US domestic law, by examining the different views of jurists in this regard.

Keywords: targeted killing, international law, US domestic law, Qassem Soleimani

Procedia PDF Downloads 133
4849 Analysis of Bio-Oil Produced from Sugar Cane Bagasse Pyrolysis

Authors: D. S. Fardhyanti, M. Megawati, H. Prasetiawan, U. Mediaty

Abstract:

Currently, fossil fuel is supplying most of world’s energy resources. However, fossil fuel resources are depleted rapidly and require an alternative energy to overcome the increasing of energy demands. Bio-oil is one of a promising alternative renewable energy resources which is converted from biomass through pyrolysis or fast pyrolysis process. Bio-oil is a dark liquid fuel, has a smelling smoke and usually obtained from sugar cane, wood, coconut shell and any other biomass. Sugar cane content analysis showed that the content of oligosaccharide, hemicellulose, cellulose and lignin was 16.69%, 25.66%, 51.27% and 6.38% respectively. Sugar cane is a potential sources for bio-oil production shown by its high content of cellulose. In this study, production of bio-oil from sugar cane bagasse was investigated via fast pyrolysis reactor. Fast pyrolysis was carried out at 500 °C with a heating rate of 10 °C and 1 hour holding time at pyrolysis temperature. Physical properties and chemical composition of bio-oil were analyzed. The viscosity, density, calorific value and molecular weight of produced bio-oil was 3.12 cp, 2.78 g/cm3, 11,048.44 cals/g, and 222.67 respectively. The Bio-oil chemical composition was investigated using GC-MS. Percentage value of furfural, phenol, 3-methyl 1,2-cyclopentanedione, 5-methyl-3-methylene 5-hexen-2-one, 4-methyl phenol, 4-ethyl phenol, 1,2-benzenediol, and 2,6-dimethoxy phenol was 20.76%, 16.42%, 10.86%, 7.54%, 7.05%, 7.72%, 5.27% and 6.79% respectively.

Keywords: bio-oil, pyrolysis, bagasse, sugar cane, gas chromatography-mass spectroscopy

Procedia PDF Downloads 139
4848 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 447
4847 To Improve or Not to Improve Reflections from Jerash Urban Improvement Project, Jordan

Authors: Dina Dahood Dabash

Abstract:

Palestine Refugee Camps have never been settings that can be overlooked; they even became (as physical settings) a cornerstone topic of negotiations whenever Palestinian matters are on the table (specifically in Jordan). Consequently, maintaining the familiar face of the camp with its dilapidated shelters and narrow streets that rarely allowed its residents to extinguish a fire or evacuate a building safely has become a fundamental method to protect the “right of the return” from the perspective of various stakeholders. When the Infrastructure and Camp Improvement Programme (ICIP) was established in 2007 as an additional UNRWA program, some concerns were raised around the newly established section, mainly due to its direct impact on the “image” of the camp through a provision of a relatively nonconventional service that differs from what the Agency used to provide in the past seventy years. By presenting the Urban Improvement Project in Jerash camp (UIP) -Jordan, this paper aims to contribute to the ongoing discussion around enduring the improvement of Palestine refugee camps “programmatically” in UNRWA or not. The UIP as a co-product by UNRWA and the camp’s community within one of the most vulnerable refugee camps in Jordan offers a remarkable opportunity to excerpt lessons that can contribute to the strategic shaping of the ICIP. The paper concludes with five mine uptakes mainly related to community engagement, power structures and UNRWA's role in camps.

Keywords: camp improvement program, Jerash camp, Palestine refugee camps, UNRWA.

Procedia PDF Downloads 201
4846 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile

Authors: Reira Kinoshita, Shin'ichi Ishimaru

Abstract:

Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.

Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds

Procedia PDF Downloads 112
4845 The Cost and Benefit on the Investment in Safety and Health of the Enterprises in Thailand

Authors: Charawee Butbumrung

Abstract:

The purpose of this study is to evaluate the monetary worthiness of investment and the usefulness of risk estimation as a tool employed by a production section of an electronic factory. This study employed the case study of accidents occurring in production areas. Data is collected from interviews with six production of safety coordinators and collect the information from the relevant section. The study will present the ratio of benefits compared with the operation costs for investment. The result showed that it is worthwhile for investment with the safety measures. In addition, the organizations must be able to analyze the causes of accidents about the benefits of investing in protective working process. They also need to quickly provide the manual for the staff to learn how to protect themselves from accidents and how to use all of the safety equipment.

Keywords: cost and benefit, enterprises in Thailand, investment in safety and health, risk estimation

Procedia PDF Downloads 262
4844 Strategic Entrepreneurship: Model Proposal for Post-Troika Sustainable Cultural Organizations

Authors: Maria Inês Pinho

Abstract:

Recent literature on issues of Cultural Management (also called Strategic Management for cultural organizations) systematically seeks for models that allow such equipment to adapt to the constant change that occurs in contemporary societies. In the last decade, the world, and in particular Europe has experienced a serious financial problem that has triggered defensive mechanisms, both in the direction of promoting the balance of public accounts and in the sense of the anonymous loss of the democratic and cultural values of each nation. If in the first case emerged the Troika that led to strong cuts in funding for Culture, deeply affecting those organizations; in the second case, the commonplace citizen is seen fighting for the non-closure of cultural equipment. Despite this, the cultural manager argues that there is no single formula capable of solving the need to adapt to change. In another way, it is up to this agent to know the existing scientific models and to adapt them in the best way to the reality of the institution he coordinates. These actions, as a rule, are concerned with the best performance vis-à-vis external audiences or with the financial sustainability of cultural organizations. They forget, therefore, that all this mechanics cannot function without its internal public, without its Human Resources. The employees of the cultural organization must then have an entrepreneurial posture - must be intrapreneurial. This paper intends to break this form of action and lead the cultural manager to understand that his role should be in the sense of creating value for society, through a good organizational performance. This is only possible with a posture of strategic entrepreneurship. In other words, with a link between: Cultural Management, Cultural Entrepreneurship and Cultural Intrapreneurship. In order to prove this assumption, the case study methodology was used with the symbol of the European Capital of Culture (Casa da Música) as well as qualitative and quantitative techniques. The qualitative techniques included the procedure of in-depth interviews to managers, founders and patrons and focus groups to public with and without experience in managing cultural facilities. The quantitative techniques involved the application of a questionnaire to middle management and employees of Casa da Música. After the triangulation of the data, it was proved that contemporary management of cultural organizations must implement among its practices, the concept of Strategic Entrepreneurship and its variables. Also, the topics which characterize the Cultural Intrapreneurship notion (job satisfaction, the quality in organizational performance, the leadership and the employee engagement and autonomy) emerged. The findings show then that to be sustainable, a cultural organization should meet the concerns of both external and internal forum. In other words, it should have an attitude of citizenship to the communities, visible on a social responsibility and a participatory management, only possible with the implementation of the concept of Strategic Entrepreneurship and its variable of Cultural Intrapreneurship.

Keywords: cultural entrepreneurship, cultural intrapreneurship, cultural organizations, strategic management

Procedia PDF Downloads 178
4843 Non Chemical-Based Natural Products in the Treatment and Control of Fish Diseases

Authors: Albert P. Ekanem, Austin I. Obiekezie, Elizabeth X. Ntia

Abstract:

Introduction: Some African plants and bile from animals have shown efficacies in the treatment and control of diseases in farmed fish. The background of the study is based on the fact the African rain forest is blessed with abundance of medicinal plants that should be investigated for their use in the treatment of diseases. The significance of the study is informed by the fact that chemical-based substances accumulates in the tissues of food fish, thereby reducing the food values of such products and moreover, the continuous use of chemotherapeutants in the aquatic environments tends to degrades the affected environment. Methodology: Plants and animal products were extracted, purified and applied under in vitro and in vivo conditions to the affected organisms. Effective plants and biles were analyzed for active biological substances responsible for the activities by both qualitative and HPLC methods. Results: Extracts of Carica papaya and Mucuna pruriens were effective in the treatment of Ichthyophthiriasis in goldfish (Carassius auratus auratus) with high host tolerance. Similarly, ectoparasitic monogeneans were effectively dislodged from the gills and skin of goldfish by the application of extracts of Piper guineense at therapeutic concentrations. Artemesia annua with known antimalarial activities in human was also effective against fish monogenean parasites of Clarias gariepinus in a concentration related manner without detriments to the host. Effective antibacterial activities against Aeromonas and Pseudomonas diseases of the African catfish (Heterobranchus longifilis) were demonstrated in some plants such as Phylanthus amarus, Allium sativum, A. annua, and Citrus lemon. Bile from some animals (fish, goat, chicken, cow, and pig) showed great antibacterial activities against some gastrointestinal bacterial pathogens of fish. Conclusions: African plants and some animal bile have shown potential promise in the treatment of diseases in fish and other aquatic animals. The use of chemical-based substances for control of diseases in the aquatic environments should be restricted.

Keywords: control, diseases, fish, natural products, treatment

Procedia PDF Downloads 520
4842 Optical Characterization of Erbium-Mixed Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

The structural characterization of silicon nano crystals (SiNCs) have been carried out using transmission electron microscope (TEM) and atomic force microscopy (AFM). SiNCs are crystalline with an average diameter of 65 nm. Erbium trichloride was added to silicon nano crystals using a simple chemical procedure. Erbium is useful in this context because it has a narrow emission band at ⋍1536 nm which corresponds to a standard optical telecommunication wavelength. The optical properties of SiNCs and erbium-mixed SiNCs samples have been characterized using UV-vis spectroscopy, confocal Raman spectroscopy and photoluminescence spectroscopy (PL). SiNCs and erbium-mixed SiNCs samples exhibit an orange PL emission peak at around 595 nm that arise from radiative recombination of Si. Erbium-mixed SiNCs also shows a weak PL emission peak at ⋍1536 nm that attributed to the intra-4f transition in erbium ions. The intensity of the PL peak of Si in erbium-mixed SiNCs is increased in the intensity up to ×3 as compared to pure SiNCs. It was observed that intensity of 1536 nm peak decreased dramatically in the presence of silicon nano crystals and the PL emission peak of silicon nano crystals is increased. Therefore, the resulted data present that the energy transfer from erbium ions to SiNCs due to the chemical mixing method which used in this work.

Keywords: Silicon Nanocrystals (SiNCs), Erbium Ion, photoluminescence, energy transfer

Procedia PDF Downloads 373
4841 Nutrient and Trace Element Content in Some Wild Boletus Taxa from Marmara Region (Turkey)

Authors: Murad Aydin Şanda, Hasan Hüseyin Doğan, Öyküm Öztürk

Abstract:

Element contents were analysed in some wild Boletus taxa [Boletus fechtnerii, Boletus edulis, Boletus dupainii, Boletus calopus, Boletus pulverulentus, Boletus rhodoxanthus] from Marmara region of Turkey by ICP-AES equipment. The element uptake levels were observed at different amounts in each Boletus species. The highest Fe, Ca, Ni, Cd, and Cr concentrations were determined as 4927, 1927, 3.56, 2.69 and 2.63 mg.kg-1 in B. fechtnerii respectively. B. dupainii has highest K, Mg, Mn, and Zn concentrations as 41910, 2757, 476, and 125 mg.kg-1 respectively, whereas B. calopus has highest P, Cu, and B concentrations as 4982, 48.6, and 28.3 mg.kg-1 respectively. B. edulis has highest Na and S contents as 1666 and 5544 mg.kg-1 respectively. Although B. pulverulentus has only the highest Al content as 871 mg.kg-1, on the other hand B. rhodoxanthus has highest Mo concentrations as 0.86 mg.kg-1.

Keywords: Boletus, element, macrofungi, Turkey

Procedia PDF Downloads 479
4840 The Size Effects of Keyboards (Keycaps) on Computer Typing Tasks

Authors: Chih-Chun Lai, Jun-Yu Wang

Abstract:

The keyboard is the most important equipment for computer tasks. However, improper design of keyboard would cause some symptoms like ulnar and/or radial deviations. The research goal of this study was to investigate the optimal size(s) of keycaps to increase efficiency. As shown in the questionnaire pre-study with 49 participants aged from 20 to 44, the most commonly used keyboards were 101-key standard keyboards. Most of the keycap sizes (W × L) were 1.3 × 1.5 cm and 1.5 × 1.5 cm. The fingertip breadths of most participants were 1.2 cm. Therefore, in the main study with 18 participants, a standard keyboard with each set of the 3-sized (1.2 × 1.4 cm, 1.3 × 1.5 cm, and 1.5 × 1.5 cm) keycaps was used to investigate their typing efficiency, respectively. The results revealed that the differences between the operating times for using 1.3 × 1.5 cm and 1.2 × 1.4 cm keycaps were insignificant while operating times for using 1.5 × 1.5 cm keycaps were significantly longer than for using 1.2 × 1.4 cm or 1.3 × 1.5 cm, respectively. As for the typing error rate, there was no significant difference.

Keywords: keyboard, keycap size, typing efficiency, computer tasks

Procedia PDF Downloads 379
4839 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 347
4838 Design and Performance Optimization of Isostatic Pressing Working Cylinder Automatic Exhaust Valve

Authors: Wei-Zhao, Yannian-Bao, Xing-Fan, Lei-Cao

Abstract:

An isostatic pressing working cylinder automatic exhaust valve is designed. The finite element models of valve core and valve body under ultra-high pressure work environment are built to study the influence of interact of valve core and valve body to sealing performance. The contact stresses of metal sealing surface with different sizes are calculated and the automatic exhaust valve is optimized. The result of simulation and experiment shows that the sealing of optimized exhaust valve is more reliable and the service life is greatly improved. The optimized exhaust valve has been used in the warm isostatic pressing equipment.

Keywords: exhaust valve, sealing, ultra-high pressure, isostatic pressing

Procedia PDF Downloads 302
4837 An Assessment of Factors Affecting the Cost and Time Performance of Subcontractors

Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola,

Abstract:

This paper is an assessment of factors influencing the cost and time performance of subcontractors and the need for effective performance of subcontractors at the project sites. The factors influencing the performance of subcontractors are grouped, similar to those identified with the project or an organization and on another hand, there are significant factors influencing the performance of the subcontractors. These factors incorporate management level leadership, time required to complete the project, profit, staff capability/expertise, reputation, installment method, organization history, and project procurement method strategy, security, bidding technique, insurance, bond and relationship with the major contractors. The factors influencing the management of subcontractors in building development projects includes performance of significant past projects, standard of workmanship, consistence with guidelines, regular payment to labourers, adherence to program, regularity and viability of communication with main contractor, adherence to subcontract necessities. Other factors comprise adherence to statutory environmental regulations, number of experienced sites administrative staff, inspection and maintenance of good workplace, number of artisans and workers, quality of as-built and shop drawings and ability to carry out the quantity of work and so on. This study also aimed to suggest a way forward to improve the performance of subcontractors which is the reason for exceeding budget at the project sites. To carry out this study, a questionnaire was drafted to derive information on the causes of low performance of subcontractors and the implication to cost.

Keywords: performance, contractor, subcontractors, construction

Procedia PDF Downloads 72
4836 Synchronous Generator in Case Voltage Sags for Different Loads

Authors: Benalia Nadia, Bensiali Nadia, Zezouri Noura

Abstract:

This paper studies the effects of voltage sags, both symmetrical and unsymmetrical, on the three-phase Synchronous Machine (SM) when powering an isolate load or infinite bus bar. The vast majority of the electrical power generation systems in the world is consist of synchronous generators coupled to the electrical network though a transformer. Voltage sags on SM cause speed variations, current and torque peaks and hence may cause tripping and equipment damage. The consequences of voltage sags in the machine behavior depends on different factors such as its magnitude (or depth), duration , the parameters of the machine and also the size of load. In this study, we consider the machine feeds an infinite bus bar in the first and the isolate load using symmetric and asymmetric defaults to see the behavior of the machine in both case the simulation have been used on SIMULINK MATLAB.

Keywords: power quality, voltage sag, synchronous generator, infinite system

Procedia PDF Downloads 670
4835 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.

Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system

Procedia PDF Downloads 465
4834 Enhancing Rupture Pressure Prediction for Corroded Pipes Through Finite Element Optimization

Authors: Benkouiten Imene, Chabli Ouerdia, Boutoutaou Hamid, Kadri Nesrine, Bouledroua Omar

Abstract:

Algeria is actively enhancing gas productivity by augmenting the supply flow. However, this effort has led to increased internal pressure, posing a potential risk to the pipeline's integrity, particularly in the presence of corrosion defects. Sonatrach relies on a vast network of pipelines spanning 24,000 kilometers for the transportation of gas and oil. The aging of these pipelines raises the likelihood of corrosion both internally and externally, heightening the risk of ruptures. To address this issue, a comprehensive inspection is imperative, utilizing specialized scraping tools. These advanced tools furnish a detailed assessment of all pipeline defects. It is essential to recalculate the pressure parameters to safeguard the corroded pipeline's integrity while ensuring the continuity of production. In this context, Sonatrach employs symbolic pressure limit calculations, such as ASME B31G (2009) and the modified ASME B31G (2012). The aim of this study is to perform a comparative analysis of various limit pressure calculation methods documented in the literature, namely DNV RP F-101, SHELL, P-CORRC, NETTO, and CSA Z662. This comparative assessment will be based on a dataset comprising 329 burst tests published in the literature. Ultimately, we intend to introduce a novel approach grounded in the finite element method, employing ANSYS software.

Keywords: pipeline burst pressure, burst test, corrosion defect, corroded pipeline, finite element method

Procedia PDF Downloads 54
4833 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions

Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat

Abstract:

Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.

Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity

Procedia PDF Downloads 60
4832 Chemical Characterization of Octopus Vulgaris Ink and Evaluation of its in-vitro Antioxidant, Antimicrobial, and Anti-Schistosomicidal Activities

Authors: Salwa A. H. Hamdi, Maha A. M. El-Shazly, Mona Fathi Fol, Hanan S. Mossalem, Mosad A. Ghareeb, Amina M. Ibrahim

Abstract:

One of the most distinctive and defining features of cephalopods squid, cuttlefish, and Octopus is their inking behavior. Their ink, which is blackened by melanin but also contains other constituents, has been used by humans in various ways for millennia. The present study aims to investigate the chemical profiling of the Octopus vulgaris ink extract and to evaluate its antioxidant, antimicrobial, and anti-schistosomal activities. The present results showed that GC-MS examination of Octopus vulgaris ink comprises 21 compounds. The main detected compounds are (E)-1, 2, 3, 4-Tetra (4-phenylphenyl)-2-butene-1,4-dione, Lipo-3-episapelin A, and 5,10-Dihexyltetrabenzoporphyrin. Results showed that the octopus ink had antioxidant capacity and the capability to mask DPPH free radicals in comparison with ascorbic acid. Octopus Vulgaris ink extract had inhibitory action against three gram-positive bacteria, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis, and three gram-negative bacteria, Neisseria gonorrhoeae, Escherichia coli, and Pseudomonas aeuroginosa. Additionally, the extracted ink revealed antifungal activity against Aspergillus flavus and yeast as Candida albicans. The obtained data indicated the effectiveness of ink extract in pharmaceutical industries as an antioxidant, antimicrobial and antischistosomicidal

Keywords: antimicrobial, antioxidant, ink, octopus vulgaris

Procedia PDF Downloads 92
4831 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 299
4830 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils

Authors: Alim Asamatdinov

Abstract:

Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.

Keywords: hydrogel, chemical, polymer, sandy, colloid

Procedia PDF Downloads 141
4829 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based on Multi-Scale Entropy and Multivariate Statistics

Authors: S. Aouabdi, M. Taibi

Abstract:

The supervision of chemical processes is the subject of increased development because of the increasing demands on reliability and safety. An important aspect of the safe operation of chemical process is the earlier detection of (process faults or other special events) and the location and removal of the factors causing such events, than is possible by conventional limit and trend checks. With the aid of process models, estimation and decision methods it is possible to also monitor hundreds of variables in a single operating unit, and these variables may be recorded hundreds or thousands of times per day. In the absence of appropriate processing method, only limited information can be extracted from these data. Hence, a tool is required that can project the high-dimensional process space into a low-dimensional space amenable to direct visualization, and that can also identify key variables and important features of the data. Our contribution based on powerful techniques for development of a new monitoring method based on multi-scale entropy MSE in order to characterize the behaviour of the concentrations of different gases present in synthesis and soft sensor based on PCA is applied to estimate these variables.

Keywords: ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivarite statistics

Procedia PDF Downloads 330
4828 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure

Authors: Y. L. Hor, H. S. Chu, V. P. Bui

Abstract:

Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.

Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization

Procedia PDF Downloads 165