Search results for: cryogenic process equipment
14545 Evaluation of Washing Performance of Household Wastewater Purified by Advanced Oxidation Process
Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır
Abstract:
Stressing the importance of water conservation, emphasizing the need for efficient management of household water, and underlining the significance of alternative solutions are important. In this context, advanced solutions based on technologies such as the advanced oxidation process have emerged as promising methods for treating household wastewater. Evaluating household water usage holds critical importance for the sustainability of water resources. Researchers and experts are examining various technological approaches to effectively treat and reclaim water for reuse. In this framework, the advanced oxidation process has proven to be an effective method for the removal of various organic and inorganic pollutants in the treatment of household wastewater. In this study, performance will be evaluated by comparing it with the reference case. This international criterion simulates the washing of home textile products, determining various performance parameters. The specially designed stain strips, including sebum, carbon black, blood, cocoa, and red wine, used in experiments, represent various household stains. These stain types were carefully selected to represent challenging stain scenarios, ensuring a realistic assessment of washing performance. Experiments conducted under different temperatures and program conditions successfully demonstrate the practical applicability of the advanced oxidation process for treating household wastewater. It is important to note that both adherence to standards and the use of real-life stain types contribute to the broad applicability of the findings. In conclusion, this study strongly supports the effectiveness of treating household wastewater with the advanced oxidation process in terms of washing performance under both standard and practical application conditions. The study underlines the importance of alternative solutions for sustainable water resource management and highlights the potential of the advanced oxidation process in the treatment of household water, contributing significantly to optimizing water usage and developing sustainable water management solutions.Keywords: advanced oxidation process, household water usage, household appliance waste water, modelling, water reuse
Procedia PDF Downloads 6114544 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia PDF Downloads 24414543 Arc Flash Analysis: Technique to Mitigate Fire Incidents in Substations
Authors: M. H. Saeed, M. Rasool, M. A. Jawed
Abstract:
Arc Flash Analysis has been a subject of great interest since the electrical fire incidents have been reduced to a great extent after the implementation of arc flash study at different sites. An Arc flash in substations is caused by short circuits over the air or other melted conductors and small shrapnel. Arc flash incidents result in the majority of deaths in substations worldwide. Engro Fertilizers Limited (EFERT) site having a mix of vintage non-internal arc rated and modern arc rated switchgears, carried out an arc flash study of the whole site in accordance with NFPA70E standard. The results not only included optimizing site protection coordination settings but also included marking of Shock and Arc flash protection boundaries in all switchgear rooms. Work permit procedures upgradation is also done in accordance with this study to ensure proper arc rated PPEs and arc flash boundaries protocols are fully observed and followed. With the new safety, protocols working on electrical equipment will be much safer than ever before.Keywords: Arc flash, non-internal arc rated, protection coordination, shock boundary
Procedia PDF Downloads 17614542 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process
Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis
Abstract:
This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion
Procedia PDF Downloads 30214541 Characterization of Aerosol Droplet in Absorption Columns to Avoid Amine Emissions
Authors: Hammad Majeed, Hanna Knuutila, Magne Hilestad, Hallvard Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem.Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles. Results: As an example a droplet of initial size of 3 microns, initially containing a 5M MEA, solution is exposed to an atmosphere free of MEA. Composition of the gas phase and temperature is changing with respect to time throughout the absorber.Keywords: amine solvents, emissions, global climate change, simulation and modelling, aerosol generation
Procedia PDF Downloads 26414540 The Roles of Parental Involvement in the Teaching-Learning Process of Students with Special Needs: Perceptions of Special Needs Education Teachers
Authors: Chassel T. Paras, Tryxzy Q. Dela Cruz, Ma. Carmela Lousie V. Goingco, Pauline L. Tolentino, Carmela S. Dizon
Abstract:
In implementing inclusive education, parental involvement is measured to be an irreplaceable contributing factor. Parental involvement is described as an indispensable aspect of the teaching-learning process and has a remarkable effect on the student's academic performance. However, there are still differences in the viewpoints, expectations, and needs of both parents and teachers that are not yet fully conveyed in their relationship; hence, the perceptions of SNED teachers are essential in their collaboration with parents. This qualitative study explored how SNED teachers perceive the roles of parental involvement in the teaching-learning process of students with special needs. To answer this question, one-on-one face-to-face semi-structured interviews with three SNED teachers in a selected public school in Angeles City, Philippines, that offer special needs education services were conducted. The gathered data are then analyzed using Interpretative Phenomenological Analysis (IPA). The results revealed four superordinate themes, which include: (1) roles of parental involvement, (2) parental involvement opportunities, (3) barriers to parental involvement, and (4) parent-teacher collaboration practices. These results indicate that SNED teachers are aware of the roles and importance of parental involvement; however, despite parent-teacher collaboration, there are still barriers that impede parental involvement. Also, SNED teachers acknowledge the big roles of parents as they serve as main figures in the teaching-learning process of their children with special needs. Lastly, these results can be used as input in developing a school-facilitated parenting involvement framework that encompasses the contribution of SNED teachers in planning, developing, and evaluating parental involvement programs, which future researchers can also use in their studiesKeywords: parental involvement, special needs education, teaching-learning process, teachers’ perceptions, special needs education teachers, interpretative phenomenological analysis
Procedia PDF Downloads 11014539 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid
Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan
Abstract:
In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.Keywords: acid treatment, chemical extraction, sludge, waste management
Procedia PDF Downloads 19714538 HyDUS Project; Seeking a Wonder Material for Hydrogen Storage
Authors: Monica Jong, Antonios Banos, Tom Scott, Chris Webster, David Fletcher
Abstract:
Hydrogen, as a clean alternative to methane, is relatively easy to make, either from water using electrolysis or from methane using steam reformation. However, hydrogen is much trickier to store than methane, and without effective storage, it simply won’t pass muster as a suitable methane substitute. Physical storage of hydrogen is quite inefficient. Storing hydrogen as a compressed gas at pressures up to 900 times atmospheric is volumetrically inefficient and carries safety implications, whilst storing it as a liquid requires costly and constant cryogenic cooling to minus 253°C. This is where DU steps in as a possible solution. Across the periodic table, there are many different metallic elements that will react with hydrogen to form a chemical compound known as a hydride (or metal hydride). From a chemical perspective, the ‘king’ of the hydride forming metals is palladium because it offers the highest hydrogen storage volumetric capacity. However, this material is simply too expensive and scarce to be used in a scaled-up bulk hydrogen storage solution. Depleted Uranium is the second most volumetrically efficient hydride-forming metal after palladium. The UK has accrued a significant amount of DU because of manufacturing nuclear fuel for many decades, and that is currently without real commercial use. Uranium trihydride (UH3) contains three hydrogen atoms for every uranium atom and can chemically store hydrogen at ambient pressure and temperature at more than twice the density of pure liquid hydrogen for the same volume. To release the hydrogen from the hydride, all you do is heat it up. At temperatures above 250°C, the hydride starts to thermally decompose, releasing hydrogen as a gas and leaving the Uranium as a metal again. The reversible nature of this reaction allows the hydride to be formed and unformed again and again, enabling its use as a high-density hydrogen storage material which is already available in large quantities because of its stockpiling as a ‘waste’ by-product. Whilst the tritium storage credentials of Uranium have been rigorously proven at the laboratory scale and at the fusion demonstrator JET for over 30 years, there is a need to prove the concept for depleted uranium hydrogen storage (HyDUS) at scales towards that which is needed to flexibly supply our national power grid with energy. This is exactly the purpose of the HyDUS project, a collaborative venture involving EDF as the interested energy vendor, Urenco as the owner of the waste DU, and the University of Bristol with the UKAEA as the architects of the technology. The team will embark on building and proving the world’s first pilot scale demonstrator of bulk chemical hydrogen storage using depleted Uranium. Within 24 months, the team will attempt to prove both the technical and commercial viability of this technology as a longer duration energy storage solution for the UK. The HyDUS project seeks to enable a true by-product to wonder material story for depleted Uranium, demonstrating that we can think sustainably about unlocking the potential value trapped inside nuclear waste materials.Keywords: hydrogen, long duration storage, storage, depleted uranium, HyDUS
Procedia PDF Downloads 15414537 Biological Treatment of Tannery Wastewater Using Pseudomonas Strains
Authors: A. Benhadji, R. Maachi
Abstract:
Environmental protection has become a major economic development issues. Indeed, the environment has become both market growth factor and element of competition. It is now an integral part of all industrial strategies. Ecosystem protection is based on the reduction of the pollution load in the treatment of liquid waste. The physicochemical techniques are commonly used which a transfer of pollution is generally found. Alternative to physicochemical methods is the use of microorganisms for cleaning up the waste waters. The objective of this research is the evaluation of the effects of exogenous added Pseudomonas strains on pollutants biodegradation. The influence of the critical parameters such as inoculums concentration and duration treatment are studied. The results show that Pseudomonas putida is found to give a maximum reduction in chemical organic demand (COD) in 4 days of incubation. However, toward to protect biological pollution of environment, the treatment is achieved by electro coagulation process using aluminium electrodes. The results indicate that this process allows disinfecting the water and improving the electro coagulated sludge quality.Keywords: tannery, pseudomonas, biological treatment, electrocoagulation process, sludge quality
Procedia PDF Downloads 36614536 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems
Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims
Abstract:
The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification
Procedia PDF Downloads 55314535 Virtual Reality Applications for Building Indoor Engineering: Circulation Way-Finding
Authors: Atefeh Omidkhah Kharashtomi, Rasoul Hedayat Nejad, Saeed Bakhtiyari
Abstract:
Circulation paths and indoor connection network of the building play an important role both in the daily operation of the building and during evacuation in emergency situations. The degree of legibility of the paths for navigation inside the building has a deep connection with the perceptive and cognitive system of human, and the way the surrounding environment is being perceived. Human perception of the space is based on the sensory systems in a three-dimensional environment, and non-linearly, so it is necessary to avoid reducing its representations in architectural design as a two-dimensional and linear issue. Today, the advances in the field of virtual reality (VR) technology have led to various applications, and architecture and building science can benefit greatly from these capabilities. Especially in cases where the design solution requires a detailed and complete understanding of the human perception of the environment and the behavioral response, special attention to VR technologies could be a priority. Way-finding in the indoor circulation network is a proper example for such application. Success in way-finding could be achieved if human perception of the route and the behavioral reaction have been considered in advance and reflected in the architectural design. This paper discusses the VR technology applications for the way-finding improvements in indoor engineering of the building. In a systematic review, with a database consisting of numerous studies, firstly, four categories for VR applications for circulation way-finding have been identified: 1) data collection of key parameters, 2) comparison of the effect of each parameter in virtual environment versus real world (in order to improve the design), 3) comparing experiment results in the application of different VR devices/ methods with each other or with the results of building simulation, and 4) training and planning. Since the costs of technical equipment and knowledge required to use VR tools lead to the limitation of its use for all design projects, priority buildings for the use of VR during design are introduced based on case-studies analysis. The results indicate that VR technology provides opportunities for designers to solve complex buildings design challenges in an effective and efficient manner. Then environmental parameters and the architecture of the circulation routes (indicators such as route configuration, topology, signs, structural and non-structural components, etc.) and the characteristics of each (metrics such as dimensions, proportions, color, transparency, texture, etc.) are classified for the VR way-finding experiments. Then, according to human behavior and reaction in the movement-related issues, the necessity of scenario-based and experiment design for using VR technology to improve the design and receive feedback from the test participants has been described. The parameters related to the scenario design are presented in a flowchart in the form of test design, data determination and interpretation, recording results, analysis, errors, validation and reporting. Also, the experiment environment design is discussed for equipment selection according to the scenario, parameters under study as well as creating the sense of illusion in the terms of place illusion, plausibility and illusion of body ownership.Keywords: virtual reality (VR), way-finding, indoor, circulation, design
Procedia PDF Downloads 7314534 Deep Q-Network for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, Gazebo, navigation
Procedia PDF Downloads 7514533 Impact of Trade Cooperation of BRICS Countries on Economic Growth
Authors: Svetlana Gusarova
Abstract:
The essential role in the recent development of world economy has led to the developing countries, notably to BRICS countries (Brazil, Russia, India, China, South Africa). Over the next 50 years the BRICS countries are expected to be the engines of global trade and economic growth. Trade cooperation of BRICS countries can enhance their economic development. BRICS countries were among Top 10 world exporters of office and telecom equipment, of textiles, of clothing, of iron and steel, of chemicals, of agricultural products, of automotive products, of fuel and mining products. China was one of the main trading partners of all BRICS countries, maintaining close relationship with all BRICS countries in the development of trade. Author analyzed trade complementarity of BRICS countries and revealed the high level of complementarity of their trade flows in connection with availability of specialization in different types of goods. The correlation and regression analysis of communication of Intra-BRICS merchandise turnover and their GDP (PPP) revealed very strong impact on the development of their economies.Keywords: BRICS countries, trade cooperation, complementarity, regression analysis
Procedia PDF Downloads 28014532 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R
Authors: Pavel H. Llamocca, Victoria Lopez
Abstract:
The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.Keywords: open data, R language, data integration, environmental data
Procedia PDF Downloads 31414531 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model
Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong
Abstract:
This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors
Procedia PDF Downloads 56614530 Reducing Power Consumption in Network on Chip Using Scramble Techniques
Authors: Vinayaga Jagadessh Raja, R. Ganesan, S. Ramesh Kumar
Abstract:
An ever more significant fraction of the overall power dissipation of a network-on-chip (NoC) based system on- chip (SoC) is due to the interconnection scheme. In information, as equipment shrinks, the power contributes of NoC links starts to compete with that of NoC routers. In this paper, we propose the use of clock gating in the data encoding techniques as a viable way to reduce both power dissipation and time consumption of NoC links. The projected scramble scheme exploits the wormhole switching techniques. That is, flits are scramble by the network interface (NI) before they are injected in the network and are decoded by the target NI. This makes the scheme transparent to the underlying network since the encoder and decoder logic is integrated in the NI and no modification of the routers structural design is required. We review the projected scramble scheme on a set of representative data streams (both synthetic and extracted from real applications) showing that it is possible to reduce the power contribution of both the self-switching activity and the coupling switching activity in inter-routers links.Keywords: Xilinx 12.1, power consumption, Encoder, NOC
Procedia PDF Downloads 39814529 Secure E-Voting Using Blockchain Technology
Authors: Barkha Ramteke, Sonali Ridhorkar
Abstract:
An election is an important event in all countries. Traditional voting has several drawbacks, including the expense of time and effort required for tallying and counting results, the cost of papers, arrangements, and everything else required to complete a voting process. Many countries are now considering online e-voting systems, but the traditional e-voting systems suffer a lack of trust. It is not known if a vote is counted correctly, tampered or not. A lack of transparency means that the voter has no assurance that his or her vote will be counted as they voted in elections. Electronic voting systems are increasingly using blockchain technology as an underlying storage mechanism to make the voting process more transparent and assure data immutability as blockchain technology grows in popularity. The transparent feature, on the other hand, may reveal critical information about applicants because all system users have the same entitlement to their data. Furthermore, because of blockchain's pseudo-anonymity, voters' privacy will be revealed, and third parties involved in the voting process, such as registration institutions, will be able to tamper with data. To overcome these difficulties, we apply Ethereum smart contracts into blockchain-based voting systems.Keywords: blockchain, AMV chain, electronic voting, decentralized
Procedia PDF Downloads 13314528 Utilization of Secure Wireless Networks as Environment for Learning and Teaching in Higher Education
Authors: Mohammed A. M. Ibrahim
Abstract:
This paper investigate the utilization of wire and wireless networks to be platform for distributed educational monitoring system. Universities in developing countries suffer from a lot of shortages(staff, equipment, and finical budget) and optimal utilization of the wire and wireless network, so universities can mitigate some of the mentioned problems and avoid the problems that maybe humble the education processes in many universities by using our implementation of the examinations system as a test-bed to utilize the network as a solution to the shortages for academic staff in Taiz University. This paper selects a two areas first one quizzes activities is only a test bed application for wireless network learning environment system to be distributed among students. Second area is the features and the security of wireless, our tested application implemented in a promising area which is the use of WLAN in higher education for leering environment.Keywords: networking wire and wireless technology, wireless network security, distributed computing, algorithm, encryption and decryption
Procedia PDF Downloads 33714527 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes
Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker
Abstract:
The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.Keywords: automation, battery production, carrier, advanced process control, cyber-physical system
Procedia PDF Downloads 33514526 Investigation of Dispersion of Carbon Nanoparticles in Polymer Melt for the Fabrication of Functional Filaments
Authors: Merle Bischoff, Thomas Gries, Gunnar Seide
Abstract:
Nanocomposites have become more and more important as the implementation of nanoparticles in polymer allows additional functions in common industrial parts. Especially in the fabrication of filaments or fibres nanomodification is important, as only very small fillers can be added to the very fine fibres (common diameter is 20 µm, fine filament are 1 µm). Discharging fibres, conductive fibres, and many other functional fibres raise in their importance nowadays. Especially the dispersion quality is essential for the final enhancement of the filament propertied. In this paper, the dispersion of carbon nanoparticles in polymer melt is enhanced by a newly developed sonication unit of ITA and BANDELIN electronic GmbH & Co. KG. The first development steps of the unit fabrication, as well as the first experimental results of the modification of the dispersion, are shown. Special focus will be laid on the sealing of the new sonication unit as well as the positioning and equipment size when being implemented in an existing melt spinning unit. Furthermore, the influence on the thereby manufactured nano-modified filaments will be shown.Keywords: dispersion, sonication, carbon nanoparticles, filaments
Procedia PDF Downloads 30014525 Experimental Measurement for Vehicular Communication Evaluation Using Obu Arada System
Authors: Aymen Sassi
Abstract:
The equipment of vehicles with wireless communication capabilities is expected to be the key to the evolution to next generation intelligent transportation systems (ITS). The IEEE community has been continuously working on the development of an efficient vehicular communication protocol for the enhancement of Wireless Access in Vehicular Environment (WAVE). Vehicular communication systems, called V2X, support vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. The efficiency of such communication systems depends on several factors, among which the surrounding environment and mobility are prominent. Accordingly, this study focuses on the evaluation of the real performance of vehicular communication with special focus on the effects of the real environment and mobility on V2X communication. It starts by identifying the real maximum range that such communication can support and then evaluates V2I and V2V performances. The Arada LocoMate OBU transmission system was used to test and evaluate the impact of the transmission range in V2X communication. The evaluation of V2I and V2V communication takes the real effects of low and high mobility on transmission into account.Keywords: IEEE 802.11p, V2I, V2X, mobility, PLR, Arada LocoMate OBU, maximum range
Procedia PDF Downloads 41314524 Evaluation of a Reconditioning Procedure for Batteries: Case Study on Li-Ion Batteries
Authors: I.-A. Ciobotaru, I.-E. Ciobotaru, D.-I. Vaireanu
Abstract:
Currently, an ascending trend of battery use may be observed, together with an increase of the generated amount of waste. Efforts have been focused on the recycling of batteries; however, extending their lifetime may be a more adequate alternative, and the development of such methods may prove to be more cost efficient as compared to recycling. In this context, this paper presents the analysis of a proposed process for the reconditioning of some lithium-ions batteries. The analysis is performed based on two criteria, the first one referring to the technical aspect of the reconditioning process and the second to the economic aspects. The main technical parameters taken into consideration are the values of capacitance and internal resistance of the lithium-ion batteries. The economic criterion refers to the evaluation of the efficiency of the reconditioning procedure reported to its total cost for the investigated lithium-ion batteries. Based on the cost analysis, one introduced a novel coefficient that correlates the efficiency of the aforementioned process and its corresponding costs. The reconditioning procedure for the lithium-ion batteries proposed in this paper proved to be valid, efficient, and with reasonable costs.Keywords: cost assessment, lithium-ion battery, reconditioning coefficient, reconditioning procedure
Procedia PDF Downloads 13514523 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.Keywords: composite, fuzzy, tool life, wear
Procedia PDF Downloads 29514522 Distributed Perceptually Important Point Identification for Time Series Data Mining
Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung
Abstract:
In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining
Procedia PDF Downloads 43114521 Active Power Flow Control Using a TCSC Based Backstepping Controller in Multimachine Power System
Authors: Naimi Abdelhamid, Othmane Abdelkhalek
Abstract:
With the current rise in the demand of electrical energy, present-day power systems which are large and complex, will continue to grow in both size and complexity. Flexible AC Transmission System (FACTS) controllers provide new facilities, both in steady state power flow control and dynamic stability control. Thyristor Controlled Series Capacitor (TCSC) is one of FACTS equipment, which is used for power flow control of active power in electric power system and for increase of capacities of transmission lines. In this paper, a Backstepping Power Flow Controller (BPFC) for TCSC in multimachine power system is developed and tested. The simulation results show that the TCSC proposed controller is capable of controlling the transmitted active power and improving the transient stability when compared with conventional PI Power Flow Controller (PIPFC).Keywords: FACTS, thyristor controlled series capacitor (TCSC), backstepping, BPFC, PIPFC
Procedia PDF Downloads 52714520 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant
Authors: Dimitrie Marinceu, Alan Murchison
Abstract:
The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository
Procedia PDF Downloads 27314519 Can 3D Virtual Prototyping Conquers the Apparel Industry?
Authors: Evridiki Papachristou, Nikolaos Bilalis
Abstract:
Imagine an apparel industry where fashion design does not begin with a paper-and-pen drawing which is then translated into pattern and later to a 3D model where the designer tries out different fabrics, colours and contrasts. Instead, imagine a fashion designer in the future who produces that initial fashion drawing in a three-dimensional space and won’t leave that environment until the product is done, communicating his/her ideas with the entire development team in true to life 3D. Three-dimensional (3D) technology - while well established in many other industrial sectors like automotive, aerospace, architecture and industrial design, has only just started to open up a whole range of new opportunities for apparel designers. The paper will discuss the process of 3D simulation technology enhanced by high quality visualization of data and its capability to ensure a massive competitiveness in the market. Secondly, it will underline the most frequent problems & challenges that occur in the process chain when various partners in the production of textiles and apparel are working together. Finally, it will offer a perspective of how the Virtual Prototyping Technology will make the global textile and apparel industry change to a level where designs will be visualized on a computer and various scenarios modeled without even having to produce a physical prototype. This state-of-the-art 3D technology has been described as transformative and“disruptive”comparing to the process of the way apparel companies develop their fashion products today. It provides the benefit of virtual sampling not only for quick testing of design ideas, but also reducing process steps and having more visibility.A so called“digital asset” that can be used for other purposes such as merchandising or marketing.Keywords: 3D visualization, apparel, virtual prototyping, prototyping technology
Procedia PDF Downloads 58814518 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis
Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman
Abstract:
A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering
Procedia PDF Downloads 21414517 Analytical Downlink Effective SINR Evaluation in LTE Networks
Authors: Marwane Ben Hcine, Ridha Bouallegue
Abstract:
The aim of this work is to provide an original analytical framework for downlink effective SINR evaluation in LTE networks. The classical single carrier SINR performance evaluation is extended to multi-carrier systems operating over frequency selective channels. Extension is achieved by expressing the link outage probability in terms of the statistics of the effective SINR. For effective SINR computation, the exponential effective SINR mapping (EESM) method is used on this work. Closed-form expression for the link outage probability is achieved assuming a log skew normal approximation for single carrier case. Then we rely on the lognormal approximation to express the exponential effective SINR distribution as a function of the mean and standard deviation of the SINR of a generic subcarrier. Achieved formulas is easily computable and can be obtained for a user equipment (UE) located at any distance from its serving eNodeB. Simulations show that the proposed framework provides results with accuracy within 0.5 dB.Keywords: LTE, OFDMA, effective SINR, log skew normal approximation
Procedia PDF Downloads 36514516 Oil Water Treatment by Nutshell and Dates Pits
Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren
Abstract:
The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.Keywords: date pits, nutshell, oil water, TSS
Procedia PDF Downloads 154