Search results for: wide bandwidth
3245 Design of a 3-dB Directional Coupler Using Symmetric Coupled-Lines
Authors: Cem Çindaş, Serkan Şimşek
Abstract:
In this paper, the study and design of a 3-dB 90° directional coupler operating in the S-band is proposed. The coupler employs symmetrical multi-section coupled lines designed in a stripline technique. Design is realized in AWR Design Environment and CST Microwave Studio. Using these two programs played a key role in attaining outcomes swiftly and precisely. The simulation results show that the coupler maintains amplitude consistency within ± 0.3 dB, isolation and reflection losses better than 16 dB, and phase difference between two output ports of 88º±0.6˚ in the 1.7 – 4.35 GHz range. This simulation results indicate an improvement is achieved in fractional bandwidth (FBW) performance around the center frequency of f0 = 3 GHz.Keywords: coupled stripline, directional coupler, multi-section coupler, symmetrical coupler
Procedia PDF Downloads 893244 Development of Wide Bandgap Semiconductor Based Particle Detector
Authors: Rupa Jeena, Pankaj Chetry, Pradeep Sarin
Abstract:
The study of fundamental particles and the forces governing them has always remained an attractive field of theoretical study to pursue. With the advancement and development of new technologies and instruments, it is possible now to perform particle physics experiments on a large scale for the validation of theoretical predictions. These experiments are generally carried out in a highly intense beam environment. This, in turn, requires the development of a detector prototype possessing properties like radiation tolerance, thermal stability, and fast timing response. Semiconductors like Silicon, Germanium, Diamond, and Gallium Nitride (GaN) have been widely used for particle detection applications. Silicon and germanium being narrow bandgap semiconductors, require pre-cooling to suppress the effect of noise by thermally generated intrinsic charge carriers. The application of diamond in large-scale experiments is rare owing to its high cost of fabrication, while GaN is one of the most extensively explored potential candidates. But we are aiming to introduce another wide bandgap semiconductor in this active area of research by considering all the requirements. We have made an attempt by utilizing the wide bandgap of rutile Titanium dioxide (TiO2) and other properties to use it for particle detection purposes. The thermal evaporation-oxidation (in PID furnace) technique is used for the deposition of the film, and the Metal Semiconductor Metal (MSM) electrical contacts are made using Titanium+Gold (Ti+Au) (20/80nm). The characterization comprising X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet (UV)-Visible spectroscopy, and Laser Raman Spectroscopy (LRS) has been performed on the film to get detailed information about surface morphology. On the other hand, electrical characterizations like Current Voltage (IV) measurement in dark and light and test with laser are performed to have a better understanding of the working of the detector prototype. All these preliminary tests of the detector will be presented.Keywords: particle detector, rutile titanium dioxide, thermal evaporation, wide bandgap semiconductors
Procedia PDF Downloads 803243 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications
Authors: A. Andreasyan, C. Connors
Abstract:
The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.Keywords: cryptography, elliptic curve digital signature algorithm, key exchange, network security protocol
Procedia PDF Downloads 1473242 Performance of High Density Genotyping in Sahiwal Cattle Breed
Authors: Hamid Mustafa, Huson J. Heather, Kim Eiusoo, Adeela Ajmal, Tad S. Sonstegard
Abstract:
The objective of this study was to evaluate the informativeness of Bovine high density SNPs genotyping in Sahiwal cattle population. This is a first attempt to assess the Bovine HD SNP genotyping array in any Pakistani indigenous cattle population. To evaluate these SNPs on genome wide scale, we considered 777,962 SNPs spanning the whole autosomal and X chromosomes in Sahiwal cattle population. Fifteen (15) non related gDNA samples were genotyped with the bovine HD infinium. Approximately 500,939 SNPs were found polymorphic (MAF > 0.05) in Sahiwal cattle population. The results of this study indicate potential application of Bovine High Density SNP genotyping in Pakistani indigenous cattle population. The information generated from this array can be applied in genetic prediction, characterization and genome wide association studies of Pakistani Sahiwal cattle population.Keywords: Sahiwal cattle, polymorphic SNPs, genotyping, Pakistan
Procedia PDF Downloads 4283241 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator
Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li
Abstract:
A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator
Procedia PDF Downloads 1563240 Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting
Authors: Mohamed Adel Sennouni, Jamal Zbitou, Benaissa Abboud, Abdelwahed Tribak, Hamid Bennis, Mohamed Latrach
Abstract:
A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875Keywords: UWB planar antenna, L-shaped slots, wireless applications, impedance band-width, radiation pattern, CST
Procedia PDF Downloads 4883239 Cloud-Based Mobile-to-Mobile Computation Offloading
Authors: Ebrahim Alrashed, Yousef Rafique
Abstract:
Mobile devices have drastically changed the way we do things on the move. They are being extremely relied on to perform tasks that are analogous to desktop computer capability. There has been a rapid increase of computational power on these devices; however, battery technology is still the bottleneck of evolution. The primary modern approach day approach to tackle this issue is offloading computation to the cloud, proving to be latency expensive and requiring high network bandwidth. In this paper, we explore efforts to perform barter-based mobile-to-mobile offloading. We present define a protocol and present an architecture to facilitate the development of such a system. We further highlight the deployment and security challenges.Keywords: computational offloading, power conservation, cloud, sandboxing
Procedia PDF Downloads 3883238 Frequency Reconfigurable Multiband Patch Antenna Using PIN-Diode for ITS Applications
Authors: Gaurav Upadhyay, Nand Kishore, Prashant Ranjan, V. S. Tripathi, Shivesh Tripathi
Abstract:
A frequency reconfigurable multiband antenna for intelligent transportation system (ITS) applications is proposed in this paper. A PIN-diode is used for reconfigurability. Centre frequencies are 1.38, 1.98, 2.89, 3.86, and 4.34 GHz in “ON” state of Diode and 1.56, 2.16, 2.88, 3.91 and 4.45 GHz in “OFF” state. Achieved maximum bandwidth is 18%. The maximum gain of the proposed antenna is 2.7 dBi in “ON” state and 3.95 dBi in “OFF” state of the diode. The antenna is simulated, fabricated, and tested in the lab. Measured and simulated results are in good confirmation.Keywords: ITS, multiband antenna, PIN-diode, reconfigurable
Procedia PDF Downloads 3493237 A Low Profile Dual Polarized Slot Coupled Patch Antenna
Abstract:
A low profile, dual polarized, slot coupled patch antenna is designed and developed in this paper. The antenna has a measured bandwidth of 17.2% for return loss > 15 dB and pair ports isolation >23 dB. The gain of the antenna is over 10 dBi and the half power beam widths (HPBW) of the antenna are 80±3o in the horizontal plane and 39±2o in the vertical plane. The cross polarization discrimination (XPD) is less than 20 dB in HPBW. Within the operating band, the performances of good impedance match, high ports isolation, low cross polarization, and stable radiation patterns are achieved.Keywords: dual polarized, patch antenna, slot coupled, base station antenna
Procedia PDF Downloads 4643236 A Dynamic Round Robin Routing for Z-Fat Tree
Authors: M. O. Adda
Abstract:
In this paper, we propose a topology called Zoned fat tree (Z-Fat tree) which is a further extension to the classical fat trees. The extension relates to the provision of extra degree of connectivity to maximize the number of deployed ports per routing nodes, and hence increases the bisection bandwidth especially for slimmed fat trees. The extra links, when classical routing is used, tend, in deterministic environment, to be under-utilized for some traffic patterns, hence achieving poor performance. We suggest two versions of a dynamic round robin scheme that outperforms the classical D-mod-k and S-mod-K routing and show by simulation that our proposal utilize all the extra added links to the classical fat tree, and achieve better performance for general applications.Keywords: deterministic routing, fat tree, interconnection, traffic pattern
Procedia PDF Downloads 4863235 Application on Metastable Measurement with Wide Range High Resolution VDL Circuit
Authors: Po-Hui Yang, Jing-Min Chen, Po-Yu Kuo, Chia-Chun Wu
Abstract:
This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit.Keywords: vernier delay line, D-type flip-flop, DFF, metastable phenomenon
Procedia PDF Downloads 5973234 A Framework of Virtualized Software Controller for Smart Manufacturing
Authors: Pin Xiu Chen, Shang Liang Chen
Abstract:
A virtualized software controller is developed in this research to replace traditional hardware control units. This virtualized software controller transfers motion interpolation calculations from the motion control units of end devices to edge computing platforms, thereby reducing the end devices' computational load and hardware requirements and making maintenance and updates easier. The study also applies the concept of microservices, dividing the control system into several small functional modules and then deploy into a cloud data server. This reduces the interdependency among modules and enhances the overall system's flexibility and scalability. Finally, with containerization technology, the system can be deployed and started in a matter of seconds, which is more efficient than traditional virtual machine deployment methods. Furthermore, this virtualized software controller communicates with end control devices via wireless networks, making the placement of production equipment or the redesign of processes more flexible and no longer limited by physical wiring. To handle the large data flow and maintain low-latency transmission, this study integrates 5G technology, fully utilizing its high speed, wide bandwidth, and low latency features to achieve rapid and stable remote machine control. An experimental setup is designed to verify the feasibility and test the performance of this framework. This study designs a smart manufacturing site with a 5G communication architecture, serving as a field for experimental data collection and performance testing. The smart manufacturing site includes one robotic arm, three Computer Numerical Control machine tools, several Input/Output ports, and an edge computing architecture. All machinery information is uploaded to edge computing servers and cloud servers via 5G communication and the Internet of Things framework. After analysis and computation, this information is converted into motion control commands, which are transmitted back to the relevant machinery for motion control through 5G communication. The communication time intervals at each stage are calculated using the C++ chrono library to measure the time difference for each command transmission. The relevant test results will be organized and displayed in the full-text.Keywords: 5G, MEC, microservices, virtualized software controller, smart manufacturing
Procedia PDF Downloads 843233 Graphene-Based Reconfigurable Lens Antenna for 5G/6G and Satellite Networks
Authors: André Lages, Victor Dmitriev, Juliano Bazzo, Gianni Portela
Abstract:
This work evaluates the feasibility of the graphene application to perform as a wideband reconfigurable material for lens antennas in 5G/6G and satellite applications. Based on transformation optics principles, the electromagnetic waves can be efficiently guided by modifying the effective refractive index. Graphene behavior can range between a lossy dielectric and a good conductor due to the variation of its chemical potential bias, thus arising as a promising solution for electromagnetic devices. The graphene properties and a lens antenna comprising multiples layers and periodic arrangements of graphene patches were analyzed using full-wave simulations. A dipole directivity was improved from 7 to 18.5 dBi at 29 GHz. In addition, the realized gain was enhanced 7 dB across a 14 GHz bandwidth within the Ka/5G band.Keywords: 5G/6G, graphene, lens, reconfigurable, satellite
Procedia PDF Downloads 1483232 Spatial Correlation of Channel State Information in Real Long Range Measurement
Authors: Ahmed Abdelghany, Bernard Uguen, Christophe Moy, Dominique Lemur
Abstract:
The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially Long Range Wide Area Network (LoRaWAN). In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated from each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems by getting access to a wider band.Keywords: IoT, LPWAN, LoRa, effective signal power, onsite measurement
Procedia PDF Downloads 1633231 Medical Image Compression Based on Region of Interest: A Review
Authors: Sudeepti Dayal, Neelesh Gupta
Abstract:
In terms of transmission, bigger the size of any image, longer the time the channel takes for transmission. It is understood that the bandwidth of the channel is fixed. Therefore, if the size of an image is reduced, a larger number of data or images can be transmitted over the channel. Compression is the technique used to reduce the size of an image. In terms of storage, compression reduces the file size which it occupies on the disk. Any image is based on two parameters, region of interest and non-region of interest. There are several algorithms of compression that compress the data more economically. In this paper we have reviewed region of interest and non-region of interest based compression techniques and the algorithms which compress the image most efficiently.Keywords: compression ratio, region of interest, DCT, DWT
Procedia PDF Downloads 3763230 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications
Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut
Abstract:
The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy
Procedia PDF Downloads 1563229 4-Channel CWDM Optical Transceiver Applying Silicon Photonics Ge-Photodiode and MZ-Modulator
Authors: Do-Won Kim, Andy Eu Jin Lim, Raja Muthusamy Kumarasamy, Vishal Vinayak, Jacky Wang Yu-Shun, Jason Liow Tsung Yang, Patrick Lo Guo Qiang
Abstract:
In this study, we demonstrate 4-channel coarse wavelength division multiplexing (CWDM) optical transceiver based on silicon photonics integrated circuits (PIC) of waveguide Ge-photodiode (Ge-PD) and Mach Zehnder (MZ)-modulator. 4-channel arrayed PICs of Ge-PD and MZ-modulator are verified to operate at 25 Gbps/ch achieving 4x25 Gbps of total data rate. 4 bare dies of single-channel commercial electronics ICs (EICs) of trans-impedance amplifier (TIA) for Ge-PD and driver IC for MZ-modulator are packaged with PIC on printed circuit board (PCB) in a chip-on-board (COB) manner. Each single-channel EIC is electrically connected to the one channel of 4-channel PICs by wire bonds to trace. The PICs have 4-channel multiplexer for MZ-modulator and 4-channel demultiplexer for Ge-PD. The 4-channel multiplexer/demultiplexer have echelle gratings for4 CWDM optic signals of which center wavelengths are 1511, 1531, 1553, and 1573 nm. Its insertion loss is around 4dB with over 15dB of extinction ratio.The dimension of 4-channel Ge-PD is 3.6x1.4x0.3mm, and its responsivity is 1A/W with dark current of less than 20 nA.Its measured 3dB bandwidth is around 20GHz. The dimension of the 4-channel MZ-modulator is 3.6x4.8x0.3mm, and its 3dB bandwidth is around 11Ghz at -2V of reverse biasing voltage. It has 2.4V•cmbyVπVL of 6V for π shift to 4 mm length modulator.5x5um of Inversed tapered mode size converter with less than 2dB of coupling loss is used for the coupling of the lensed fiber which has 5um of mode field diameter.The PCB for COB packaging and signal transmission is designed to have 6 layers in the hybrid layer structure. 0.25 mm-thick Rogers Duroid RT5880 is used as the first core dielectric layer for high-speed performance over 25 Gbps. It has 0.017 mm-thick of copper layers and its dielectric constant is 2.2and dissipation factor is 0.0009 at 10 GHz. The dimension of both single ended and differential microstrip transmission lines are calculated using full-wave electromagnetic (EM) field simulator HFSS which RF industry is using most. It showed 3dB bandwidth at around 15GHz in S-parameter measurement using network analyzer. The wire bond length for transmission line and ground connection from EIC is done to have less than 300 µm to minimize the parasitic effect to the system.Single layered capacitors (SLC) of 100pF and 1000pF are connected as close as possible to the EICs for stabilizing the DC biasing voltage by decoupling. Its signal transmission performance is under measurement at 25Gbps achieving 100Gbps by 4chx25Gbps. This work can be applied for the active optical cable (AOC) and quad small form-factor pluggable (QSFP) for high-speed optical interconnections. Its demands are quite large in data centers targeting 100 Gbps, 400 Gbps, and 1 Tbps. As the demands of high-speed AOC and QSFP for the application to intra/inter data centers increase, this silicon photonics based high-speed 4 channel CWDM scheme can have advantages not only in data throughput but also cost effectiveness since it reduces fiber cost dramatically through WDM.Keywords: active optical cable(AOC), 4-channel coarse wavelength division multiplexing (CWDM), communication system, data center, ge-photodiode, Mach Zehnder (MZ) modulator, optical interconnections, optical transceiver, photonics integrated circuits (PIC), quad small form-factor pluggable (QSFP), silicon photonics
Procedia PDF Downloads 4193228 Tunisian Dung Beetles Fauna: Composition and Biogeographic Affinities
Authors: Imen Labidi, Said Nouira
Abstract:
Dung beetles Scarabaeides of Tunisia constitute a major component of soil fauna, especially in the Mediterranean region. In the first phase of the present study, an intensive investigation of this group following the gathering of all the bibliographic, museological data and based on a recent collection of 17020 specimens in 106 localities in Tunisia, allowed to confirm with certainty the presence of 94 species distributed in 43 genera, 4 families and 3 sub-families. Only 81 species distributed in 38 genres, 4 families, and 3 sub-families, have been found during our prospections. The population of dung beetles Scarabaeides is composed of 58% of Aphodiidae, 39.51% of Scarabaeidae, and 8.64% of Geotrupidae. Biogeographic affinities of the species were determined and showed that 42% of the identified species have a wide Palaearctic distribution, the endemism is very low, only 3 species are endemic to Tunisia Mecynodes demoflysi, Neobodilus marani, and Thorectes demoflysi, 29 species have a wide distribution, 35 are northern and 17 are southern species. Moreover, others are dependent on very specific Biotopes like Sisyphus schaefferi linked to the northwest of Tunisia and Scarabaeus semipunctatus related to the coastal area north of Tunisia.Keywords: dung beetles, Tunisia, composition, biogeography
Procedia PDF Downloads 2503227 Some Extreme Halophilic Microorganisms Produce Extracellular Proteases with Long Lasting Tolerance to Ethanol Exposition
Authors: Cynthia G. Esquerre, Amparo Iris Zavaleta
Abstract:
Extremophiles constitute a potentially valuable source of proteases for the development of biotechnological processes; however, the number of available studies in the literature is limited compared to mesophilic counterparts. Therefore, in this study, Peruvian halophilic microorganisms were characterized to select suitable proteolytic strains that produce active proteases under exigent conditions. Proteolysis was screened using the streak plate method with gelatin or skim milk as substrates. After that, proteolytic microorganisms were selected for phenotypic characterization and screened by a semi-quantitative proteolytic test using a modified method of diffusion agar. Finally, proteolysis was evaluated using partially purified extracts by ice-cold ethanol precipitation and dialysis. All analyses were carried out over a wide range of NaCl concentrations, pH, temperature and substrates. Of a total of 60 strains, 21 proteolytic strains were selected, of these 19 were extreme halophiles and 2 were moderates. Most proteolytic strains demonstrated differences in their biochemical patterns, particularly in sugar fermentation. A total of 14 microorganisms produced extracellular proteases, 13 were neutral, and one was alkaline showing activity up to pH 9.0. Proteases hydrolyzed gelatin as the most specific substrate. In general, catalytic activity was efficient under a wide range of NaCl (1 to 4 M NaCl), temperature (37 to 55 °C) and after an ethanol exposition performed at -20 °C for 24 hours. In conclusion, this study reported 14 candidates extremely halophiles producing extracellular proteases capable of being stable and active on a wide range of NaCl, temperature and even long lasting ethanol exposition.Keywords: biotechnological processes, ethanol exposition, extracellular proteases, extremophiles
Procedia PDF Downloads 2853226 Multiband Multipolarized Planar Antenna for WLAN/WiMAX Applications
Authors: Sanjeeva Reddy, D. Vakula
Abstract:
A single layer, multi-band triangular patch antenna is proposed for WLAN/WiMAX applications with different polarization requirements. This probe feed patch is integrated with arc shaped slit to achieve circular polarized (CP) and linearly polarized (LP) radiation characteristics. The main contribution of antenna is to resonate the frequencies of 2.4 GHz with CP and 3.5 GHz, 5.28 GHz with LP. The design procedure of antenna is described and the performance is validated using measurements. Size of antenna is also reduced and provides stable gain at all resonant frequencies. Proposed structure also provides better enhancement in terms of 10-dB impedance bandwidth, achieved gain of 5.1, 5.6, and 2.9 dBi at respective bands.Keywords: circular polarization, arc shaped slit, multi band antenna, triangular patch antenna, axial ratio
Procedia PDF Downloads 3983225 Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication
Authors: Tesfaye Alamirew, Delele Worku, Solomon W. Fanta, Nigus Gabbiye
Abstract:
Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing.Keywords: glucose, ethanol, enzymatic biosensor, graphen, nanocomposite
Procedia PDF Downloads 1263224 A Horn Antenna Loaded with SIW FSS of Crossed Dipoles
Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam
Abstract:
In this article analysis and investigation of the effect of loading a horn antenna with substrate integrated waveguide frequency selective surface (SIW FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524mm and loss tangent 0.004. This structure is called a filtering antenna (filtenna). Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite SIW FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.3 GHz (0.955–0.985 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.Keywords: antenna, filtenna, frequency-selective surface (FSS), horn antennas
Procedia PDF Downloads 2883223 Data Gathering and Analysis for Arabic Historical Documents
Authors: Ali Dulla
Abstract:
This paper introduces a new dataset (and the methodology used to generate it) based on a wide range of historical Arabic documents containing clean data simple and homogeneous-page layouts. The experiments are implemented on printed and handwritten documents obtained respectively from some important libraries such as Qatar Digital Library, the British Library and the Library of Congress. We have gathered and commented on 150 archival document images from different locations and time periods. It is based on different documents from the 17th-19th century. The dataset comprises differing page layouts and degradations that challenge text line segmentation methods. Ground truth is produced using the Aletheia tool by PRImA and stored in an XML representation, in the PAGE (Page Analysis and Ground truth Elements) format. The dataset presented will be easily available to researchers world-wide for research into the obstacles facing various historical Arabic documents such as geometric correction of historical Arabic documents.Keywords: dataset production, ground truth production, historical documents, arbitrary warping, geometric correction
Procedia PDF Downloads 1693222 Hydrogen: Contention-Aware Hybrid Memory Management for Heterogeneous CPU-GPU Architectures
Authors: Yiwei Li, Mingyu Gao
Abstract:
Integrating hybrid memories with heterogeneous processors could leverage heterogeneity in both compute and memory domains for better system efficiency. To ensure performance isolation, we introduce Hydrogen, a hardware architecture to optimize the allocation of hybrid memory resources to heterogeneous CPU-GPU systems. Hydrogen supports efficient capacity and bandwidth partitioning between CPUs and GPUs in both memory tiers. We propose decoupled memory channel mapping and token-based data migration throttling to enable flexible partitioning. We also support epoch-based online search for optimized configurations and lightweight reconfiguration with reduced data movements. Hydrogen significantly outperforms existing designs by 1.21x on average and up to 1.31x.Keywords: hybrid memory, heterogeneous systems, dram cache, graphics processing units
Procedia PDF Downloads 993221 Microwave Sintering and Its Application on Cemented Carbides
Authors: Rumman M. D. Raihanuzzaman, Lee Chang Chuan, Zonghan Xie, Reza Ghomashchi
Abstract:
Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research.Keywords: cemented carbides, consolidation, microwave sintering, mechanical properties
Procedia PDF Downloads 6003220 Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator
Authors: Aimad Koulali
Abstract:
Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance.Keywords: finte element method, deformable vortex generator, numerical analysis, fluid structure interaction, ALE formlation, turbulent flow
Procedia PDF Downloads 993219 Survivable IP over WDM Network Design Based on 1 ⊕ 1 Network Coding
Authors: Nihed Bahria El Asghar, Imen Jouili, Mounir Frikha
Abstract:
Inter-datacenter transport network is very bandwidth and delay demanding. The data transferred over such a network is also highly QoS-exigent mostly because a huge volume of data should be transported transparently with regard to the application user. To avoid the data transfer failure, a backup path should be reserved. No re-routing delay should be observed. A dedicated 1+1 protection is however not applicable in inter-datacenter transport network because of the huge spare capacity. In this context, we propose a survivable virtual network with minimal backup based on network coding (1 ⊕ 1) and solve it using a modified Dijkstra-based heuristic.Keywords: network coding, dedicated protection, spare capacity, inter-datacenters transport network
Procedia PDF Downloads 4473218 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm
Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj
Abstract:
In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation
Procedia PDF Downloads 4343217 NSBS: Design of a Network Storage Backup System
Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan
Abstract:
The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.Keywords: agent, network backup system, three architecture model, NSBS
Procedia PDF Downloads 4603216 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna
Authors: Gurkirandeep Kaur, Rana Pratap Yadav
Abstract:
This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave
Procedia PDF Downloads 119