Search results for: directional earth fault
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1863

Search results for: directional earth fault

93 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 211
92 Semantic Differential Technique as a Kansei Engineering Tool to Enquire Public Space Design Requirements: The Case of Parks in Tehran

Authors: Nasser Koleini Mamaghani, Sara Mostowfi

Abstract:

The complexity of public space design makes it difficult for designers to simultaneously consider all issues for thorough decision-making. Among public spaces, the public space around people’s house is the most prominent space that affects and impacts people’s daily life. Considering recreational public spaces in cities, their main purpose would be to design for experiences that enable a deep feeling of peace and a moment of being away from the hectic daily life. Respecting human emotions and restoring natural environments, although difficult and to some extent out of reach, are key issues for designing such spaces. In this paper we propose to analyse the structure of recreational public spaces and the related emotional impressions. Furthermore, we suggest investigating how these structures influence people’s choice for public spaces by using differential semantics. According to Kansei methodology, in order to evaluate a situation appropriately, the assessment variables must be adapted to the user’s mental scheme. This means that the first step would have to be the identification of a space’s conceptual scheme. In our case study, 32 Kansei words and 4 different locations, each with a different sensual experience, were selected. The 4 locations were all parks in the city of Tehran (Iran), each with a unique structure and artifacts such as a fountain, lighting, sculptures, and music. It should be noted that each of these parks has different combination and structure of environmental and artificial elements like: fountain, lightning, sculpture, music (sound) and so forth. The first one was park No.1, a park with natural environment, the selected space was a fountain with motion light and sculpture. The second park was park No.2, in which there are different styles of park construction: ways from different countries, the selected space was traditional Iranian architecture with a fountain and trees. The third one was park No.3, the park with modern environment and spaces, and included a fountain that moved according to music and lighting. The fourth park was park No.4, the park with combination of four elements: water, fire, earth, wind, the selected space was fountains squirting water from the ground up. 80 participant (55 males and 25 females) aged from 20-60 years participated in this experiment. Each person filled the questionnaire in the park he/she was in. Five-point semantic differential scale was considered to determine the relation between space details and adjectives (kansei words). Received data were analyzed by multivariate statistical technique (factor analysis using SPSS statics). Finally the results of this analysis are criteria as inspiration which can be used in future space designing for creating pleasant feeling in users.

Keywords: environmental design, differential semantics, Kansei engineering, subjective preferences, space

Procedia PDF Downloads 408
91 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 173
90 Carbon Dioxide Capture and Utilization by Using Seawater-Based Industrial Wastewater and Alkanolamine Absorbents

Authors: Dongwoo Kang, Yunsung Yoo, Injun Kim, Jongin Lee, Jinwon Park

Abstract:

Since industrial revolution, energy usage by human-beings has been drastically increased resulting in the enormous emissions of carbon dioxide into the atmosphere. High concentration of carbon dioxide is well recognized as the main reason for the climate change by breaking the heat equilibrium of the earth. In order to decrease the amount of carbon dioxide emission, lots of technologies have been developed. One of the methods is to capture carbon dioxide after combustion process using liquid type absorbents. However, for some nations, captured carbon dioxide cannot be treated and stored properly due to their geological structures. Also, captured carbon dioxide can be leaked out when crust activities are active. Hence, the method to convert carbon dioxide as stable and useful products were developed. It is usually called CCU, that is, Carbon Capture and Utilization. There are several ways to convert carbon dioxide into useful substances. For example, carbon dioxide can be converted and used as fuels such as diesel, plastics, and polymers. However, these types of technologies require lots of energy to make stable carbon dioxide into a reactive one. Hence, converting it into metal carbonates salts have been studied widely. When carbon dioxide is captured by alkanolamine-based liquid absorbents, it exists as ionic forms such as carbonate, carbamate, and bicarbonate. When adequate metal ions are added, metal carbonate salt can be produced by ionic reaction with fast reaction kinetics. However, finding metal sources can be one of the problems for this method to be commercialized. If natural resources such as calcium oxide were used to supply calcium ions, it is not thought to have the economic feasibility to use natural resources to treat carbon dioxide. In this research, high concentrated industrial wastewater produced from refined salt production facility have been used as metal supplying source, especially for calcium cations. To ensure purity of final products, calcium ions were selectively separated in the form of gypsum dihydrate. After that, carbon dioxide is captured using alkanolamine-based absorbents making carbon dioxide into reactive ionic form. And then, high purity calcium carbonate salt was produced. The existence of calcium carbonate was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) images. Also, carbon dioxide loading curves for absorption, conversion, and desorption were provided. Also, in order to investigate the possibility of the absorbent reuse, reabsorption experiments were performed either. Produced calcium carbonate as final products is seemed to have potential to be used in various industrial fields including cement and paper making industries and pharmaceutical engineering fields.

Keywords: alkanolamine, calcium carbonate, climate change, seawater, industrial wastewater

Procedia PDF Downloads 187
89 The Four Elements of Zoroastrianism and Sustainable Ecosystems with an Ecological Approach

Authors: Esmat Momeni, Shabnam Basari, Mohammad Beheshtinia

Abstract:

The purpose of this study is to provide a symbolic explanation of the four elements in Zoroastrianism and sustainable ecosystems with an ecological approach. The research method is fundamental and deductive content analysis. Data collection has been done through library and documentary methods and through reading books and related articles. The population and sample of the present study are Yazd city and Iran country after discovering symbolic concepts derived from the theoretical foundations of Zoroastrianism in four elements of water, air, soil, fire and conformity with Iranian architecture with the ecological approach in Yazd city, the sustainable ecosystem it is explained by the system of nature. The validity and reliability of the results are based on the trust and confidence of the research literature. Research findings show that Yazd was one of the bases of Zoroastrianism in Iran. Many believe that the first person to discuss the elements of nature and respect Zoroastrians is the Prophet of this religion. Keeping the environment clean and pure by paying attention to and respecting these four elements. The water element is a symbol of existence in Zoroastrianism, so the people of Yazd used the aqueduct and designed a pool in front of the building. The soil element is a symbol of the raw material of human creation in the Zoroastrian religion, the most readily available material in the desert areas of Yazd, used as bricks and adobes, creating one of the most magnificent roof coverings is the dome. The wind element represents the invisible force of the soul in Creation in Zoroastrianism, the most important application of wind in the windy, which is a highly efficient cooling system. The element of fire, which is always a symbol of purity in Zoroastrianism, is located in a special place in Yazd's Ataskadeh (altar/ temple), where the most important religious prayers are held in and against the fire. Consequently, indigenous knowledge and attention to indigenous architecture is a part of the national capital of each nation that encompasses their beliefs, values, methods, and knowledge. According to studies on the four elements of Zoroastrianism, the link between these four elements are that due to the hot and dry fire at the beginning, it is the fire that begins to follow the nature of the movement in the stillness of the earth, and arises from the heat of the fire and because of vigor and its decreases, cold (wind) emerges, and from cold, humidity and wetness. And by examining books and resources on Yazd's architectural design with an ecological approach to the values of the four elements Zoroastrianism has been inspired, it can be concluded that in order to have environmentally friendly architecture, it is essential to use sustainable architectural principles, to link religious and sacrament culture and ecology through architecture.

Keywords: ecology, architecture, quadruple elements of air, soil, water, fire, Zoroastrian religion, sustainable ecosystem, Iran, Yazd city

Procedia PDF Downloads 117
88 Training Manual of Organic Agriculture Farming for the Farmers: A Case Study from Kunjpura and Surrounding Villages

Authors: Rishi Pal Singh

Abstract:

In Indian Scenario, Organic agriculture is growing by the conscious efforts of inspired people who are able to create the best promising relationship between the earth and men. Nowadays, the major challenge is its entry into the policy-making framework, its entry into the global market and weak sensitization among the farmers. But, during the last two decades, the contamination in environment and food which is linked with the bad agricultural potential/techniques has diverted the mind set of farmers towards the organic farming. In the view of above concept, a small-scale project has been installed to promote the 20 farmers from the Kunjura and surrounding villages for organic farming. This project is working since from the last 3 crops (starting from October, 2016) and found that it can meet both demands and complete development of rural areas. Farmers of this concept are working on the principles such that the nature never demands unreasonable quantities of water, mining and to destroy the microbes and other organisms. As per details of Organic Monitor estimates, global sales reached in billion in the present analysis. In this initiative, firstly, wheat and rice were considered for farming and observed that the production of crop has grown almost 10-15% per year from the last crop production. This is not linked only with the profit or loss but also emphasized on the concept of health, ecology, fairness and care of soil enrichment. Several techniques were used like use of biological fertilizers instead of chemicals, multiple cropping, temperature management, rain water harvesting, development of own seed, vermicompost and integration of animals. In the first year, to increase the fertility of the land, legumes (moong, cow pea and red gram) were grown in strips for the 60, 90 and 120 days. Simultaneously, the mixture of compost and vermicompost in the proportion of 2:1 was applied at the rate of 2.0 ton per acre which was enriched with 5 kg Azotobacter and 5 kg Rhizobium biofertilizer. To complete the amount of phosphorus, 250 kg rock phosphate was used. After the one month, jivamrut can be used with the irrigation water or during the rainy days. In next season, compost-vermicompost mixture @ 2.5 ton/ha was used for all type of crops. After the completion of this treatment, now the soil is ready for high value ordinary/horticultural crops. The amount of above stated biofertilizers, compost-vermicompost and rock phosphate may be increased for the high alternative fertilizers. The significance of the projects is that now the farmers believe in cultural alternative (use of disease-free their own seed, organic pest management), maintenance of biodiversity, crop rotation practices and health benefits of organic farming. This type of organic farming projects should be installed at the level of gram/block/district administration.

Keywords: organic farming, Kunjpura, compost, bio-fertilizers

Procedia PDF Downloads 197
87 Solar Electric Propulsion: The Future of Deep Space Exploration

Authors: Abhishek Sharma, Arnab Banerjee

Abstract:

The research is intended to study the solar electric propulsion (SEP) technology for planetary missions. The main benefits of using solar electric propulsion for such missions are shorter flight times, more frequent target accessibility and the use of a smaller launch vehicle than that required by a comparable chemical propulsion mission. Energized by electric power from on-board solar arrays, the electrically propelled system uses 10 times less propellant than conventional chemical propulsion system, yet the reduced fuel mass can provide vigorous power which is capable of propelling robotic and crewed missions beyond the Lower Earth Orbit (LEO). The various thrusters used in the SEP are gridded ion thrusters and the Hall Effect thrusters. The research is solely aimed to study the ion thrusters and investigate the complications related to it and what can be done to overcome the glitches. The ion thrusters are used because they are found to have a total lower propellant requirement and have substantially longer time. In the ion thrusters, the anode pushes or directs the incoming electrons from the cathode. But the anode is not maintained at a very high potential which leads to divergence. Divergence leads to the charges interacting against the surface of the thruster. Just as the charges ionize the xenon gases, they are capable of ionizing the surfaces and over time destroy the surface and hence contaminate it. Hence the lifetime of thruster gets limited. So a solution to this problem is using substances which are not easy to ionize as the surface material. Another approach can be to increase the potential of anode so that the electrons don’t deviate much or reduce the length of thruster such that the positive anode is more effective. The aim is to work on these aspects as to how constriction of the deviation of charges can be done by keeping the input power constant and hence increase the lifetime of the thruster. Predominantly ring cusp magnets are used in the ion thrusters. However, the study is also intended to observe the effect of using solenoid for producing micro-solenoidal magnetic field apart from using the ring cusp magnetic field which are used in the discharge chamber for prevention of interaction of electrons with the ionization walls. Another foremost area of interest is what are the ways by which power can be provided to the Solar Electric Propulsion Vehicle for lowering and boosting the orbit of the spacecraft and also provide substantial amount of power to the solenoid for producing stronger magnetic fields. This can be successfully achieved by using the concept of Electro-dynamic tether which will serve as a power source for powering both the vehicle and the solenoids in the ion thruster and hence eliminating the need for carrying extra propellant on the spacecraft which will reduce the weight and hence reduce the cost of space propulsion.

Keywords: electro-dynamic tether, ion thruster, lifetime of thruster, solar electric propulsion vehicle

Procedia PDF Downloads 211
86 Exploring the Success of Live Streaming Commerce in China: A Literature Analysis

Authors: Ming Gao, Matthew Tingchi Liu, Hoi Ngan Loi

Abstract:

Live streaming refers to the video contents generated by broadcasters and shared with viewers in real-time by uploading them to short-video platforms. In recent years, individual KOL broadcasters have successfully made use of live streams to sell a large amount of goods to the consumers. For example, Wei Ya, the Number 1 broadcaster in Taobao Live, sold products worth RMB 2.7 billion (USD 0.38 billion) in 2018. Regarding the success of live streaming commerce (LSC) in China, this study explores the elements of the booming LSC industry and attempts to explain the reasons behind its prosperity. A systematic review of industry reports and academic papers was conducted to summarize the latest findings in this field. And the results of this investigation showed that a live streaming eco-system has been established by the LSC players, namely, the platform, the broadcaster, the product supplier, and the viewer. In this eco-system, all players have complementary advantages and needs, and their close cooperation leads to a win-win situation. For instance, platforms and broadcasters have abundant internet traffic, which needs to be monetized, while product suppliers have mature supply chains and the need of promoting the products. In addition, viewers are attached to the LSC platforms to get product information, bargains, and entertainment. This study highlights the importance of the mass-personal hybrid communication nature of live streaming because its interpersonal communication feature increases consumers’ positive experiences, while its mass media broadcasting feature facilitates product promotion. Another innovative point of this study lies in its inclusion of the special characteristic of Chinese Internet culture - entertainment. The entertaining genres of the live streams created by broadcasters serve as down-to-earth approaches to reach their audiences easily. Further, the nature of video, i.e., the dynamic and salient stimulus, is emphasized in this study. Since video is more engaging, it can attract viewers in a quick and easy way. Meanwhile, the abundant, interesting, high-quality, and free short videos have added “stickiness” to platforms by retaining users and prolonging their staying time on the platforms. In addition, broadcasters’ important characters, such as physical attractiveness, humor, sex appeal, kindness, communication skills, and interactivity, are also identified as important factors that influence consumers’ engagement and purchase intention. In conclusion, all players have their own proper places in this live streaming eco-system, in which they work seamlessly to give full play to their respective advantages, with each player taking what it needs and offering what it has. This has contributed to the success of live streaming commerce in China.

Keywords: broadcasters, communication, entertainment, live streaming commerce, viewers

Procedia PDF Downloads 122
85 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts

Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan

Abstract:

Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.

Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly

Procedia PDF Downloads 138
84 New Insulation Material for Solar Thermal Collectors

Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka

Abstract:

1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.

Keywords: clay, insulation material, polystyrene, solar collector, straw

Procedia PDF Downloads 461
83 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis

Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero

Abstract:

Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.

Keywords: chemometrics, microNIR, microplastics, urban plastic waste

Procedia PDF Downloads 165
82 Urban Park Characteristics Defining Avian Community Structure

Authors: Deepti Kumari, Upamanyu Hore

Abstract:

Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.

Keywords: diversity, feeding guild, urban park, urbanization intensity

Procedia PDF Downloads 123
81 Sculpted Forms and Sensitive Spaces: Walking through the Underground in Naples

Authors: Chiara Barone

Abstract:

In Naples, the visible architecture is only what emerges from the underground. Caves and tunnels cross it in every direction, intertwining with each other. They are not natural caves but spaces built by removing what is superfluous in order to dig a form out of the material. Architects, as sculptors of space, do not determine the exterior, what surrounds the volume and in which the forms live, but an interior underground space, perceptive and sensitive, able to generate new emotions each time. It is an intracorporeal architecture linked to the body, not in its external relationships, but rather with what happens inside. The proposed aims to reflect on the design of underground spaces in the Neapolitan city. The idea is to intend the underground as a spectacular museum of the city, an opportunity to learn in situ the history of the place along an unpredictable itinerary that crosses the caves and, in certain points, emerges, escaping from the world of shadows. Starting form the analysis and the study of the many overlapping elements, the archaeological one, the geological layer and the contemporary city above, it is possible to develop realistic alternatives for underground itineraries. The objective is to define minor paths to ensure the continuity between the touristic flows and entire underground segments already investigated but now disconnected: open-air paths, which abyss in the earth, retracing historical and preserved fragments. The visitor, in this way, passes from real spaces to sensitive spaces, in which the imaginary replaces the real experience, running towards exciting and secret knowledge. To safeguard the complex framework of the historical-artistic values, it is essential to use a multidisciplinary methodology based on a global approach. Moreover, it is essential to refer to similar design projects for the archaeological underground, capable of guide action strategies, looking at similar conditions in other cities, where the project has led to an enhancement of the heritage in the city. The research limits the field of investigation, by choosing the historic center of Naples, applying bibliographic and theoretical research to a real place. First of all, it’s necessary to deepen the places’ knowledge understanding the potentialities of the project as a link between what is below and what is above. Starting from a scientific approach, in which theory and practice are constantly intertwined through the architectural project, the major contribution is to provide possible alternative configurations for the underground space and its relationship with the city above, understanding how the condition of transition, as passage between the below and the above becomes structuring in the design process. Starting from the consideration of the underground as both a real physical place and a sensitive place, which engages the memory, imagination, and sensitivity of a man, the research aims at identifying possible configurations and actions useful for future urban programs to make the underground a central part of the lived city, again.

Keywords: underground paths, invisible ruins, imaginary, sculpted forms, sensitive spaces, Naples

Procedia PDF Downloads 107
80 Sensorless Machine Parameter-Free Control of Doubly Fed Reluctance Wind Turbine Generator

Authors: Mohammad R. Aghakashkooli, Milutin G. Jovanovic

Abstract:

The brushless doubly-fed reluctance generator (BDFRG) is an emerging, medium-speed alternative to a conventional wound rotor slip-ring doubly-fed induction generator (DFIG) in wind energy conversion systems (WECS). It can provide competitive overall performance and similar low failure rates of a typically 30% rated back-to-back power electronics converter in 2:1 speed ranges but with the following important reliability and cost advantages over DFIG: the maintenance-free operation afforded by its brushless structure, 50% synchronous speed with the same number of rotor poles (allowing the use of a more compact, and more efficient two-stage gearbox instead of a vulnerable three-stage one), and superior grid integration properties including simpler protection for the low voltage ride through compliance of the fractional converter due to the comparatively higher leakage inductances and lower fault currents. Vector controlled pulse-width-modulated converters generally feature a much lower total harmonic distortion relative to hysteresis counterparts with variable switching rates and as such have been a predominant choice for BDFRG (and DFIG) wind turbines. Eliminating a shaft position sensor, which is often required for control implementation in this case, would be desirable to address the associated reliability issues. This fact has largely motivated the recent growing research of sensorless methods and developments of various rotor position and/or speed estimation techniques for this purpose. The main limitation of all the observer-based control approaches for grid-connected wind power applications of the BDFRG reported in the open literature is the requirement for pre-commissioning procedures and prior knowledge of the machine inductances, which are usually difficult to accurately identify by off-line testing. A model reference adaptive system (MRAS) based sensor-less vector control scheme to be presented will overcome this shortcoming. The true machine parameter independence of the proposed field-oriented algorithm, offering robust, inherently decoupled real and reactive power control of the grid-connected winding, is achieved by on-line estimation of the inductance ratio, the underlying rotor angular velocity and position MRAS observer being reliant upon. Such an observer configuration will be more practical to implement and clearly preferable to the existing machine parameter dependent solutions, and especially bearing in mind that with very little modifications it can be adapted for commercial DFIGs with immediately obvious further industrial benefits and prospects of this work. The excellent encoder-less controller performance with maximum power point tracking in the base speed region will be demonstrated by realistic simulation studies using large-scale BDFRG design data and verified by experimental results on a small laboratory prototype of the WECS emulation facility.

Keywords: brushless doubly fed reluctance generator, model reference adaptive system, sensorless vector control, wind energy conversion

Procedia PDF Downloads 62
79 Primary-Color Emitting Photon Energy Storage Nanophosphors for Developing High Contrast Latent Fingerprints

Authors: G. Swati, D. Haranath

Abstract:

Commercially available long afterglow /persistent phosphors are proprietary materials and hence the exact composition and phase responsible for their luminescent characteristics such as initial intensity and afterglow luminescence time are not known. Further to generate various emission colors, commercially available persistence phosphors are physically blended with fluorescent organic dyes such as rodhamine, kiton and methylene blue etc. Blending phosphors with organic dyes results into complete color coverage in visible spectra, however with time, such phosphors undergo thermal and photo-bleaching. This results in the loss of their true emission color. Hence, the current work is dedicated studies on inorganic based thermally and chemically stable primary color emitting nanophosphors namely SrAl2O4:Eu2+, Dy3+, (CaZn)TiO3:Pr3+, and Sr2MgSi2O7:Eu2+, Dy3+. SrAl2O4: Eu2+, Dy3+ phosphor exhibits a strong excitation in UV and visible region (280-470 nm) with a broad emission peak centered at 514 nm is the characteristic emission of parity allowed 4f65d1→4f7 transitions of Eu2+ (8S7/2→2D5/2). Sunlight excitable Sr2MgSi2O7:Eu2+,Dy3+ nanophosphors emits blue color (464 nm) with Commercial international de I’Eclairage (CIE) coordinates to be (0.15, 0.13) with a color purity of 74 % with afterglow time of > 5 hours for dark adapted human eyes. (CaZn)TiO3:Pr3+ phosphor system possess high color purity (98%) which emits intense, stable and narrow red emission at 612 nm due intra 4f transitions (1D2 → 3H4) with afterglow time of 0.5 hour. Unusual property of persistence luminescence of these nanophoshphors supersedes background effects without losing sensitive information these nanophosphors offer several advantages of visible light excitation, negligible substrate interference, high contrast bifurcation of ridge pattern, non-toxic nature revealing finger ridge details of the fingerprints. Both level 1 and level 2 features from a fingerprint can be studied which are useful for used classification, indexing, comparison and personal identification. facile methodology to extract high contrast fingerprints on non-porous and porous substrates using a chemically inert, visible light excitable, and nanosized phosphorescent label in the dark has been presented. The chemistry of non-covalent physisorption interaction between the long afterglow phosphor powder and sweat residue in fingerprints has been discussed in detail. Real-time fingerprint development on porous and non-porous substrates has also been performed. To conclude, apart from conventional dark vision applications, as prepared primary color emitting afterglow phosphors are potentional candidate for developing high contrast latent fingerprints.

Keywords: fingerprints, luminescence, persistent phosphors, rare earth

Procedia PDF Downloads 222
78 Developing and integrated Clinical Risk Management Model

Authors: Mohammad H. Yarmohammadian, Fatemeh Rezaei

Abstract:

Introduction: Improving patient safety in health systems is one of the main priorities in healthcare systems, so clinical risk management in organizations has become increasingly significant. Although several tools have been developed for clinical risk management, each has its own limitations. Aims: This study aims to develop a comprehensive tool that can complete the limitations of each risk assessment and management tools with the advantage of other tools. Methods: Procedure was determined in two main stages included development of an initial model during meetings with the professors and literature review, then implementation and verification of final model. Subjects and Methods: This study is a quantitative − qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment of the two parts of the fourth phase and seven phases of the research was conducted. Purposive and stratification sampling of various responsible teams for the selected process was conducted in the operating room. Final model verified in eight phases through application of activity breakdown structure, failure mode and effects analysis (FMEA), healthcare risk priority number (RPN), root cause analysis (RCA), FT, and Eindhoven Classification model (ECM) tools. This model has been conducted typically on patients admitted in a day-clinic ward of a public hospital for surgery in October 2012 to June. Statistical Analysis Used: Qualitative data analysis was done through content analysis and quantitative analysis done through checklist and edited RPN tables. Results: After verification the final model in eight-step, patient's admission process for surgery was developed by focus discussion group (FDG) members in five main phases. Then with adopted methodology of FMEA, 85 failure modes along with its causes, effects, and preventive capabilities was set in the tables. Developed tables to calculate RPN index contain three criteria for severity, two criteria for probability, and two criteria for preventability. Tree failure modes were above determined significant risk limitation (RPN > 250). After a 3-month period, patient's misidentification incidents were the most frequent reported events. Each RPN criterion of misidentification events compared and found that various RPN number for tree misidentification reported events could be determine against predicted score in previous phase. Identified root causes through fault tree categorized with ECM. Wrong side surgery event was selected by focus discussion group to purpose improvement action. The most important causes were lack of planning for number and priority of surgical procedures. After prioritization of the suggested interventions, computerized registration system in health information system (HIS) was adopted to prepare the action plan in the final phase. Conclusion: Complexity of health care industry requires risk managers to have a multifaceted vision. Therefore, applying only one of retrospective or prospective tools for risk management does not work and each organization must provide conditions for potential application of these methods in its organization. The results of this study showed that the integrated clinical risk management model can be used in hospitals as an efficient tool in order to improve clinical governance.

Keywords: failure modes and effective analysis, risk management, root cause analysis, model

Procedia PDF Downloads 250
77 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements

Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga

Abstract:

Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.

Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform

Procedia PDF Downloads 387
76 Sustainability in Space: Material Efficiency in Space Missions

Authors: Hamda M. Al-Ali

Abstract:

From addressing fundamental questions about the history of the solar system to exploring other planets for any signs of life have always been the core of human space exploration. This triggered humans to explore whether other planets such as Mars could support human life on them. Therefore, many planned space missions to other planets have been designed and conducted to examine the feasibility of human survival on them. However, space missions are expensive and consume a large number of various resources to be successful. To overcome these problems, material efficiency shall be maximized through the use of reusable launch vehicles (RLV) rather than disposable and expendable ones. Material efficiency is defined as a way to achieve service requirements using fewer materials to reduce CO2 emissions from industrial processes. Materials such as aluminum-lithium alloys, steel, Kevlar, and reinforced carbon-carbon composites used in the manufacturing of spacecrafts could be reused in closed-loop cycles directly or by adding a protective coat. Material efficiency is a fundamental principle of a circular economy. The circular economy aims to cutback waste and reduce pollution through maximizing material efficiency so that businesses can succeed and endure. Five strategies have been proposed to improve material efficiency in the space industry, which includes waste minimization, introduce Key Performance Indicators (KPIs) to measure material efficiency, and introduce policies and legislations to improve material efficiency in the space sector. Another strategy to boost material efficiency is through maximizing resource and energy efficiency through material reusability. Furthermore, the environmental effects associated with the rapid growth in the number of space missions include black carbon emissions that lead to climate change. The levels of emissions must be tracked and tackled to ensure the safe utilization of space in the future. The aim of this research paper is to examine and suggest effective methods used to improve material efficiency in space missions so that space and Earth become more environmentally and economically sustainable. The objectives used to fulfill this aim are to identify the materials used in space missions that are suitable to be reused in closed-loop cycles considering material efficiency indicators and circular economy concepts. An explanation of how spacecraft materials could be re-used as well as propose strategies to maximize material efficiency in order to make RLVs possible so that access to space becomes affordable and reliable is provided. Also, the economic viability of the RLVs is examined to show the extent to which the use of RLVs has on the reduction of space mission costs. The environmental and economic implications of the increase in the number of space missions as a result of the use of RLVs are also discussed. These research questions are studied through detailed critical analysis of the literature, such as published reports, books, scientific articles, and journals. A combination of keywords such as material efficiency, circular economy, RLVs, and spacecraft materials were used to search for appropriate literature.

Keywords: access to space, circular economy, material efficiency, reusable launch vehicles, spacecraft materials

Procedia PDF Downloads 115
75 Coordinative Remote Sensing Observation Technology for a High Altitude Barrier Lake

Authors: Zhang Xin

Abstract:

Barrier lakes are lakes formed by storing water in valleys, river valleys or riverbeds after being blocked by landslide, earthquake, debris flow, and other factors. They have great potential safety hazards. When the water is stored to a certain extent, it may burst in case of strong earthquake or rainstorm, and the lake water overflows, resulting in large-scale flood disasters. In order to ensure the safety of people's lives and property in the downstream, it is very necessary to monitor the barrier lake. However, it is very difficult and time-consuming to manually monitor the barrier lake in high altitude areas due to the harsh climate and steep terrain. With the development of earth observation technology, remote sensing monitoring has become one of the main ways to obtain observation data. Compared with a single satellite, multi-satellite remote sensing cooperative observation has more advantages; its spatial coverage is extensive, observation time is continuous, imaging types and bands are abundant, it can monitor and respond quickly to emergencies, and complete complex monitoring tasks. Monitoring with multi-temporal and multi-platform remote sensing satellites can obtain a variety of observation data in time, acquire key information such as water level and water storage capacity of the barrier lake, scientifically judge the situation of the barrier lake and reasonably predict its future development trend. In this study, The Sarez Lake, which formed on February 18, 1911, in the central part of the Pamir as a result of blockage of the Murgab River valley by a landslide triggered by a strong earthquake with magnitude of 7.4 and intensity of 9, is selected as the research area. Since the formation of Lake Sarez, it has aroused widespread international concern about its safety. At present, the use of mechanical methods in the international analysis of the safety of Lake Sarez is more common, and remote sensing methods are seldom used. This study combines remote sensing data with field observation data, and uses the 'space-air-ground' joint observation technology to study the changes in water level and water storage capacity of Lake Sarez in recent decades, and evaluate its safety. The situation of the collapse is simulated, and the future development trend of Lake Sarez is predicted. The results show that: 1) in recent decades, the water level of Lake Sarez has not changed much and remained at a stable level; 2) unless there is a strong earthquake or heavy rain, it is less likely that the Lake Sarez will be broken under normal conditions, 3) lake Sarez will remain stable in the future, but it is necessary to establish an early warning system in the Lake Sarez area for remote sensing of the area, 4) the coordinative remote sensing observation technology is feasible for the high altitude barrier lake of Sarez.

Keywords: coordinative observation, disaster, remote sensing, geographic information system, GIS

Procedia PDF Downloads 128
74 Mapping the Suitable Sites for Food Grain Crops Using Geographical Information System (GIS) and Analytical Hierarchy Process (AHP)

Authors: Md. Monjurul Islam, Tofael Ahamed, Ryozo Noguchi

Abstract:

Progress continues in the fight against hunger, yet an unacceptably large number of people still lack food they need for an active and healthy life. Bangladesh is one of the rising countries in the South-Asia but still lots of people are food insecure. In the last few years, Bangladesh has significant achievements in food grain production but still food security at national to individual levels remain a matter of major concern. Ensuring food security for all is one of the major challenges that Bangladesh faces today, especially production of rice in the flood and poverty prone areas. Northern part is more vulnerable than any other part of Bangladesh. To ensure food security, one of the best way is to increase domestic production. To increase production, it is necessary to secure lands for achieving optimum utilization of resources. One of the measures is to identify the vulnerable and potential areas using Land Suitability Assessment (LSA) to increase rice production in the poverty prone areas. Therefore, the aim of the study was to identify the suitable sites for food grain crop rice production in the poverty prone areas located at the northern part of Bangladesh. Lack of knowledge on the best combination of factors that suit production of rice has contributed to the low production. To fulfill the research objective, a multi-criteria analysis was done and produced a suitable map for crop production with the help of Geographical Information System (GIS) and Analytical Hierarchy Process (AHP). Primary and secondary data were collected from ground truth information and relevant offices. The suitability levels for each factor were ranked based on the structure of FAO land suitability classification as: Currently Not Suitable (N2), Presently Not Suitable (N1), Marginally Suitable (S3), Moderately Suitable (S2) and Highly Suitable (S1). The suitable sites were identified using spatial analysis and compared with the recent raster image from Google Earth Pro® to validate the reliability of suitability analysis. For producing a suitability map for rice farming using GIS and multi-criteria analysis tool, AHP was used to rank the relevant factors, and the resultant weights were used to create the suitability map using weighted sum overlay tool in ArcGIS 10.3®. Then, the suitability map for rice production in the study area was formed. The weighted overly was performed and found that 22.74 % (1337.02 km2) of the study area was highly suitable, while 28.54% (1678.04 km2) was moderately suitable, 14.86% (873.71 km2) was marginally suitable, and 1.19% (69.97 km2) was currently not suitable for rice farming. On the other hand, 32.67% (1920.87 km2) was permanently not suitable which occupied with settlements, rivers, water bodies and forests. This research provided information at local level that could be used by farmers to select suitable fields for rice production, and then it can be applied to other crops. It will also be helpful for the field workers and policy planner who serves in the agricultural sector.

Keywords: AHP, GIS, spatial analysis, land suitability

Procedia PDF Downloads 241
73 Tall Building Transit-Oriented Development (TB-TOD) and Energy Efficiency in Suburbia: Case Studies, Sydney, Toronto, and Washington D.C.

Authors: Narjes Abbasabadi

Abstract:

As the world continues to urbanize and suburbanize, where suburbanization associated with mass sprawl has been the dominant form of this expansion, sustainable development challenges will be more concerned. Sprawling, characterized by low density and automobile dependency, presents significant environmental issues regarding energy consumption and Co2 emissions. This paper examines the vertical expansion of suburbs integrated into mass transit nodes as a planning strategy for boosting density, intensification of land use, conversion of single family homes to multifamily dwellings or mixed use buildings and development of viable alternative transportation choices. It analyzes the spatial patterns of tall building transit-oriented development (TB-TOD) of suburban regions in Sydney (Australia), Toronto (Canada), and Washington D.C. (United States). The main objectives of this research seek to understand the effect of the new morphology of suburban tall, the physical dimensions of individual buildings and their arrangement at a larger scale with energy efficiency. This study aims to answer these questions: 1) why and how can the potential phenomenon of vertical expansion or high-rise development be integrated into suburb settings? 2) How can this phenomenon contribute to an overall denser development of suburbs? 3) Which spatial pattern or typologies/ sub-typologies of the TB-TOD model do have the greatest energy efficiency? It addresses these questions by focusing on 1) energy, heat energy demand (excluding cooling and lighting) related to design issues at two levels: macro, urban scale and micro, individual buildings—physical dimension, height, morphology, spatial pattern of tall buildings and their relationship with each other and transport infrastructure; 2) Examining TB-TOD to provide more evidence of how the model works regarding ridership. The findings of the research show that the TB-TOD model can be identified as the most appropriate spatial patterns of tall buildings in suburban settings. And among the TB-TOD typologies/ sub-typologies, compact tall building blocks can be the most energy efficient one. This model is associated with much lower energy demands in buildings at the neighborhood level as well as lower transport needs in an urban scale while detached suburban high rise or low rise suburban housing will have the lowest energy efficiency. The research methodology is based on quantitative study through applying the available literature and static data as well as mapping and visual documentations of urban regions such as Google Earth, Microsoft Bing Bird View and Streetview. It will examine each suburb within each city through the satellite imagery and explore the typologies/ sub-typologies which are morphologically distinct. The study quantifies heat energy efficiency of different spatial patterns through simulation via GIS software.

Keywords: energy efficiency, spatial pattern, suburb, tall building transit-oriented development (TB-TOD)

Procedia PDF Downloads 261
72 Variability Studies of Seyfert Galaxies Using Sloan Digital Sky Survey and Wide-Field Infrared Survey Explorer Observations

Authors: Ayesha Anjum, Arbaz Basha

Abstract:

Active Galactic Nuclei (AGN) are the actively accreting centers of the galaxies that host supermassive black holes. AGN emits radiation in all wavelengths and also shows variability across all the wavelength bands. The analysis of flux variability tells us about the morphology of the site of emission radiation. Some of the major classifications of AGN are (a) Blazars, with featureless spectra. They are subclassified as BLLacertae objects, Flat Spectrum Radio Quasars (FSRQs), and others; (b) Seyferts with prominent emission line features are classified into Broad Line, Narrow Line Seyferts of Type 1 and Type 2 (c) quasars, and other types. Sloan Digital Sky Survey (SDSS) is an optical telescope based in Mexico that has observed and classified billions of objects based on automated photometric and spectroscopic methods. A sample of blazars is obtained from the third Fermi catalog. For variability analysis, we searched for light curves for these objects in Wide-Field Infrared Survey Explorer (WISE) and Near Earth Orbit WISE (NEOWISE) in two bands: W1 (3.4 microns) and W2 (4.6 microns), reducing the final sample to 256 objects. These objects are also classified into 155 BLLacs, 99 FSRQs, and 2 Narrow Line Seyferts, namely, PMNJ0948+0022 and PKS1502+036. Mid-infrared variability studies of these objects would be a contribution to the literature. With this as motivation, the present work is focused on studying a final sample of 256 objects in general and the Seyferts in particular. Owing to the fact that the classification is automated, SDSS has miclassified these objects into quasars, galaxies, and stars. Reasons for the misclassification are explained in this work. The variability analysis of these objects is done using the method of flux amplitude variability and excess variance. The sample consists of observations in both W1 and W2 bands. PMN J0948+0022 is observed between MJD from 57154.79 to 58810.57. PKS 1502+036 is observed between MJD from 57232.42 to 58517.11, which amounts to a period of over six years. The data is divided into different epochs spanning not more than 1.2 days. In all the epochs, the sources are found to be variable in both W1 and W2 bands. This confirms that the object is variable in mid-infrared wavebands in both long and short timescales. Also, the sources are observed for color variability. Objects either show a bluer when brighter trend (BWB) or a redder when brighter trend (RWB). The possible claim for the object to be BWB (present objects) is that the longer wavelength radiation emitted by the source can be suppressed by the high-energy radiation from the central source. Another result is that the smallest radius of the emission source is one day since the epoch span used in this work is one day. The mass of the black holes at the centers of these sources is found to be less than or equal to 108 solar masses, respectively.

Keywords: active galaxies, variability, Seyfert galaxies, SDSS, WISE

Procedia PDF Downloads 130
71 Chemical Modifications of Three Underutilized Vegetable Fibres for Improved Composite Value Addition and Dye Absorption Performance

Authors: Abayomi O. Adetuyi, Jamiu M. Jabar, Samuel O. Afolabi

Abstract:

Vegetable fibres are classes of fibres of low density, biodegradable and non-abrasive that are largely abundant fibre materials with specific properties and mostly found/ obtained in plants on earth surface. They are classified into three categories, depending on the part of the plant from which they are gotten from namely: fruit, Blast and Leaf fibre. Ever since four/five millennium B.C, attention has been focussing on the commonest and highly utilized cotton fibre obtained from the fruit of cotton plants (Gossypium spp), for the production of cotton fabric used in every home today. The present study, therefore, focused on the ability of three underutilized vegetable (fruit) fibres namely: coir fiber (Eleas coniferus), palm kernel fiber and empty fruit bunch fiber (Elias guinensis) through chemical modifications for better composite value addition performance to polyurethane form and dye adsorption. These fibres were sourced from their parents’ plants, identified and cleansed with 2% hot detergent solution 1:100, rinsed in distilled water and oven-dried to constant weight, before been chemically modified through alkali bleaching, mercerization and acetylation. The alkali bleaching involves treating 0.5g of each fiber material with 100 mL of 2% H2O2 in 25 % NaOH solution with refluxing for 2 h. While that of mercerization and acetylation involves the use of 5% sodium hydroxide NaOH solution for 2 h and 10% acetic acid- acetic anhydride 1:1 (v/v) (CH3COOH) / (CH3CO)2O solution with conc. H2SO4 as catalyst for 1 h, respectively on the fibres. All were subsequently washed thoroughly with distilled water and oven dried at 105 0C for 1 h. These modified fibres were incorporated as composite into polyurethane form and used in dye adsorption study of indigo. The first two treatments led to fiber weight reduction, while the acidified acetic anhydride treatment gave the fibers weight increment. All the treated fibers were found to be of less hydrophilic nature, better mechanical properties, higher thermal stabilities as well as better adsorption surfaces/capacities than the untreated ones. These were confirmed by gravimetric analysis, Instron Universal Testing Machine, Thermogravimetric Analyser and the Scanning Electron Microscope (SEM) respectively. The fiber morphology of the modified fibers showed smoother surfaces than unmodified fibres.The empty fruit bunch fibre and the coconut coir fibre are better than the palm kernel fibres as reinforcers for composites or as adsorbents for waste-water treatment. Acetylation and alkaline bleaching treatment improve the potentials of the fibres more than mercerization treatment. Conclusively, vegetable fibres, especially empty fruit bunch fibre and the coconut coir fibre, which are cheap, abundant and underutilized, can replace the very costly powdered activated carbon in wastewater treatment and as reinforcer in foam.

Keywords: chemical modification, industrial application, value addition, vegetable fibre

Procedia PDF Downloads 333
70 Development of DNDC Modelling Method for Evaluation of Carbon Dioxide Emission from Arable Soils in European Russia

Authors: Olga Sukhoveeva

Abstract:

Carbon dioxide (CO2) is the main component of carbon biogeochemical cycle and one of the most important greenhouse gases (GHG). Agriculture, particularly arable soils, are one the largest sources of GHG emission for the atmosphere including CO2.Models may be used for estimation of GHG emission from agriculture if they can be adapted for different countries conditions. The only model used in officially at national level in United Kingdom and China for this purpose is DNDC (DeNitrification-DeComposition). In our research, the model DNDC is offered for estimation of GHG emission from arable soils in Russia. The aim of our research was to create the method of DNDC using for evaluation of CO2 emission in Russia based on official statistical information. The target territory was European part of Russia where many field experiments are located. At the first step of research the database on climate, soil and cropping characteristics for the target region from governmental, statistical, and literature sources were created. All-Russia Research Institute of Hydrometeorological Information – World Data Centre provides open daily data about average meteorological and climatic conditions. It must be calculated spatial average values of maximum and minimum air temperature and precipitation over the region. Spatial average values of soil characteristics (soil texture, bulk density, pH, soil organic carbon content) can be determined on the base of Union state register of soil recourses of Russia. Cropping technologies are published by agricultural research institutes and departments. We offer to define cropping system parameters (annual information about crop yields, amount and types of fertilizers and manure) on the base of the Federal State Statistics Service data. Content of carbon in plant biomass may be calculated via formulas developed and published by Ministry of Natural Resources and Environment of the Russian Federation. At the second step CO2 emission from soil in this region were calculated by DNDC. Modelling data were compared with empirical and literature data and good results were obtained, modelled values were equivalent to the measured ones. It was revealed that the DNDC model may be used to evaluate and forecast the CO2 emission from arable soils in Russia based on the official statistical information. Also, it can be used for creation of the program for decreasing GHG emission from arable soils to the atmosphere. Financial Support: fundamental scientific researching theme 0148-2014-0005 No 01201352499 ‘Solution of fundamental problems of analysis and forecast of Earth climatic system condition’ for 2014-2020; fundamental research program of Presidium of RAS No 51 ‘Climate change: causes, risks, consequences, problems of adaptation and regulation’ for 2018-2020.

Keywords: arable soils, carbon dioxide emission, DNDC model, European Russia

Procedia PDF Downloads 192
69 Ecological Relationships Between Material, Colonizing Organisms, and Resulting Performances

Authors: Chris Thurlbourne

Abstract:

Due to the continual demand for material to build, and a limit of good environmental material credentials of 'normal' building materials, there is a need to look at new and reconditioned material types - both biogenic and non-biogenic - and a field of research that accompanies this. This research development focuses on biogenic and non-biogenic material engineering and the impact of our environment on new and reconditioned material types. In our building industry and all the industries involved in constructing our built environment, building material types can be broadly categorized into two types, biogenic and non-biogenic material properties. Both play significant roles in shaping our built environment. Regardless of their properties, all material types originate from our earth, whereas many are modified through processing to provide resistance to 'forces of nature', be it rain, wind, sun, gravity, or whatever the local environmental conditions throw at us. Modifications are succumbed to offer benefits in endurance, resistance, malleability in handling (building with), and ergonomic values - in all types of building material. We assume control of all building materials through rigorous quality control specifications and regulations to ensure materials perform under specific constraints. Yet materials confront an external environment that is not controlled with live forces undetermined, and of which materials naturally act and react through weathering, patination and discoloring, promoting natural chemical reactions such as rusting. The purpose of the paper is to present recent research that explores the after-life of specific new and reconditioned biogenic and non-biogenic material types and how the understanding of materials' natural processes of transformation when exposed to the external climate, can inform initial design decisions. With qualities to receive in a transient and contingent manner, ecological relationships between material, the colonizing organisms and resulting performances invite opportunities for new design explorations for the benefit of both the needs of human society and the needs of our natural environment. The research follows designing for the benefit of both and engaging in both biogenic and non-biogenic material engineering whilst embracing the continual demand for colonization - human and environment, and the aptitude of a material to be colonized by one or several groups of living organisms without necessarily undergoing any severe deterioration, but embracing weathering, patination and discoloring, and at the same time establishing new habitat. The research follows iterative prototyping processes where knowledge has been accumulated via explorations of specific material performances, from laboratory to construction mock-ups focusing on the architectural qualities embedded in control of production techniques and facilitating longer-term patinas of material surfaces to extend the aesthetic beyond common judgments. Experiments are therefore focused on how the inherent material qualities drive a design brief toward specific investigations to explore aesthetics induced through production, patinas and colonization obtained over time while exposed and interactions with external climate conditions.

Keywords: biogenic and non-biogenic, natural processes of transformation, colonization, patina

Procedia PDF Downloads 87
68 Liquid Waste Management in Cluster Development

Authors: Abheyjit Singh, Kulwant Singh

Abstract:

There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.

Keywords: collection, treatment, utilization, economic

Procedia PDF Downloads 79
67 Facies Analysis and Depositional Environment of the Late Carboniferous (Stephanian) Souss Basin, Morocco

Authors: Abouchouaib Belahmira, Joerg W. Schneider, Hafid Saber, Sara Akboub

Abstract:

The lithofacies analyzed herein were reported from the interbedded fluvial and lacustrine deposits of the Oued Issene and El Menizla formations. These formations are part of the sedimentary fill of the Carboniferous (Stephanian) submontaneous Souss basin. The latter is situated in the western High Atlas Mountains, south-central Morocco, about 50km east of Agadir. The Souss basin started as a single basin but was separated into sub-basins called Ida Ou Zal and Ida Ou Ziki by sinistral displacement along the west branch of the Tizi N'Test Fault during the end of the Mauritanid phase of the Variscan orogeny in Morocco, after the early Stephanian (Kasimovian) and before the late middle Permian (Capitanian). The studied succession is a monotonous finning-upward sequence of 1800 m thick. It consists of fine-grained sandstone, finely bedded siltstone and thinly laminated claystone, and black shale. Herein we provide a detailed characterization of lithofacies of the upper El Menizla and Oued Issène formations, with a focus on the prevailing overbank to flood plain fine-grained lithofacies. The studied facies are capping the Stephanian alluvial fan basal clast-supported conglomerates that are intercalated bedded coarse-grained sandstones of Ikhourba Formation in the Ou Zal subbasin and Tajgaline Formation in the Ida Ou Ziki subbasin, respectively. Within the fluvial elements, only two main facies have been observed. It comprises channel-fill and channel-bar deposits, mostly occur as lenticular –shape sand bodies or sheet-like sand greenish to gray fine-to medium (Fm), massive internally structureless, or very locally exhibits a medium to large scale trough-cross bedding medium to coarse sandstone (St), observable in relatively thicker bed. These facies are laterally extensive, with a thickness varying from a few to several meters. Finer-grained sediments such as mud can be present as drapes over bedforms. Whilst the fluvial association FA1, the overbank elements are represented by a relatively wide range of 5 facies. This exhibit mostly a cm scale horizontally bedded greenish fine- to medium sand and silt, and mm scale fossiliferous thinly laminated dark gray- black Corganic-rich clays to siltstone associated with black shale. Thus, FA2 includes flood plain fines (Fh, R) associated with the paleosols and back swamp coaly clay facies (C). The floodplain lake element comprises only laminated organic-rich dark gray facies of claystone, black shale, and graded siltstone. Bedsets are dm to several meters thick (typically < 1 m thick). They are intercalated between several m-thick fluvial sandstone, extend over a few meters, and are poorly bioturbated. The lacustrine facies described in this study have been divided into two sub-facies (Fl, B) based on field observations that indicate differing environmental conditions of formation. Thus, the thorough analysis of the lithofacies of the Souss basin units allows us to reconstruct the original environment that was interpreted as a typical fluvial-dominated braided to anastomosing wide distributary channel system and surrounding deep to shallow freshwater floodplain lakes and back swamps.

Keywords: Souss, carboniferous, facies, depositional setting

Procedia PDF Downloads 102
66 Numerical Analyses of Dynamics of Deployment of PW-Sat2 Deorbit Sail Compared with Results of Experiment under Micro-Gravity and Low Pressure Conditions

Authors: P. Brunne, K. Ciechowska, K. Gajc, K. Gawin, M. Gawin, M. Kania, J. Kindracki, Z. Kusznierewicz, D. Pączkowska, F. Perczyński, K. Pilarski, D. Rafało, E. Ryszawa, M. Sobiecki, I. Uwarowa

Abstract:

Big amount of space debris constitutes nowadays a real thread for operating space crafts; therefore the main purpose of PW-Sat2’ team was to create a system that could help cleanse the Earth’s orbit after each small satellites’ mission. After 4 years of development, the motorless, low energy consumption and low weight system has been created. During series of tests, the system has shown high reliable efficiency. The PW-Sat2’s deorbit system is a square-shaped sail which covers an area of 4m². The sail surface is made of 6 μm aluminized Mylar film which is stretched across 4 diagonally placed arms, each consisting of two C-shaped flat springs and enveloped in Mylar sleeves. The sail is coiled using a special, custom designed folding stand that provides automation and repeatability of the sail unwinding tests and placed in a container with inner diameter of 85 mm. In the final configuration the deorbit system weights ca. 600 g and occupies 0.6U (in accordance with CubeSat standard). The sail’s releasing system requires minimal amount of power based on thermal knife that burns out the Dyneema wire, which holds the system before deployment. The Sail is being pushed out of the container within a safe distance (20 cm away) from the satellite. The energy for the deployment is completely assured by coiled C-shaped flat springs, which during the release, unfold the sail surface. To avoid dynamic effects on the satellite’s structure, there is the rotational link between the sail and satellite’s main body. To obtain complete knowledge about complex dynamics of the deployment, a number of experiments have been performed in varied environments. The numerical model of the dynamics of the Sail’s deployment has been built and is still under continuous development. Currently, the integration of the flight model and Deorbit Sail is performed. The launch is scheduled for February 2018. At the same time, in cooperation with United Nations Office for Outer Space Affairs, sail models and requested facilities are being prepared for the sail deployment experiment under micro-gravity and low pressure conditions at Bremen Drop Tower, Germany. Results of those tests will provide an ultimate and wide knowledge about deployment in space environment to which system will be exposed during its mission. Outcomes of the numerical model and tests will be compared afterwards and will help the team in building a reliable and correct model of a very complex phenomenon of deployment of 4 c-shaped flat springs with surface attached. The verified model could be used inter alia to investigate if the PW-Sat2’s sail is scalable and how far is it possible to go with enlarging when creating systems for bigger satellites.

Keywords: cubesat, deorbitation, sail, space, debris

Procedia PDF Downloads 292
65 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions

Authors: Siba Soren, Purnendu Parhi

Abstract:

Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.

Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene

Procedia PDF Downloads 198
64 Emphasizing Sumak Kawsay in Peace Ethics

Authors: Lisa Tragbar

Abstract:

Since the Rio declaration, the agreement resulting from the Earth Summit in 1992, the UN member states acknowledge that peace and environmental protection are deeply linked to each other. It has also been made clear by Contemporary Peace research since the early 2000 that the lack of natural resources increases conflicts, as well as potential war conflicts (general environmental conflict thesis). I argue that peace ethics need to reconsider the role of the environment in peace ethics, from conflict prevention to peacebuilding. Sumak kawsay is a concept that offers a non-anthropocentric perspective on the subject. Several Contemporary Peace Ethicists don’t take environmental peace sufficiently into account. 1. The Peace theorist Johan Galtung famously argues that positive peace depends mostly on social, economic and political factors, as institutional structures establish peace. Galtung has a relational approach to peace, yet only between human interactors. 2. Michael Fox claims in his anti-war argument to consider nonhuman entities in conflicts. Because of their species interrelation, humans cannot decide on the fate of other species. 3. Although Mark Woods considers himself a peace ecologist, following Reichberg and Syse, and argues from a duty-based perspective towards nature, he mostly focuses on the protection of the environment during war conflicts. I want to focus on a non-anthropocentric view to argue that the environment is an entity of human concern in order to construct peace. Based on the premises that the lack of natural resources create tensions that play a significant part in international conflicts and these conflicts are potential war conflicts, I argue that a non-anthropocentric account to peace ethics is an indispensable perspective towards the recovery of these resources and therefore the reduction of war conflicts. Sumak kawsay is an approach contributing to a peaceful environment, which can play a crucial role in international peacekeeping operations. To emphasize sumak kawsay in peace ethics, it is necessary to explain what this principle includes and how it renews Contemporary Peace ethics. The indigenous philosophy of life of the Andean Quechua philosophy in Ecuador and varities from other countries from the Global South include a holistic real-world vision that contains concepts like the de-hierarchization of humans and nature as well as the reciprocity principle towards nature. Sumak kawsay represents the idea of the intrinsic value of nature and an egalitarian way of life and interconnectedness between human and nonhuman entities, which has been widely neglected in Traditional War and Peace Ethics. If sumak kawsay is transferred to peacekeeping practices, peacekeepers have restorative duties not only towards humans, but also towards nature. Resource conservation and environmental protection are the first step towards a positive peace. By recognising that healthy natural resources contribute to peacebuilding, by restoring balance through compensatory justice practices like recovery, by fostering dialogue between peacekeeping forces and by entitling ecosystems with rights natural resources and environmental conflicts are more unlikely to happen. This holistic approach pays nature sufficient attention and can contribute to a positive peace.

Keywords: environment, natural resources, peace, Sumak Kawsay

Procedia PDF Downloads 77