Search results for: wastes water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9032

Search results for: wastes water

8882 Contrasting The Water Consumption Estimation Methods

Authors: Etienne Alain Feukeu, L. W. Snyman

Abstract:

Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably.

Keywords: water scarcity, water estimation, water prediction, water forecast.

Procedia PDF Downloads 201
8881 Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation

Authors: Abeer A. Q. Ahmed, Tracey McKay

Abstract:

The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals.

Keywords: Bacillus safensis LCX, high valued chemicals, lignocellulosic enzymes, solid state fermentation

Procedia PDF Downloads 295
8880 Water Quality Assessment of Owu Falls for Water Use Classification

Authors: Modupe O. Jimoh

Abstract:

Waterfalls create an ambient environment for tourism and relaxation. They are also potential sources for water supply. Owu waterfall located at Isin Local Government, Kwara state, Nigeria is the highest waterfall in the West African region, yet none of its potential usefulness has been fully exploited. Water samples were taken from two sections of the fall and were analyzed for various water quality parameters. The results obtained include pH (6.71 ± 0.1), Biochemical oxygen demand (4.2 ± 0.5 mg/l), Chemical oxygen demand (3.07 ± 0.01 mg/l), Dissolved oxygen (6.59 ± 0.6 mg/l), Turbidity (4.43 ± 0.11 NTU), Total dissolved solids (8.2 ± 0.09 mg/l), Total suspended solids (18.25 ± 0.5 mg/l), Chloride ion (0.48 ± 0.08 mg/l), Calcium ion (0.82 ± 0.02 mg/l)), Magnesium ion (0.63 ± 0.03 mg/l) and Nitrate ion (1.25 ± 0.01 mg/l). The results were compared to the World Health Organisations standard for drinking water and the Nigerian standard for drinking water. From the comparison, it can be deduced that due to the Biochemical oxygen demand value, the water is not suitable for drinking unless it undergoes treatment. However, it is suitable for other classes of water usage.

Keywords: Owu falls, waterfall, water quality, water quality parameters, water use

Procedia PDF Downloads 179
8879 Produce High-Quality Activated Carbon with a Large Surface Area from Date Seeds Biomass for Water Treatment

Authors: Rashad Al-Gaashani, Viktor Kochkodan, Jenny Lawler

Abstract:

Physico-chemical activation method wasused to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomasswastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were used to evaluate the AC samples. AC produced from date seeds have a wide range of the pores available, including micro- andnano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metalsiron (III) and copper (II) ions were removed from wastewater using the AC producedusinga batch adsorption technique. The AC produced from date seeds biomass wastes show high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, pH on the removal of heavy metalswere studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 102
8878 Ecological-Economics Evaluation of Water Treatment Systems

Authors: Hwasuk Jung, Seoi Lee, Dongchoon Ryou, Pyungjong Yoo, Seokmo Lee

Abstract:

The Nakdong River being used as drinking water sources for Pusan metropolitan city has the vulnerability of water management due to the fact that industrial areas are located in the upper Nakdong River. Most citizens of Busan think that the water quality of Nakdong River is not good, so they boil or use home filter to drink tap water, which causes unnecessary individual costs to Busan citizens. We need to diversify water intake to reduce the cost and to change the weak water source. Under this background, this study was carried out for the environmental accounting of Namgang dam water treatment system compared to Nakdong River water treatment system by using emergy analysis method to help making reasonable decision. Emergy analysis method evaluates quantitatively both natural environment and human economic activities as an equal unit of measure. The emergy transformity of Namgang dam’s water was 1.16 times larger than that of Nakdong River’s water. Namgang Dam’s water shows larger emergy transformity than that of Nakdong River’s water due to its good water quality. The emergy used in making 1 m3 tap water from Namgang dam water treatment system was 1.26 times larger than that of Nakdong River water treatment system. Namgang dam water treatment system shows larger emergy input than that of Nakdong river water treatment system due to its construction cost of new pipeline for intaking Namgang daw water. If the Won used in making 1 m3 tap water from Nakdong river water treatment system is 1, Namgang dam water treatment system used 1.66. If the Em-won used in making 1 m3 tap water from Nakdong river water treatment system is 1, Namgang dam water treatment system used 1.26. The cost-benefit ratio of Em-won was smaller than that of Won. When we use emergy analysis, which considers the benefit of a natural environment such as good water quality of Namgang dam, Namgang dam water treatment system could be a good alternative for diversifying intake source.

Keywords: emergy, emergy transformity, Em-won, water treatment system

Procedia PDF Downloads 305
8877 Water Self Sufficient: Creating a Sustainable Water System Based on Urban Harvest Approach in La Serena, Chile

Authors: Zulfikar Dinar Wahidayat Putra

Abstract:

Water scarcity become a major challenge in an arid area. One of the arid areas is La Serena city in the Northern Chile which become a case study of this paper. Based on that, this paper tries to identify a sustainable water system by using urban harvest approach as a method to achieve water self-sufficiency for a neighborhood area in the La Serena city. By using the method, it is possible to create sustainable water system in the neighborhood area by reducing up to 38% of water demand and 94% of wastewater production even though water self-sufficient cannot be fully achieved, because of its dependency to the drinking water supply from water treatment plant of La Serena city.

Keywords: arid area, sustainable water system, urban harvest approach, self-sufficiency

Procedia PDF Downloads 264
8876 Technical and Economical Feasibility Analysis of Solar Water Pumping System - Case Study in Iran

Authors: A. Gharib, M. Moradi

Abstract:

The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate. Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with a storage battery, AC solar water pumping with a storage tank, and DC direct solar water pumping.

Keywords: technical and economic feasibility, solar energy, photovoltaic systems, solar water pumping system

Procedia PDF Downloads 570
8875 Pollution-Sources, Controls, and Impact Analysis

Authors: Aditi Acharya

Abstract:

Environmental pollution is threatening the environmental and human health in the most drastic way. This paper provides insight about the affects of environmental pollution in the perspective of water pollution. Sewage in drinking water, the increasing contamination of water bodies and water resources and the human beings are the major contributors, increasing the harsh activities of pollution. The research presents information about the sources of pollution, its impacts and control activities to be undertaken to make our environment free from water pollution.

Keywords: environmental pollution, water pollution, nanotechnology, nanomaterials

Procedia PDF Downloads 363
8874 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia

Authors: Samira Melki, Moncef Gueddari

Abstract:

In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.

Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia

Procedia PDF Downloads 202
8873 Evaluation of the Potability Qualities of Pretreated Distilled Water Produced from Biomass Fuelled Water Distiller

Authors: E. I. Oluwasola, J. A. V. Famurewa, R. Aboloma, K. Adesina

Abstract:

Water samples with pretreatment and without pretreatment were obtained from locally constructed biomass fuelled stainless steel water distiller. The water samples were subjected to Microbial, Physicochemical and Minerals analyses for comparison with NAFDAC and WHO Standards for potable water. The results of the physicochemical and microbiological properties of the raw water(A), and the two distilled water samples (B; distill water without pretreatment) and (C; distill water with pretreatment) showed reduction in most of the quality parameters evaluated in the distilled water samples to the level that conforms to the W.H.O standards for drinking water however, lower values were obtained for the pretreated distilled water sample. The values of 0.0016mg/l, 0.0052mg/l and 0.0528mg/l for the arsenic, chromium and lead content respectively in the raw water were within the permissible limit specified by WHO however; the values of cadmium (0.067mg/l) and mercury (0.0287mg/l) are above the maximum tolerable for drinking water thus, making the raw water unsafe for human consumption. Similarly, the high total plate count (278cfu /ml) and coliform count (1100/100ml) indicate that the raw water is potentially harmful while the distilled water samples showed nil coliform count and low total plate count (35cfu/ml,18cfu/ml) for B and C respectively making the distilled water microbiologically safer for human consumption.

Keywords: biomass, distillation, mineral, potable, physicochemical

Procedia PDF Downloads 496
8872 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects. 

Keywords: aromatic compounds, industrial soil, molecular sieve, normal formyl morpholine solvent

Procedia PDF Downloads 231
8871 Innovative Method for Treating Oil-Produced Water with Low Operating Cost

Authors: Maha Salman, Gada Al-Nuwaibit, Ahmed Al-Haji, Saleh Al-Haddad, Abbas Al-Mesri, Mansour Al-Rugeeb

Abstract:

The high salinity of oil-produced water and its complicated chemical composition, makes designing a suitable treatment system for oil-produced water is extremely difficult and costly. On the current study, a new innovative method was proposed to treat the complicated oil-produced water through a simple mixing with brine stream produced from waste water treatment plant. The proposal will investigate the scaling potential of oil-produce water, seawater and the selected brine water (BW) produced from Sulaibiya waste water treatment and reclamation plant (SWWTRP) before and after the mixing with oil-produced water, and will calculate the scaling potential of all expected precipitated salts using different conversion and different % of mixing to optimize the % of mixing between the oil-produced water and the selected stream. The result shows a great, feasible and economic solution to treat oil produced with a very low capital cost.

Keywords: brine water, oil-produced water, scaling potential, Sulaibiyah waste water and reclaminatin plant

Procedia PDF Downloads 446
8870 Risk Management of Water Derivatives: A New Commodity in The Market

Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg

Abstract:

This paper is a concise introduction of the risk management on the water derivatives market. Water, a new commodity in the market, is one of the most important commodity on earth. As important to life and planet as crops, metals, and energy, none of them matters without water. This paper presents a brief overview of water as a tradable commodity via a new first of its kind futures contract on the Nasdaq Veles California Water Index (NQH2O) derivative instrument, TheGeneralised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be the used to measure the water price volatility of the instrument and its performance since it’s been traded. describe the main products and illustrate their usage in risk management and also discuss key challenges with modeling and valuation of water as a traded commodity and finally discuss how water derivatives may be taken as an alternative asset investment class.

Keywords: water derivatives, commodity market, nasdaq veles california water Index (NQH2O, water price, risk management

Procedia PDF Downloads 136
8869 Res2ValHUM: Creation of Resource Management Tool and Microbial Consortia Isolation and Identification

Authors: A. Ribeiro, N. Valério, C. Vilarinho, J. Araujo, J. Carvalho

Abstract:

Res2ValHUM project involves institutions from the Spanish Autonomous Region of Galicia and the north of Portugal (districts of Porto and Braga) and has as overall objectives of promotion of composting as an process for the correct managing of organic waste, valorization of compost in different fields or applications for the constitution of products with high added value, reducing of raw materials losses, and reduction of the amount of waste throw in landfills. Three main actions were designed to achieve the objectives: development of a management tool to improve collection and residue channeling for composting, sensibilization of the population for composting and characterization of the chemical and biological properties of compost and humic and fulvic substances to envisage high-value applications of compost. Here we present the cooperative activity of Galician and northern Portuguese institutions to valorize organic waste in both regions with common socio-economic characteristics and residue management problems. Results from the creation of the resource manage tool proved the existence of a large number of agricultural wastes that could be valorized. In the North of Portugal, the wastes from maize, oats, potato, apple, grape pomace, rye, and olive pomace can be highlighted. In the Autonomous Region of Galicia the wastes from maize, wheat, potato, apple, and chestnuts can be emphasized. Regarding the isolation and identification of microbial consortia from compost samples, results proved microorganisms belong mainly to the genus Bacillus spp. Among all the species identified in compost samples, Bacillus licheniformis can be highlighted in the production of humic and fulvic acids.

Keywords: agricultural wastes, Bacillus licheniformis, Bacillus spp., humic-acids, fulvic-acids

Procedia PDF Downloads 122
8868 Field Scale Simulation Study of Miscible Water Alternating CO2 Injection Process in Fractured Reservoirs

Authors: Hooman Fallah

Abstract:

Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2 is a good choice among this methods. In this method, water and CO2 slugs are injected alternatively in reservoir as miscible agent into reservoir. This paper studies water injection scenario and miscible injection of water and CO2 in a two dimensional, inhomogeneous fractured reservoir. The results show that miscible water alternating CO2¬ gas injection leads to 3.95% increase in final oil recovery and total water production decrease of 3.89% comparing to water injection scenario.

Keywords: simulation study, CO2, water alternating gas injection, fractured reservoirs

Procedia PDF Downloads 291
8867 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source

Authors: Riad

Abstract:

As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.

Keywords: renewable energy, greenhouse effect, water chamber, water vapour

Procedia PDF Downloads 355
8866 A Study on Water Quality Parameters of Pond Water for Better Management of Pond

Authors: Dona Grace Jeyaseeli

Abstract:

Water quality conditions in a pond are controlled by both natural processes and human influences. Natural factors such as the source of the pond water and the types of rock and soil in the pond watershed will influence some water quality characteristics. These factors are difficult to control but usually cause few problems. Instead, most serious water quality problems originate from land uses or other activities near or in the pond. The effects of these activities can often be minimized through proper management and early detection of problems through testing. In the present study a survey of three ponds in Coimbatore city, Tamilnadu, India were analyzed and found that water quality problems in their ponds, ranging from muddy water to fish kills. Unfortunately, most pond owners have never tested their ponds, and water quality problems are usually only detected after they cause a problem. Hence the present study discusses some common water quality parameters that may cause problems in ponds and how to detect through testing for better management of pond.

Keywords: water quality, pond, test, problem

Procedia PDF Downloads 504
8865 Optimizing Inanda Dam Using Water Resources Models

Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective and management

Procedia PDF Downloads 573
8864 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement

Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson

Abstract:

Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.

Keywords: polyethylene, recycling, waste, composite, kaolin

Procedia PDF Downloads 173
8863 The Use of Water Hyacinth for Bioenergy Electric Generation: For the case of Tana Water Hyacinth

Authors: Seada Hussen Adem, Frie Ayalew Yimam

Abstract:

Due to its high biomass output and potential to produce renewable energy, water hyacinth, a rapidly expanding aquatic weed, has gained recognition as a prospective bioenergy feedstock. Through a variety of conversion processes, such as anaerobic digestion, combustion, and gasification, this study suggests using water hyacinth to generate energy. The suggested strategy helps to reduce the annoyance brought on by the excessive growth of water hyacinth in Tana water bodies in addition to offering an alternate source of energy. The study emphasizes the value of environmentally friendly methods for managing Tana water resources as well as the potential of water hyacinth as a source of bioenergy.

Keywords: anaerobic digestion, bioenergy, combustion, gasification, water hyacinth

Procedia PDF Downloads 67
8862 Solid Waste and Its Impact on the Human Health

Authors: Waseem Akram, Hafiz Azhar Ali Khan

Abstract:

Unplanned urbanization together with change in life from simple to more technologically advanced style with flow of rural masses to urban areas has played a vital role in pilling loads of solid wastes in our environment. The cities and towns have expanded beyond boundaries. Even the uncontrolled population expansion has caused the overall environmental burden. Thus, today the indifference remains as one of the biggest trash that has come up due to the non-responsive behavior of the people. Everyday huge amount of solid waste is thrown in the streets, on the roads, parks, and in all those places that are frequently and often visited by the human beings. This behavior based response in many countries of the world has led to serious health concerns and environmental issues. Over 80% of our products that are sold in the market are packed in plastic bags. None of the bags are later recycled but simply become a permanent environment concern that flies, choke lines or are burnt and release toxic gases in the environment or form dumps of heaps. Lack of classification of the daily waste generated from houses and other places lead to worst clogging of the sewerage lines and formation of ponding areas which ultimately favor vector borne disease and sometimes become a cause of transmission of polio virus. Solid waste heaps were checked at different places of the cities. All of the wastes on visual assessments were classified into plastic bags, papers, broken plastic pots, clay pots, steel boxes, wrappers etc. All solid waste dumping sites in the cities and wastes that were thrown outside of the trash containers usually contained wrappers, plastic bags, and unconsumed food products. Insect populations seen in these sites included the house flies, bugs, cockroaches and mosquito larvae breeding in water filled wrappers, containers or plastic bags. The population of the mosquitoes, cockroaches and houseflies were relatively very high in dumping sites close to human population. This population has been associated with cases like dengue, malaria, dysentery, gastro and also to skin allergies during the monsoon and summer season. Thus, dumping of the huge amount of solid wastes in and near the residential areas results into serious environmental concerns, bad smell circulation, and health related issues. In some places, the same waste is burnt to get rid of mosquitoes through smoke which ultimately releases toxic material in the atmosphere. Therefore, a proper environmental strategy is needed to minimize environmental burden and promote concepts of recycled products and thus, reduce the disease burden.

Keywords: solid waste accumulation, disease burden, mosquitoes, vector borne diseases

Procedia PDF Downloads 278
8861 Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa

Authors: Abraham Addo-Bediako

Abstract:

Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use.

Keywords: land use, health risk, metal pollution, water quality

Procedia PDF Downloads 87
8860 Socio-Economic Analysis of Water Saving Technologies in Agricultural Sector

Authors: Saeed Yazdani, F. Nekoofar

Abstract:

Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. In the agriculture sector, farmers are facilitated with various practices and technologies to encounter water insufficiency. This study aims to assess socio-economic factors affecting the application of water-saving technologies. A Logit method was employed to examine the impact of different variables on the use of water-saving technology. The required data was gathered from a sample of 204 farmers in 2021 in Alborz Province in Iran. The results indicate that different variables such as crop price variability, water sources, farm size, income, education, experience, membership in cooperatives have positive effects, and variables such as age and number of plots have negative effects on the probability of applying modern water-saving technologies.

Keywords: socio-economics, water, irrigation, water saving technologies, scarcity

Procedia PDF Downloads 21
8859 Iraq Water Resources Planning: Perspectives and Prognoses

Authors: Nadhir Al-Ansari, Ammar A. Ali, Sven Knutsson

Abstract:

Iraq is located in the Middle East. It covers an area of 433,970 square kilometres populated by about 32 million inhabitants. Iraq greatly relies in its water resources on the Tigris and Euphrates Rivers. Recently, Iraq is suffering from water shortage problems. This is due to external and internal factors. The former includes global warming and water resources policies of neighbouring countries while the latter includes mismanagement of its water resources. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77 BCM respectively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040. To overcome this problem, prudent water management policies are to be adopted. This includes Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning.

Keywords: Iraq, Tigris River, Euphrates River, water scarcity, water resources management

Procedia PDF Downloads 449
8858 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 344
8857 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes

Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng

Abstract:

The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.

Keywords: electrokinetic remediation, ion exchange membranes, soil, uranium

Procedia PDF Downloads 352
8856 Gas Flotation Unit in Kuwait Oil Company Operations

Authors: Homoud Bourisli, Haitham Safar

Abstract:

Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure.

Keywords: Kuwait oil company, dissolved gas flotation unit, induced gas flotation unit, oil-water separation

Procedia PDF Downloads 574
8855 Polyphenols from Winery Wastes as Potential Source of Antioxidants

Authors: Lucia Gharwalova, Irena Kolouchova, Jan Masak

Abstract:

A large amount of waste products is generated throughout the whole winemaking process as well as during work in the vineyard. This waste is as a source of phenolic compounds, such as resveratrol and polydatin, which possess a strong antioxidant capacity. Changes in the amounts of phenols were compared depending on the growing conditions and wine variety. Wastes (grape stems, marc and shoots) from two wineries in the Czech Republic were analyzed. Phenols from these samples were extracted by 40% ethanol. The amount of polyphenols in these extracts was determined by HPLC and their antioxidant capacity by DPPH. We compared changes in the amounts of phenols depending on the type of waste and the wine variety. The most significant source of stilbenoids was waste from pruning (shoots). These results show that winery waste could be further reused thanks to their antioxidant content.

Keywords: antioxidants, polyphenols, resveratrol, winery waste

Procedia PDF Downloads 408
8854 Cleaner Production Options for Fishery Wastes around Lake Tana-Ethiopia

Authors: Demisash, Abate Getnet, Gudisa, Ababo Geleta, Daba, Berhane Olani

Abstract:

As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity, and setting up cleaner production options for the site with the experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area, and some of the main reasons raised were they have no option than doing this for dis-charging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in a generation rate of 72,822.61 kg per year, which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33%, and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization, which involves biodiesel production, was chosen as a potential method. Laboratory scale experiments were performed to produce a renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p, and 153°C flashpoints, which shows the product has values in compliance with the American Society for Testing and Materials (ASTM) standards.

Keywords: biodiesel, cleaner production, renewable energy, waste management

Procedia PDF Downloads 150
8853 Impact of Saline Water and Water Restriction in Laying Hens

Authors: Reza Vakili

Abstract:

This experiment was conducted to investigate the effect of duration water restriction of drinking water and salinity level on production performance, egg quality and biochemical and hematological blood indices of laying hens. A total of 240 Hy-Line laying hens were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Experimental treatments were: 1) free access to drinking water and a low level of salinity (TDS below 500 mg/L) (FAW+LS), 2) free access to water and a high level of salinity (TDS above 1500 mg/L), (FAW+HS), 3) 12 h nightly water restriction and a low level of salinity (LAW+LS), and 4) 12 h water restriction and a high level of salinity (LAW+HS). Intake of feed, percentage of egg production and egg weight and mass were not affected by water restriction or salinity level (P > 0.05), however, a trend (P < 0.01) for lower water consumption was detected in water-restricted hens, regardless of salinity level (213 vs 187). A tendency for lower eggshell and yolk weights was observed in hens that had limited access to water with high salinity compared to those had free access to high saline water (P = 0.08). Serum total protein and glucose concentrations significantly reduced (P < 0.05) in hens drank high salinity water, regardless of water restriction. Moreover, saline water increased the concentration of uric acid, creatinine, and cholesterol when compared to low salinity drank-hens (P < 0.05). The concentrations of ALT and AST increased with salinity level (P < 0.05) and water restriction caused an increment in AST content (P < 0.05). In conclusion, Hy-Line laying hens could withstand water restriction, whilst could not tolerate water salinity of about 1500 mg/L.

Keywords: chemical pollutants, eggs, laying hens, salinity, water quality

Procedia PDF Downloads 23