Search results for: process variation
15503 Self-Sensing Concrete Nanocomposites for Smart Structures
Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi
Abstract:
In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring
Procedia PDF Downloads 22715502 Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs
Authors: Yuan Yang, Mickey Lam
Abstract:
Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells.Keywords: oral dissolvable film, nano-suspension, nano-emulsion, bioavailability
Procedia PDF Downloads 18415501 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization
Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay
Abstract:
In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.Keywords: WEDM, MRR, optimization, surface roughness
Procedia PDF Downloads 7515500 Mass Transfer in Reactor with Magnetic Field Generator
Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas
Abstract:
The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process.Keywords: mass transfer, oscillating magnetic field, rotating magnetic field, static magnetic field
Procedia PDF Downloads 20615499 An Historical Revision of Change and Configuration Management Process
Authors: Expedito Pinto De Paula Junior
Abstract:
Current systems such as artificial satellites, airplanes, automobiles, turbines, power systems and air traffic controls are becoming increasingly more complex and/or highly integrated as defined in SAE-ARP-4754A (Society Automotive Engineering - Certification considerations for highly-integrated or complex aircraft systems standard). Among other processes, the development of such systems requires careful Change and Configuration Management (CCM) to establish and maintain product integrity. Understand the maturity of CCM process based in historical approach is crucial for better implementation in hardware and software lifecycle. The sense of work organization, in all fields of development is directly related to the order and interrelation of the parties, changes in time, and record of these changes. Generally, is observed that engineers, administrators and managers invest more time in technical activities than in organization of work. More these professionals are focused in solving complex problems with a purely technical bias. CCM process is fundamental for development, production and operation of new products specially in the safety critical systems. The objective of this paper is open a discussion about the historical revision based in standards focus of CCM around the world in order to understand and reflect the importance across the years, the contribution of this process for technology evolution, to understand the mature of organizations in the system lifecycle project and the benefits of CCM to avoid errors and mistakes during the Lifecycle Product.Keywords: changes, configuration management, historical, revision
Procedia PDF Downloads 20115498 Evaluation of Washing Performance of Household Wastewater Purified by Advanced Oxidation Process
Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır
Abstract:
Stressing the importance of water conservation, emphasizing the need for efficient management of household water, and underlining the significance of alternative solutions are important. In this context, advanced solutions based on technologies such as the advanced oxidation process have emerged as promising methods for treating household wastewater. Evaluating household water usage holds critical importance for the sustainability of water resources. Researchers and experts are examining various technological approaches to effectively treat and reclaim water for reuse. In this framework, the advanced oxidation process has proven to be an effective method for the removal of various organic and inorganic pollutants in the treatment of household wastewater. In this study, performance will be evaluated by comparing it with the reference case. This international criterion simulates the washing of home textile products, determining various performance parameters. The specially designed stain strips, including sebum, carbon black, blood, cocoa, and red wine, used in experiments, represent various household stains. These stain types were carefully selected to represent challenging stain scenarios, ensuring a realistic assessment of washing performance. Experiments conducted under different temperatures and program conditions successfully demonstrate the practical applicability of the advanced oxidation process for treating household wastewater. It is important to note that both adherence to standards and the use of real-life stain types contribute to the broad applicability of the findings. In conclusion, this study strongly supports the effectiveness of treating household wastewater with the advanced oxidation process in terms of washing performance under both standard and practical application conditions. The study underlines the importance of alternative solutions for sustainable water resource management and highlights the potential of the advanced oxidation process in the treatment of household water, contributing significantly to optimizing water usage and developing sustainable water management solutions.Keywords: advanced oxidation process, household water usage, household appliance waste water, modelling, water reuse
Procedia PDF Downloads 6515497 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia PDF Downloads 24515496 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches
Authors: Guerich Mohamed, Assaf Samir
Abstract:
The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam
Procedia PDF Downloads 14715495 Electrochemical Synthesis and Morphostructural Study of the Cuprite Thin Film
Authors: M. El Hajji, A. Hallaoui, L. Bazzi, A. Benlhachemi, Lh. Bazzi, M. Hilali, O. Jbara, A. Tara, B. Bakiz
Abstract:
The cathodic electro deposition of the cuprite Cu2O by chrono potentiometry is performed on two types of electrodes "titanium and stainless steel", in a basic medium containing the precursor of copper. The plot produced vs SCE, shows the formation of a brown layer on the electrode surface. The chrono potentiometric recording made between - 0.2 and - 1 mA/cm2, has allowed us to have a deposit having different morphologies and structural orientation obtained as a function of the variation of many parameters. The morphology, the size of crystals, and the phase of the deposits produced were studied by conventional techniques of analysis of the solid, particularly the X-ray diffraction (XRD), scanning electron microscopy analysis (SEM) and quantitative chemical analysis (EDS). The results will be presented and discussed, they show that the majority of deposits are pure and uniform.Keywords: cathodic electrodeposition, cuprite Cu2O, XRD, SEM, EDS analysis
Procedia PDF Downloads 41815494 Monotonicity of the Jensen Functional for f-Divergences via the Zipf-Mandelbrot Law
Authors: Neda Lovričević, Đilda Pečarić, Josip Pečarić
Abstract:
The Jensen functional in its discrete form is brought in relation to the Csiszar divergence functional, this time via its monotonicity property. This approach presents a generalization of the previously obtained results that made use of interpolating Jensen-type inequalities. Thus the monotonicity property is integrated with the Zipf-Mandelbrot law and applied to f-divergences for probability distributions that originate from the Csiszar divergence functional: Kullback-Leibler divergence, Hellinger distance, Bhattacharyya distance, chi-square divergence, total variation distance. The Zipf-Mandelbrot and the Zipf law are widely used in various scientific fields and interdisciplinary and here the focus is on the aspect of the mathematical inequalities.Keywords: Jensen functional, monotonicity, Csiszar divergence functional, f-divergences, Zipf-Mandelbrot law
Procedia PDF Downloads 14215493 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process
Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis
Abstract:
This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion
Procedia PDF Downloads 30615492 Carbon Nanotube Field Effect Transistor - a Review
Authors: P. Geetha, R. S. D. Wahida Banu
Abstract:
The crowning advances in Silicon based electronic technology have dominated the computation world for the past decades. The captivating performance of Si devices lies in sustainable scaling down of the physical dimensions, by that increasing device density and improved performance. But, the fundamental limitations due to physical, technological, economical, and manufacture features restrict further miniaturization of Si based devices. The pit falls are due to scaling down of the devices such as process variation, short channel effects, high leakage currents, and reliability concerns. To fix the above-said problems, it is needed either to follow a new concept that will manage the current hitches or to support the available concept with different materials. The new concept is to design spintronics, quantum computation or two terminal molecular devices. Otherwise, presently used well known three terminal devices can be modified with different materials that suits to address the scaling down difficulties. The first approach will occupy in the far future since it needs considerable effort; the second path is a bright light towards the travel. Modelling paves way to know not only the current-voltage characteristics but also the performance of new devices. So, it is desirable to model a new device of suitable gate control and project the its abilities towards capability of handling high current, high power, high frequency, short delay, and high velocity with excellent electronic and optical properties. Carbon nanotube became a thriving material to replace silicon in nano devices. A well-planned optimized utilization of the carbon material leads to many more advantages. The unique nature of this organic material allows the recent developments in almost all fields of applications from an automobile industry to medical science, especially in electronics field-on which the automation industry depends. More research works were being done in this area. This paper reviews the carbon nanotube field effect transistor with various gate configurations, number of channel element, CNT wall configurations and different modelling techniques.Keywords: array of channels, carbon nanotube field effect transistor, double gate transistor, gate wrap around transistor, modelling, multi-walled CNT, single-walled CNT
Procedia PDF Downloads 32615491 The Roles of Parental Involvement in the Teaching-Learning Process of Students with Special Needs: Perceptions of Special Needs Education Teachers
Authors: Chassel T. Paras, Tryxzy Q. Dela Cruz, Ma. Carmela Lousie V. Goingco, Pauline L. Tolentino, Carmela S. Dizon
Abstract:
In implementing inclusive education, parental involvement is measured to be an irreplaceable contributing factor. Parental involvement is described as an indispensable aspect of the teaching-learning process and has a remarkable effect on the student's academic performance. However, there are still differences in the viewpoints, expectations, and needs of both parents and teachers that are not yet fully conveyed in their relationship; hence, the perceptions of SNED teachers are essential in their collaboration with parents. This qualitative study explored how SNED teachers perceive the roles of parental involvement in the teaching-learning process of students with special needs. To answer this question, one-on-one face-to-face semi-structured interviews with three SNED teachers in a selected public school in Angeles City, Philippines, that offer special needs education services were conducted. The gathered data are then analyzed using Interpretative Phenomenological Analysis (IPA). The results revealed four superordinate themes, which include: (1) roles of parental involvement, (2) parental involvement opportunities, (3) barriers to parental involvement, and (4) parent-teacher collaboration practices. These results indicate that SNED teachers are aware of the roles and importance of parental involvement; however, despite parent-teacher collaboration, there are still barriers that impede parental involvement. Also, SNED teachers acknowledge the big roles of parents as they serve as main figures in the teaching-learning process of their children with special needs. Lastly, these results can be used as input in developing a school-facilitated parenting involvement framework that encompasses the contribution of SNED teachers in planning, developing, and evaluating parental involvement programs, which future researchers can also use in their studiesKeywords: parental involvement, special needs education, teaching-learning process, teachers’ perceptions, special needs education teachers, interpretative phenomenological analysis
Procedia PDF Downloads 11215490 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid
Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan
Abstract:
In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.Keywords: acid treatment, chemical extraction, sludge, waste management
Procedia PDF Downloads 19815489 Biological Treatment of Tannery Wastewater Using Pseudomonas Strains
Authors: A. Benhadji, R. Maachi
Abstract:
Environmental protection has become a major economic development issues. Indeed, the environment has become both market growth factor and element of competition. It is now an integral part of all industrial strategies. Ecosystem protection is based on the reduction of the pollution load in the treatment of liquid waste. The physicochemical techniques are commonly used which a transfer of pollution is generally found. Alternative to physicochemical methods is the use of microorganisms for cleaning up the waste waters. The objective of this research is the evaluation of the effects of exogenous added Pseudomonas strains on pollutants biodegradation. The influence of the critical parameters such as inoculums concentration and duration treatment are studied. The results show that Pseudomonas putida is found to give a maximum reduction in chemical organic demand (COD) in 4 days of incubation. However, toward to protect biological pollution of environment, the treatment is achieved by electro coagulation process using aluminium electrodes. The results indicate that this process allows disinfecting the water and improving the electro coagulated sludge quality.Keywords: tannery, pseudomonas, biological treatment, electrocoagulation process, sludge quality
Procedia PDF Downloads 36915488 Deep Q-Network for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, Gazebo, navigation
Procedia PDF Downloads 7715487 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R
Authors: Pavel H. Llamocca, Victoria Lopez
Abstract:
The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.Keywords: open data, R language, data integration, environmental data
Procedia PDF Downloads 31515486 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model
Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong
Abstract:
This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors
Procedia PDF Downloads 57015485 Characteristics and Durability Evaluation of Air Spring
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Air spring system is widely accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristic and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestically developed products are excellent. Moreover, to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line. Air spring developed by this study for railway vehicles can guarantee the reliability of average usage of 1 million times at 90% confidence level.Keywords: air spring, reliability, railway, service lifetime
Procedia PDF Downloads 47615484 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D
Authors: Nima E. Gorji
Abstract:
The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling
Procedia PDF Downloads 33015483 Statistical Modeling of Mandarin Tone Sandhi: Neutralization of Underlying Pitch Targets
Authors: Si Chen, Caroline Wiltshire, Bin Li
Abstract:
This study statistically models the surface f0 contour and the underlying pitch target of a well-studied third sandhi tone of Mandarin Chinese. Although the growth curve analysis on the surface f0 contours indicates non-neutralization of this sandhi tone (T3) and the base T2, their underlying pitch targets do show neutralization. These results in Mandarin are also consistent with the perception of native speakers, where they cannot distinguish the third T3 from the base T2, compensating contextual variation. It is possible to use the proposed statistical procedure of testing underlying pitch targets to verify tone sandhi processes in other tonal languages.Keywords: growth curve analysis, Mandarin Chinese, tone sandhi, underlying pitch target
Procedia PDF Downloads 33615482 Secure E-Voting Using Blockchain Technology
Authors: Barkha Ramteke, Sonali Ridhorkar
Abstract:
An election is an important event in all countries. Traditional voting has several drawbacks, including the expense of time and effort required for tallying and counting results, the cost of papers, arrangements, and everything else required to complete a voting process. Many countries are now considering online e-voting systems, but the traditional e-voting systems suffer a lack of trust. It is not known if a vote is counted correctly, tampered or not. A lack of transparency means that the voter has no assurance that his or her vote will be counted as they voted in elections. Electronic voting systems are increasingly using blockchain technology as an underlying storage mechanism to make the voting process more transparent and assure data immutability as blockchain technology grows in popularity. The transparent feature, on the other hand, may reveal critical information about applicants because all system users have the same entitlement to their data. Furthermore, because of blockchain's pseudo-anonymity, voters' privacy will be revealed, and third parties involved in the voting process, such as registration institutions, will be able to tamper with data. To overcome these difficulties, we apply Ethereum smart contracts into blockchain-based voting systems.Keywords: blockchain, AMV chain, electronic voting, decentralized
Procedia PDF Downloads 13815481 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic
Procedia PDF Downloads 20715480 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes
Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker
Abstract:
The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.Keywords: automation, battery production, carrier, advanced process control, cyber-physical system
Procedia PDF Downloads 33815479 Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer
Authors: Aastha Paliwal, H. N. Chanakya, S. Dasappa
Abstract:
Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots.Keywords: anaerobic digestion, bulk density, feed compaction, lignocellulose, lignocellulosic matrix, cellulose, hemicellulose, lignin, extractives, mass transfer
Procedia PDF Downloads 16815478 Performance of an Anaerobic Baffled Reactor (ABR) Treating High-Strength Food Industrial Wastewater with Fluctuating pH
Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa
Abstract:
As awareness of the variable nature of food industrial wastewater and its environmental impact grows, a more stable treatment reactor is needed to treat such wastewater. In this paper, a performance of 5-compartment lab-scale Anaerobic Baffled Reactor (ABR) treating high strength wastewater with high pH variation was studied under three organic loading rates (OLRs). The reactor showed high COD removal efficiencies: 92.67, 97.44, and 98.19% corresponding to OLRs of 2.0, 3.0, and 4.8 KgCOD/m3 d, respectively. The first compartment showed a good buffering capacity and a distinct phase separation occurred in the ABR.Keywords: anaerobic baffled reactor, food industrial wastewater, high strength wastewater, organic loading, pH
Procedia PDF Downloads 40015477 Evaluation of a Reconditioning Procedure for Batteries: Case Study on Li-Ion Batteries
Authors: I.-A. Ciobotaru, I.-E. Ciobotaru, D.-I. Vaireanu
Abstract:
Currently, an ascending trend of battery use may be observed, together with an increase of the generated amount of waste. Efforts have been focused on the recycling of batteries; however, extending their lifetime may be a more adequate alternative, and the development of such methods may prove to be more cost efficient as compared to recycling. In this context, this paper presents the analysis of a proposed process for the reconditioning of some lithium-ions batteries. The analysis is performed based on two criteria, the first one referring to the technical aspect of the reconditioning process and the second to the economic aspects. The main technical parameters taken into consideration are the values of capacitance and internal resistance of the lithium-ion batteries. The economic criterion refers to the evaluation of the efficiency of the reconditioning procedure reported to its total cost for the investigated lithium-ion batteries. Based on the cost analysis, one introduced a novel coefficient that correlates the efficiency of the aforementioned process and its corresponding costs. The reconditioning procedure for the lithium-ion batteries proposed in this paper proved to be valid, efficient, and with reasonable costs.Keywords: cost assessment, lithium-ion battery, reconditioning coefficient, reconditioning procedure
Procedia PDF Downloads 13815476 Comparison of Extracellular miRNA from Different Lymphocyte Cell Lines and Isolation Methods
Authors: Christelle E. Chua, Alicia L. Ho
Abstract:
The development of a panel of differential gene expression signatures has been of interest in the field of biomarker discovery for radiation exposure. In the absence of the availability of exposed human subjects, lymphocyte cell lines have often been used as a surrogate to human whole blood, when performing ex vivo irradiation studies. The extent of variation between different lymphocyte cell lines is currently unclear, especially with regard to the expression of extracellular miRNA. This study compares the expression profile of extracellular miRNA isolated from different lymphocyte cell lines. It also compares the profile of miRNA obtained when different exosome isolation kits are used. Lymphocyte cell lines were created using lymphocytes isolated from healthy adult males of similar racial descent (Chinese American and Chinese Singaporean) and immortalised with Epstein-Barr virus. The cell lines were cultured in exosome-free cell culture media for 72h and the cell culture supernatant was removed for exosome isolation. Two exosome isolation kits were used. Total exosome isolation reagent (TEIR, ThermoFisher) is a polyethylene glycol (PEG)-based exosome precipitation kit, while ExoSpin (ES, Cell Guidance Systems) is a PEG-based exosome precipitation kit that includes an additional size exclusion chromatography step. miRNA from the isolated exosomes were isolated using miRNEASY minikit (Qiagen) and analysed using nCounter miRNA assay (Nanostring). Principal component analysis (PCA) results suggested that the overall extracellular miRNA expression profile differed between the lymphocyte cell line originating from the Chinese American donor and the cell line originating from the Chinese Singaporean donor. As the gender, age and racial origins of both donors are similar, this may suggest that there are other genetic or epigenetic differences that account for the variation in extracellular miRNA gene expression in lymphocyte cell lines. However, statistical analysis showed that only 3 miRNA genes had a fold difference > 2 at p < 0.05, suggesting that the differences may not be of that great a significance as to impact overall conclusions drawn from different cell lines. Subsequent analysis using cell lines from other donors will give further insight into the reproducibility of results when difference cell lines are used. PCA results also suggested that the method of exosome isolation impacted the expression profile. 107 miRNA had a fold difference > 2 at p < 0.05. This suggests that the inclusion of an additional size exclusion chromatography step altered the subset of the extracellular vesicles that were isolated. In conclusion, these results suggest that extracellular miRNA can be isolated and analysed from exosomes derived from lymphocyte cell lines. However, care must be taken in the choice of cell line and method of exosome isolation used.Keywords: biomarker, extracellular miRNA, isolation methods, lymphocyte cell line
Procedia PDF Downloads 19915475 The Evolution of Man through Cranial and Dental Remains: A Literature Review
Authors: Rishana Bilimoria
Abstract:
Darwin’s insightful anthropological theory on the evolution drove mankind’s understanding of our existence in the natural world. Scientists consider analysis of dental and craniofacial remains to be pivotal in uncovering facts about our evolutionary journey. The resilient mineral content of enamel and dentine allow cranial and dental remains to be preserved for millions of years, making it an excellent resource not only in anthropology but other fields of research including forensic dentistry. This literature review aims to chronologically approach each ancestral species, reviewing Australopithecus, Paranthropus, Homo Habilis, Homo Rudolfensis, Homo Erectus, Homo Neanderthalis, and finally Homo Sapiens. Studies included in the review assess the features of cranio-dental remains that are of evolutionary importance, such as microstructure, microwear, morphology, and jaw biomechanics. The article discusses the plethora of analysis techniques employed to study dental remains including carbon dating, dental topography, confocal imaging, DPI scanning and light microscopy, in addition to microwear study and analysis of features such as coronal and root morphology, mandibular corpus shape, craniofacial anatomy and microstructure. Furthermore, results from these studies provide insight into the diet, lifestyle and consequently, ecological surroundings of each species. We can correlate dental fossil evidence with wider theories on pivotal global events, to help us contextualize each species in space and time. Examples include dietary adaptation during the period of global cooling converting the landscape of Africa from forest to grassland. Global migration ‘out of Africa’ can be demonstrated by enamel thickness variation, cranial vault variation over time demonstrates accommodation to larger brain sizes, and dental wear patterns can place the commencement of lithic technology in history. Conclusions from this literature review show that dental evidence plays a major role in painting a phenotypic and all rounded picture of species of the Homo genus, in particular, analysis of coronal morphology through carbon dating and dental wear analysis. With regards to analysis technique, whilst studies require larger sample sizes, this could be unrealistic since there are limitations in ability to retrieve fossil data. We cannot deny the reliability of carbon dating; however, there is certainly scope for the use of more recent techniques, and further evidence of their success is required.Keywords: cranio-facial, dental remains, evolution, hominids
Procedia PDF Downloads 16515474 A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages
Authors: Olivia A. Wilson, Hannah E. Power, Murray Kendall
Abstract:
Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.Keywords: emergency management, sydney, tide-tsunami interaction, tsunami impact
Procedia PDF Downloads 242