Search results for: phosphate industry
4029 Tensile Behavior of Oil Palm Fiber Concrete (OPFC) with Different Fiber Volume
Authors: Khairul Zahreen Mohd Arof, Rahimah Muhamad
Abstract:
Oil palm fiber (OPF) is a fibrous material produced from the waste of palm oil industry which is suitable to be used in construction industry. The applications of OPF in concrete can reduce the material costs and enhance concrete behavior. Dog-bone test provides significant results for investigating the behavior of fiber reinforced concrete under tensile loading. It is able to provide stress-strain profile, modulus of elasticity, stress at cracking point and total crack width. In this research, dog-bone tests have been conducted to analyze total crack width, stress-strain profile, and modulus of elasticity of OPFC. Specimens are in a dog-bone shape with a long notch in the middle as compared to the end, to ensure cracks occur only within the notch. Tests were instrumented using a universal testing machine Shimadzu 300kN, a linear variable differential transformer and two strain gauges. A total of nine specimens with different fibers at fiber volume fractions of 0.75%, 1.00%, and 1.25% have been tested to analyze the behavior under tensile loading. Also, three specimens of plain concrete fiber have been tested as control specimens. The tensile test of all specimens have been carried out for concrete age exceed 28 days. It shows that OPFC able to reduce total crack width. In addition, OPFC has higher cracking stress than plain concrete. The study shows plain concrete can be improved with the addition of OPF.Keywords: cracks, crack width, dog-bone test, oil palm fiber concrete
Procedia PDF Downloads 3424028 Prevalence and Factors Associated to Work Accidents in the Construction Sector in Benin: Cases of CFIR – Consulting
Authors: Antoine Vikkey Hinson, Menonli Adjobimey, Gemayel Ahmed Biokou, Rose Mikponhoue
Abstract:
Introduction: Construction industry is a critical concern with regard to Health and Safety Service worldwide. World health Organization revealed that work-related disease and trauma were held responsible for the death of one million nine hundred thousand people in 2016. The aim of this study it was to determine the prevalence and factors associated with the occurrence of work accidents in a construction industry in Benin. Method: It was a descriptive cross-sectional and analytical study. Data analysis was performed with R software 4.1.1. In multivariate analysis, we performed a binary logistic regression. OR adjusted (ORa) association measures and their 95% confidence interval [CI95%] were presented for the explanatory variables used in the final model. The significance threshold for all tests selected was 5% (p < 0.05) Result: In this study, 472 workers were included, and, of these, 452 (95.7%) were men corresponding to a sex ratio of 22.6. The average age of the workers was 33 years ± 8.8 years. Workers were mostly laborers (84.7%), and had declared having inadequate personal protective equipment (50.6%, n=239). The prevalence of work accidents is 50.8%. Collision with a rolling stock (25.8%), cut (16.2%), and stumbling (16.2%) were the main types of work accidents on the construction site. Four factors were associated with contributing to work accidents. Fatigue or exhaustion (ORa : 1.53[1.03 ; 2.28]); The use of dangerous tools (ORa : 1.81 [1.22 ; 2.71]); The various laborers’ jobs (ORa : 4.78 [2.62 ; 9.21]); and seniority in the company ≥ 4 years (ORa : 2.00 [1.35 ; 2.96]). Conclusion: This study allowed us to identify the associated factors. It is imperative to implement a rigorous policy of occupational health and security mostly the continuing training for workers safe, the supply of appropriate work tools and protectiveKeywords: prevalence, work accident, associated factors, construction, benin
Procedia PDF Downloads 554027 Accelerating Decision-Making in Oil and Gas Wells: 'A Digital Transformation Journey for Rapid and Precise Insights from Well History Data'
Authors: Linung Kresno Adikusumo, Ivan Ramos Sampe Immanuel, Liston Sitanggang
Abstract:
An excellent, well work program in the oil and gas industry can have numerous positive business impacts, contributing to operational efficiency, increased production, enhanced safety, and improved financial performance. In summary, an excellent, well work program not only ensures the immediate success of specific projects but also has a broader positive impact on the overall business performance and reputation of the oil and gas company. It positions the company for long-term success in a competitive and dynamic industry. Nevertheless, a number of challenges were encountered when developing a good work program, such as the poor quality and lack of integration of well documentation, the incompleteness of the well history, and the low accessibility of well documentation. As a result, the well work program was delivered less accurately, plus well damage was managed slowly. Our solution implementing digital technology by developing a web-based database and application not only solves those issues but also provides an easy-to-access report and user-friendly display for management as well as engineers to analyze the report’s content. This application aims to revolutionize the documentation of well history in the field of oil and gas exploration and production. The current lack of a streamlined and comprehensive system for capturing, organizing, and accessing well-related data presents challenges in maintaining accurate and up-to-date records. Our innovative solution introduces a user-friendly and efficient platform designed to capture well history documentation seamlessly.Keywords: digital, drilling, well work, application
Procedia PDF Downloads 754026 Sustainable Practices through Organizational Internal Factors among South African Construction Firms
Authors: Oluremi I. Bamgbade, Oluwayomi Babatunde
Abstract:
Governments and nonprofits have been in the support of sustainability as the goal of businesses especially in the construction industry because of its considerable impacts on the environment, economy, and society. However, to measure the degree to which an organisation is being sustainable or pursuing sustainable growth can be difficult as a result of the clear sustainability strategy required to assume their commitment to the goal and competitive advantage. This research investigated the influence of organisational culture and organisational structure in achieving sustainable construction among South African construction firms. A total of 132 consultants from the nine provinces in South Africa participated in the survey. The data collected were initially screened using SPSS (version 21) while Partial Least Squares Structural Equation Modeling (PLS-SEM) algorithm and bootstrap techniques were employed to test the hypothesised paths. The empirical evidence also supported the hypothesised direct effects of organisational culture and organisational structure on sustainable construction. Similarly, the result regarding the relationship between organisational culture and organisational structure was supported. Therefore, construction industry can record a considerable level of construction sustainability and establish suitable cultures and structures within the construction organisations. Drawing upon organisational control theory, these findings supported the view that these organisational internal factors have a strong contingent effect on sustainability adoption in construction project execution. The paper makes theoretical, practical and methodological contributions within the domain of sustainable construction especially in the context of South Africa. Some limitations of the study are indicated, suggesting opportunities for future research.Keywords: organisational culture, organisational structure, South African construction firms, sustainable construction
Procedia PDF Downloads 2874025 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization
Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi
Abstract:
Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm
Procedia PDF Downloads 794024 Value-Added Products from Recycling of Solid Waste in Steel Plants
Authors: B. Karthik Vasan, Rachil Maliwal, Somnath Basu
Abstract:
Generation of solid waste is a major problem confronting the iron and steel industry around the world. Disposal of untreated wastes is no longer a viable solution in view of the environmental regulations becoming more and more stringent, as well as an increase in community awareness about the long-term hazards of indiscriminate waste disposal. The current work explores the possibility of converting some of the ‘problematic’ solid wastes generated during steel manufacturing operations, viz. dust from primary steelmaking, iron ore handling, and flux calcination processes, into value-added products instead of environmentally hazardous disposal practices. It was possible to develop a synthetic calcium ferrite, which helped to enhance the dissolution of calcined basic fluxes (e.g. CaO) and reduce the overall energy consumption during steel making. This, in turn, increased process efficiency and reduced greenhouse gas emissions. The preliminary results from laboratory-scale experiments clearly demonstrate the potential of utilizing these ‘waste materials’ that are generated in-house in iron and steel manufacturing plants. The energy required for synthesis of the ferrite may be reduced further by partially utilizing the waste heat from the exhaust gases. In the longer run, it would result in significant financial benefits due to reduced dependence on purchased fluxes. The synthesized ferrite is non-hygroscopic and this provides an additional benefit during its storage and transportation, relative to calcined lime (CaO) that is widely used as a basic flux across the steel making industry.Keywords: calcium ferrite, flux, slag formation, solid waste
Procedia PDF Downloads 2134023 Characterization of Brewery Wastewater Composition
Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux
Abstract:
With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition
Procedia PDF Downloads 4514022 Development and Validation Method for Quantitative Determination of Rifampicin in Human Plasma and Its Application in Bioequivalence Test
Authors: Endang Lukitaningsih, Fathul Jannah, Arief R. Hakim, Ratna D. Puspita, Zullies Ikawati
Abstract:
Rifampicin is a semisynthetic antibiotic derivative of rifamycin B produced by Streptomyces mediterranei. RIF has been used worldwide as first line drug-prescribed throughout tuberculosis therapy. This study aims to develop and to validate an HPLC method couple with a UV detection for determination of rifampicin in spiked human plasma and its application for bioequivalence study. The chromatographic separation was achieved on an RP-C18 column (LachromHitachi, 250 x 4.6 mm., 5μm), utilizing a mobile phase of phosphate buffer/acetonitrile (55:45, v/v, pH 6.8 ± 0.1) at a flow of 1.5 mL/min. Detection was carried out at 337 nm by using spectrophotometer. The developed method was statistically validated for the linearity, accuracy, limit of detection, limit of quantitation, precise and specifity. The specifity of the method was ascertained by comparing chromatograms of blank plasma and plasma containing rifampicin; the matrix and rifampicin were well separated. The limit of detection and limit of quantification were 0.7 µg/mL and 2.3 µg/mL, respectively. The regression curve of standard was linear (r > 0.999) over a range concentration of 20.0 – 100.0 µg/mL. The mean recovery of the method was 96.68 ± 8.06 %. Both intraday and interday precision data showed reproducibility (R.S.D. 2.98% and 1.13 %, respectively). Therefore, the method can be used for routine analysis of rifampicin in human plasma and in bioequivalence study. The validated method was successfully applied in pharmacokinetic and bioequivalence study of rifampicin tablet in a limited number of subjects (under an Ethical Clearance No. KE/FK/6201/EC/2015). The mean values of Cmax, Tmax, AUC(0-24) and AUC(o-∞) for the test formulation of rifampicin were 5.81 ± 0.88 µg/mL, 1.25 hour, 29.16 ± 4.05 µg/mL. h. and 29.41 ± 4.07 µg/mL. h., respectively. Meanwhile for the reference formulation, the values were 5.04 ± 0.54 µg/mL, 1.31 hour, 27.20 ± 3.98 µg/mL.h. and 27.49 ± 4.01 µg/mL.h. From bioequivalence study, the 90% CIs for the test formulation/reference formulation ratio for the logarithmic transformations of Cmax and AUC(0-24) were 97.96-129.48% and 99.13-120.02%, respectively. According to the bioequivamence test guidelines of the European Commission-European Medicines Agency, it can be concluded that the test formulation of rifampicin is bioequivalence with the reference formulation.Keywords: validation, HPLC, plasma, bioequivalence
Procedia PDF Downloads 2884021 A Study of Basic and Reactive Dyes Removal from Synthetic and Industrial Wastewater by Electrocoagulation Process
Authors: Almaz Negash, Dessie Tibebe, Marye Mulugeta, Yezbie Kassa
Abstract:
Large-scale textile industries use large amounts of toxic chemicals, which are very hazardous to human health and environmental sustainability. In this study, the removal of various dyes from effluents of textile industries using the electrocoagulation process was investigated. The studied dyes were Reactive Red 120 (RR-120), Basic Blue 3 (BB-3), and Basic Red 46 (BR-46), which were found in samples collected from effluents of three major textile factories in the Amhara region, Ethiopia. For maximum removal, the dye BB-3 required an acidic pH 3, RR120 basic pH 11, while BR-46 neutral pH 7 conditions. BB-3 required a longer treatment time of 80 min than BR46 and RR-120, which required 30 and 40 min, respectively. The best removal efficiency of 99.5%, 93.5%, and 96.3% was achieved for BR-46, BB-3, and RR-120, respectively, from synthetic wastewater containing 10 mg L1of each dye at an applied potential of 10 V. The method was applied to real textile wastewaters and 73.0 to 99.5% removal of the dyes was achieved, Indicating Electrocoagulation can be used as a simple, and reliable method for the treatment of real wastewater from textile industries. It is used as a potentially viable and inexpensive tool for the treatment of textile dyes. Analysis of the electrochemically generated sludge by X-ray Diffraction, Scanning Electron Microscope, and Fourier Transform Infrared Spectroscopy revealed the expected crystalline aluminum oxides (bayerite (Al(OH)3 diaspore (AlO(OH)) found in the sludge. The amorphous phase was also found in the floc. Textile industry owners should be aware of the impact of the discharge of effluents on the Ecosystem and should use the investigated electrocoagulation method for effluent treatment before discharging into the environment.Keywords: electrocoagulation, aluminum electrodes, Basic Blue 3, Basic Red 46, Reactive Red 120, textile industry, wastewater
Procedia PDF Downloads 524020 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 294019 Vocational Education for Sustainable Development: Teaching Methods and Practices
Authors: Seyilnan Hannah Wadak, Dangway Monica Clement
Abstract:
This theoretical study explores distinct teaching methods and practices for integrating sustainable development principles into vocational education. It examines how vocational institutions can prepare students for a sustainability-oriented workforce while addressing environmental and social challenges. The research analyzes current literature, case studies, and emerging trends to identify effective strategies for incorporating sustainability across various vocational disciplines. Key approaches discussed include experiential learning, green skills training, and interdisciplinary projects that simulate real-world sustainability challenges. The study also investigates the role of technology, such as virtual reality and online collaboration tools, in enhancing sustainability education. Additionally, it addresses the importance of industry partnerships and community engagement in creating relevant, practical learning experiences. The paper highlights potential barriers to implementation and proposes solutions for overcoming them, including professional development for educators and curriculum redesign. Findings suggest that integrating sustainability into vocational education not only enhances students’ employability but also contributes to broader societal goals of sustainable development. This research provides a comprehensive framework for educational institutions and policymakers to transform vocational programs, ensuring they meet the evolving demands of a sustainable future.Keywords: vocational education, sustainable development, teaching methods, experiential learning, green skills, curriculum integration, industry partnerships, educational technology
Procedia PDF Downloads 284018 Efficiency and Scale Elasticity in Network Data Envelopment Analysis: An Application to International Tourist Hotels in Taiwan
Authors: Li-Hsueh Chen
Abstract:
Efficient operation is more and more important for managers of hotels. Unlike the manufacturing industry, hotels cannot store their products. In addition, many hotels provide room service, and food and beverage service simultaneously. When efficiencies of hotels are evaluated, the internal structure should be considered. Hence, based on the operational characteristics of hotels, this study proposes a DEA model to simultaneously assess the efficiencies among the room production division, food and beverage production division, room service division and food and beverage service division. However, not only the enhancement of efficiency but also the adjustment of scale can improve the performance. In terms of the adjustment of scale, scale elasticity or returns to scale can help to managers to make decisions concerning expansion or contraction. In order to construct a reasonable approach to measure the efficiencies and scale elasticities of hotels, this study builds an alternative variable-returns-to-scale-based two-stage network DEA model with the combination of parallel and series structures to explore the scale elasticities of the whole system, room production division, food and beverage production division, room service division and food and beverage service division based on the data of international tourist hotel industry in Taiwan. The results may provide valuable information on operational performance and scale for managers and decision makers.Keywords: efficiency, scale elasticity, network data envelopment analysis, international tourist hotel
Procedia PDF Downloads 2234017 Development of High Strength Self Curing Concrete Using Super Absorbing Polymer
Authors: K. Bala Subramanian, A. Siva, S. Swaminathan, Arul. M. G. Ajin
Abstract:
Concrete is an essential building material which is widely used in construction industry all over the world due to its compressible strength. Curing of concrete plays a vital role in durability and other performance necessities. Improper curing can affect the concrete performance and durability easily. When areas like scarcity of water, structures is not accessible by humans external curing cannot be performed, so we opt for internal curing. Internal curing (or) self-curing plays a major role in developing the concrete pore structure and microstructure. The concept of internal curing is to enhance the hydration process to maintain the temperature uniformly. The evaporation of water in the concrete is reduced by self-curing agent (Super Absorbing Polymer – SAP) thereby increasing the water retention capacity of the concrete. The research work was carried out to reduce water, which is prime material used for concrete in the construction industry. Concrete curing plays a major role in developing hydration process. Concept of self-curing will reduce the evaporation of water from concrete. Self-curing will increase water retention capacity as compared to the conventional concrete. Proper self-curing (or) internal curing increases the strength, durability and performance of concrete. Super absorbing Polymer (SAP) used as internal curing agent. In this study 0.2% to 0.4% of SAP was varied in different grade of high strength concrete. In the experiment replacement of cement by silica fumes with 5%, 10% and 15% are studied. It is found that replacement of silica fumes by 10 % gives more strength and durability when compared to othersKeywords: compressive strength, high strength concrete rapid chloride permeability, super absorbing polymer
Procedia PDF Downloads 3774016 Consequences of Some Remediative Techniques Used in Sewaged Soil Bioremediation on Indigenous Microbial Activity
Authors: E. M. Hoballah, M. Saber, A. Turky, N. Awad, A. M. Zaghloul
Abstract:
Remediation of cultivated sewage soils in Egypt become an important aspect in last decade for having healthy crops and saving the human health. In this respect, a greenhouse experiment was conducted where contaminated sewage soil was treated with modified forms of 2% bentonite (T1), 2% kaolinite (T2), 1% bentonite+1% kaolinite (T3), 2% probentonite (T4), 2% prokaolinite (T5), 1% bentonite + 0.5% kaolinite + 0.5% rock phosphate (RP) (T6), 2% iron oxide (T7) and 1% iron oxide + 1% RP (T8). These materials were applied as remediative materials. Untreated soil was also used as a control. All soil samples were incubated for 2 months at 25°C at field capacity throughout the whole experiment. Carbon dioxide (CO2) efflux from both treated and untreated soils as a biomass indicator was measured through the incubation time and kinetic parameters of the best fitted models used to describe the phenomena were taken to evaluate the succession of sewaged soils remediation. The obtained results indicated that according to the kinetic parameters of used models, CO2 effluxes from remediated soils was significantly decreased compared to control treatment with variation in rate values according to type of remediation material applied. In addition, analyzed microbial biomass parameter showed that Ni and Zn were the most potential toxic elements (PTEs) that influenced the decreasing order of microbial activity in untreated soil. Meanwhile, Ni was the only influenced pollutant in treated soils. Although all applied materials significantly decreased the hazards of PTEs in treated soil, modified bentonite was the best treatment compared to other used materials. This work discussed different mechanisms taking place between applied materials and PTEs founded in the studied sewage soil.Keywords: remediation, potential toxic elements, soil biomass, sewage
Procedia PDF Downloads 2274015 Microbial Reduction of Terpenes from Pine Wood Material
Authors: Bernhard Widhalm, Cornelia Rieder-Gradinger, Thomas Ters, Ewald Srebotnik, Thomas Kuncinger
Abstract:
Terpenes are natural components in softwoods and rank among the most frequently emitted volatile organic compounds (VOC) in the wood-processing industry. In this study, the main focus was on α- and β-pinene as well as Δ3-carene, which are the major terpenes in softwoods. To lower the total emission level of wood composites, defined terpene degrading microorganisms were applied to basic raw materials (e.g. pine wood particles and strands) in an optimised and industry-compatible testing procedure. In preliminary laboratory tests, bacterial species suitable for the utilisation of α-pinene as single carbon source in liquid culture were selected and then subjected to wood material inoculation. The two species Pseudomonas putida and Pseudomonas fluorescens were inoculated onto wood particles and strands and incubated at room temperature. Applying specific pre-cultivation and daily ventilation of the samples enabled a reduction of incubation time from six days to one day. SPME measurements and subsequent GC-MS analysis indicated a complete absence of α- and β-pinene emissions after 24 hours from pine wood particles. When using pine wood strands rather than particles, bacterial treatment resulted in a reduction of α- and β-pinene by 50%, while Δ3-carene emissions were reduced by 30% in comparison to untreated strands. Other terpenes were also reduced in the course of the microbial treatment. The method developed here appears to be feasible for industrial application. However, growth parameters such as time and temperature as well as the technical implementation of the inoculation step will have to be adapted for the production process.Keywords: GC-MS, pseudomonas, SPME, terpenes
Procedia PDF Downloads 3454014 The Application and Relevance of Costing Techniques in Service Oriented Business Organisations: A Review of the Activity-Based Costing (ABC) Technique
Authors: Udeh Nneka Evelyn
Abstract:
The shortcomings of traditional costing system, in terms of validity, accuracy, consistency and relevance increased the need for modern management accounting system. ABC (Activity-Based Costing) can be used as a modern tool for planning, control and decision making for management. Past studies on activity-based costing (ABC) system have focused on manufacturing firms thereby making the studies on service firms scanty to some extent. This paper reviewed the application and relevance of activity-based costing techniques in service oriented business organisations by employing a qualitative research method which relied heavily on literature review of past and current relevant articles focusing on activity-based costing (ABC). Findings suggest that ABC is not only appropriate for use in a manufacturing environment; it is also most appropriate for service organizations such as financial institutions, the healthcare industry, and government organizations. In fact, some banking and financial institutions have been applying the concept for years under other names. One of them is unit costing, which is used to calculate the cost of banking services by determining the cost and consumption of each unit of output of functions required to deliver the service. ABC in very basic terms may provide very good payback for businesses. Some of the benefits that relate directly to the financial services industry are: Identification of the most profitable customers; more accurate product and service pricing; increase product profitability; well-organized process costs.Keywords: profitability, activity-based costing (ABC), management accounting, manufacture
Procedia PDF Downloads 5794013 Evaluation of Biological Seed Coating Technology On-Field Performance of Wheat in Regenerative Agriculture and Conventional Systems
Authors: S. Brain, P. J. Storer, H. Strydom, Z. M. Solaiman
Abstract:
Increasing farmer awareness of soil health, the impact of agricultural management practices, and the requirement for high-quality agricultural produce are major factors driving the rapid adoption of biological seed treatments - currently valued globally at USD 1.5 billion. Biological seed coatings with multistrain plant beneficial microbial technology have the capability to affect plant establishment, growth, and development positively. These beneficial plant microbes can potentially increase soil health, plant yield, and nutrition – acting as bio fertilisers, rhizoremediators, phytostimulators, and stress modulators, and can ultimately reduce the overall use of agrichemicals. A field trial was conducted on MACE wheat in the central wheat belt of Western Australia to evaluate a proprietary seed coating technology (Langleys Bio-EnergeticTM Microbe blend (BMB)) on a conventional program (+/- BMB microbes) and a Regenerative Biomineral fertiliser program (+/- BMB microbes). The Conventional (+BMB) and Biomineral (+BMB) treated plants had no fungicide treatments and had no disease issues. Control (No fertiliser, No microbes), Conventional (No Microbes), and Biomineral (No Microbes) were treated with fungicides (seed dressing and foliar). From the research findings, compared to control and no microbe treatments, both the Conventional (+ BMB) and Biomineral (+ BMB) showed significant increases in Soil Carbon (SOC), Seed germination, nutrient use efficiency (NUE) of nitrogen, phosphate and mineral nutrients, grain mineral nutrient uptake, protein %, hectolitre weight, and fewer screenings, yield, and gross margins.Keywords: biological seed coating, biomineral fertiliser, plant nutrition, regenerative and conventional agriculture
Procedia PDF Downloads 774012 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics
Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar
Abstract:
Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic
Procedia PDF Downloads 474011 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education
Procedia PDF Downloads 1294010 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue
Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez
Abstract:
Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial
Procedia PDF Downloads 3714009 Investigating the Effect of Brand Equity on Competitive Advantage in the Banking Industry
Authors: Rohollah Asadian Kohestani, Nazanin Sedghi
Abstract:
As the number of banks and financial institutions working in Iran has been significantly increased, the attracting and retaining customers and encouraging them to continually use the modern banking services have been important and vital issues. Therefore, there would be a serious competition without a deep perception of consumers and fitness of banking services with their needs in the current economic conditions of Iran. It should be noted that concepts such as 'brand equity' is defined based on the view of consumers; however, it is also focused by shareholders, competitors and other beneficiaries of a firm in addition to bank and its consumers. This study examines the impact of brand equity on the competitive advantage in the banking industry as intensive competition between brands of different banks leads to pay more attention to the brands. This research is based on the Aaker’s model examining the impact of four dimensions of brand equity on the competitive advantage of private banks in Behshahr city. Moreover, conducting an applied research and data analysis has been carried out by a descriptive method. Data collection was done using literature review and questionnaire. A 'simple random' methodology was selected for sampling staff of banks while sampling methodology to select consumers of banks was the distribution of questionnaire between staff and consumers of five private banks including Tejarat, Mellat, Refah K., Ghavamin and, Tose’e Ta’avon banks. Results show that there is a significant relationship between brand equity and their competitive advantage. In this research, software of SPSS 16 and LISREL 8.5, as well as different methods of descriptive inferential statistics for analyzing data and test hypotheses, were employed.Keywords: brand awareness, brand loyalty, brand equity, competitive advantage
Procedia PDF Downloads 1374008 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry
Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal
Abstract:
The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.Keywords: automotive industry, FMEA, control plan, automotive technology
Procedia PDF Downloads 4054007 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission
Authors: V. Mentl, V. Koula, P. Mazal, J. Volák
Abstract:
Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.Keywords: fatigue, crack growth rate, acoustic emission, material damage
Procedia PDF Downloads 3704006 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation
Authors: Arezoo Assarian, Reza Javaherdashti
Abstract:
Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)
Procedia PDF Downloads 1664005 Tourism and Hospitality Education Efficiency Management: The Case of the Tourism Department of Sultan Qaboos University
Authors: Tamer Mohamed Atef
Abstract:
The tourism and hospitality education is a branch of the overall tourism and hospitality industry that is dedicated to providing the industry with well-educated, well-trained, skilled, enthusiastic and committed workforce. The Tourism Department at the College of Arts and Social Sciences (Sultan Qaboos University), Oman, has been providing the Omani society with undergraduate tourism and hospitality educational services since Fall 2001. Despite the fact that Tourism Department graduates are not facing any employment concerns, fluctuation in the number of enrollees and graduates, however, has been a significant characteristic since the inception of the program. To address this concern, several tactical and strategic decisions have been made, notably that the program has received accreditation from two prestigious international accreditation institutions, which mark two major milestones in the educational journey of the Tourism Department. The current study, thus, aims to provide a tourism and hospitality education efficiency management model. To achieve this aim, the following objectives were identified: to analyze students in - graduates out matrix, and to assess graduates’ employment trends. A survey was conducted to assess the current employment status of the department graduates. Secondary data were collected from Deanship of Admission and Registration statistical reports on the Tourism Department. Data were tabulated and analyzed in such a way that set forth the major findings from the survey and the secondary data. This study sheds light on the educational system created and followed by the Tourism Department, in an effort to provide a tourism and hospitality education efficiency management model, that would help educators and administrators better manage their programs.Keywords: tourism, hospitality, education, students, graduates, employability, indicators
Procedia PDF Downloads 3464004 Urban Land Use Type Analysis Based on Land Subsidence Areas Using X-Band Satellite Image of Jakarta Metropolitan City, Indonesia
Authors: Ratih Fitria Putri, Josaphat Tetuko Sri Sumantyo, Hiroaki Kuze
Abstract:
Jakarta Metropolitan City is located on the northwest coast of West Java province with geographical location between 106º33’ 00”-107º00’00”E longitude and 5º48’30”-6º24’00”S latitude. Jakarta urban area has been suffered from land subsidence in several land use type as trading, industry and settlement area. Land subsidence hazard is one of the consequences of urban development in Jakarta. This hazard is caused by intensive human activities in groundwater extraction and land use mismanagement. Geologically, the Jakarta urban area is mostly dominated by alluvium fan sediment. The objectives of this research are to make an analysis of Jakarta urban land use type on land subsidence zone areas. The process of producing safer land use and settlements of the land subsidence areas are very important. Spatial distributions of land subsidence detection are necessary tool for land use management planning. For this purpose, Differential Synthetic Aperture Radar Interferometry (DInSAR) method is used. The DInSAR is complementary to ground-based methods such as leveling and global positioning system (GPS) measurements, yielding information in a wide coverage area even when the area is inaccessible. The data were fine tuned by using X-Band image satellite data from 2010 to 2013 and land use mapping data. Our analysis of land use type that land subsidence movement occurred on the northern part Jakarta Metropolitan City varying from 7.5 to 17.5 cm/year as industry and settlement land use type areas.Keywords: land use analysis, land subsidence mapping, urban area, X-band satellite image
Procedia PDF Downloads 2734003 Research on Characteristics and Inventory Planning Counter-Measure of Mature Industrial Zones in the Background of China's New Normal
Authors: Dong Chen, Han Song, Tingting Wei
Abstract:
Industrial zones have made significant contributions to the economic development of Chinese urban areas for decades. In the background of China's New Normal, numbers of mature industrial zones are stepping into a new stage of inventory development instead of increment development. The aim of this study is to discover new characteristics and problems and corresponding inventory planning guidance of mature industrial zones. A case of Yangzhou Hi-Tech Industrial Development Zone is reported in this study. Based on a historical analysis and data analysis of land-use, it is found that land-use of the zone is near saturation and signs of land updating have begun to appear. It is observed that the zone is facing problems including disorder of land development, low economic productivity and single function. Through the data of economic output, tax contribution, industrial category, industry life cycle and environmental influence, a comprehensive assessment based on two dimensions, economic benefits and industrial matchup, is made upon every parcel in the zone. According to the assessment, the zone is divided into spatial units of the update with specific planning guidance. It comes to a conclusion as four directions of inventory planning guidance in mature industrial zones: moving industries with poor economic benefit and negative environmental influence, adding urban function and new industrial function to the zone, optimizing the function of important space, and restricting the mass layout of the real estate industry to provide space for industrial upgrading.Keywords: China's new normal, mature industrial zones, land-use, inventory planning
Procedia PDF Downloads 4514002 Relevant Stakeholders in Environmental Management Organization: The Case of Industries Três Rios/RJ
Authors: Beatriz dos Anjos Furtado, Marina Barreiros Lamim, Camila Avozani Zago, Julianne Alvim Milward-de-Azevedo, Luís Cláudio Meirelles de Medeiros
Abstract:
The intense process of economic acceleration, expansion of industrial activities and capitalism, combined with population growth, while promoting the development, bring environmental consequences and dynamics of locations. It can be seen that society is seeking to break with old paradigms of capitalist society, seeking to reconcile growth with sustainable development, with a change of mentality of the stakeholders of the production process (shareholders, employees, suppliers, customers, governments, and neighbors, groups citizens and the public in general). In this context, this research aims to map the stakeholders interested in environmental management in industries located in the city of Três Rios/RJ. The city of Três Rios is located in South-Central region of the state of Rio de Janeiro - Brazil. Methodological resources used refer to descriptive and field research, whose nature is qualitative and quantitative. It is also of multicases studies in the study area, and the data collection occurred by means of semi-structured questionnaires and interviews with employees related to the environmental area of the industries located in Três Rios and registered at the Federation of Industries the State of Rio de Janeiro - FIRJAN in the version of 2013 and active in federal revenue. Through this research it observed, among other things, the stakeholders involved in the environmental management process of “Três Rios” industry respondents, and those responding to the demands of environmental management.Keywords: stakeholders, environmental management, industry, state, customer
Procedia PDF Downloads 4874001 Potential of Palm Oil Mill Effluent in Algae Cultivation for Biodiesel Production
Authors: Nur Azreena Idris, Soh Kheang Loh, Harrison Lau Lik Nang, Yuen May Choo, Eminour Muzalina Mustafa, Vijaysri Vello, Cheng Yau Tan, Siew Moi Phang
Abstract:
It is estimated that about 0.65-0.67 m3 of palm oil mill effluent (POME) is generated when one tonne of fresh fruit bunches is processed. Owning to the high content of nutrients in POME, it has high potential as a medium for microalgae growth. This study attempted determining the growth rate, biomass productivity and biochemical composition of microalgae (Chlorella sp.) grown in different POME concentrations i.e. 6.25%, 12.5%, 25% and 50% at outdoor conditions using a 200-mL capacity high rate algae pond (HRAP) and 2 closed photobioreactors (PBRs) i.e. annular and flat panel. The strain, Chlorella sp. grown on 12.5% of POME in flat panel PBR exhibited the highest specific growth rate of 0.32/day and biomass productivity (27.1 mg/L/day) followed by those in HRAP and annular PBR. It further showed that a good growth of Chlorella sp. in 12.5% of POME could sufficiently reduce the nutrients of POME such as phosphate (PO4), nitrate (NO3), nitrite (NO2) and chemical oxygen demand (COD). The extracted algal oil from POME culture showed that the saturated fatty acids decreased while polyunsaturated fatty acids increased compared to those cultured in standard culture medium (Bold’s Basal medium). The biochemical compositions of the algae grown in flat panel PBR were the highest with lipid, protein and carbohydrate productivity of 17.91 mg/L/day, 34.65 mg/L/day and 21.44 mg/L/day, respectively. The microalgae cultivation in diluted POME had not only shown potential as biodiesel feedstock based on the fatty acids profile but also the ability to reduce pollutants e.g. PO4, NO3, NO2 and COD in biological wastewater treatment.Keywords: wastewater treatment, photobioreactors, biomass productivity, specific growth rate
Procedia PDF Downloads 2634000 Exploration of Industrial Symbiosis Opportunities with an Energy Perspective
Authors: Selman Cagman
Abstract:
A detailed analysis is made within an organized industrial zone (OIZ) that has 1165 production facilities such as manufacturing of furniture, fabricated metal products (machinery and equipment), food products, plastic and rubber products, machinery and equipment, non-metallic mineral products, electrical equipment, textile products, and manufacture of wood and cork products. In this OIZ, a field study is done by choosing some facilities that can represent the whole OIZ sectoral distribution. In this manner, there are 207 facilities included to the site visit, and there is a 17 questioned survey carried out with each of them to assess their inputs, outputs, and waste amounts during manufacturing processes. The survey result identify that MDF/Particleboard and chipboard particles, textile, food, foam rubber, sludge (treatment sludge, phosphate-paint sludge, etc.), plastic, paper and packaging, scrap metal (aluminum shavings, steel shavings, iron scrap, profile scrap, etc.), slag (coal slag), ceramic fracture, ash from the fluidized bed are the wastes come from these facilities. As a result, there are 5 industrial symbiosis projects established with this study. One of the projects is a 2.840 kW capacity Integrated Biomass Based Waste Incineration-Energy Production Facility running on 35.000 tons/year of MDF particles and chipboard waste. Another project is a biogas plant with 225 tons/year whey, 100 tons/year of sesame husk, 40 tons/year of burnt wafer dough, and 2.000 tons/year biscuit waste. These two plants investment costs and operational costs are given in detail. The payback time of the 2.840 kW plant is almost 4 years and the biogas plant is around 6 years.Keywords: industrial symbiosis, energy, biogas, waste to incineration
Procedia PDF Downloads 105