Search results for: moisture emission
2222 Investigation on the Performance of Biodiesel and Natural Gas-Fuelled Diesel Engines for Shipboard Application
Authors: Kelvin Datonye Bob-Manuel
Abstract:
The shipping industry has begun to seriously look at ways of reducing fossil fuel consumption so that current reserves can last longer and operate their ships in a more environmentally friendly way. The concept of Green Shipping or Sustainable Shipping with the use of alternative fuels is now becoming an important issue for ship owners, shipping lines and ship builders globally. This paper provides a critical review of the performance of biodiesel and natural gas-fuelled diesel engines for shipboard application. The emission reduction technique included the use of either neat or emulsified rapeseed methyl ester (RME) for pilot ignition and the emission of NOx, CO2 and SOx were measured at engine speed range of 500 - 1500 r/min. The NOx concentrations were compared with the regulated IMO MARPOL73/78, Annex VI, Tiers I, II, III and United States Environmental Protection Agency (US-EPA) standard. All NOx emissions met Tier I and II levels and the EPA standard for the minimum specification of category 1 engines at higher speed but none met the MARPOL Tier III limit which is for designated Emission Control Areas (ECAs). No trace of soot and SOx emission were observed.Keywords: dual-fuel, biodiesel, natural gas, NOx, SOx, MARPOL 73/78 Annex VI. USEPA Tier 3, EURO V &VI
Procedia PDF Downloads 4172221 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma
Authors: Mahkameh Asadi, Habibollah Dadgar
Abstract:
The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma
Procedia PDF Downloads 1772220 Study of Nanocrystalline Scintillator for Alpha Particles Detection
Authors: Azadeh Farzaneh, Mohammad Reza Abdi, A. Quaranta, Matteo Dalla Palma, Seyedshahram Mortazavi
Abstract:
We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and Scanning Electron Microscope (SEM) Also, optical properties were followed by optical absorption and UV–vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra to alpha particles of sample were monitored.Keywords: nanoparticles, luminescence, sol gel, scintillator
Procedia PDF Downloads 6002219 Investigation of Suitability of Dredged Wastes for Production of Bricks
Authors: B. Adebayo, A. O. Omotehinse, C. Arum
Abstract:
This study investigates the suitability of dredged samples for the production of bricks. Some geotechnical properties (moisture content, grain size distribution) of dredged samples were also determined using the British Standard. Bricks were produced using appropriate mixes of two dredged wastes. The dredged samples (Oroto dredged samples and Igbokoda dredged samples) have high moisture content of 90.48 % and 37.5 % respectively and both are classified as silty materials. The two dredged samples were mixed in different percentage (1- Oroto dredged sample (DS) 85 % and Igbokoda dredged sample (IS) 15 %, 2-DS 70 % and IS 30 %, 3- DS 55 % and IS 45 %, 4- DS 50 % and IS 50 %, 5- DS 45 % and IS 55 %,6- DS 30 % and IS 70 %, 7- DS 15 % and IS 85 %, 8- Clay 100 %, 9- DS 100 %, 10-IS 100 %) for the production of bricks and were tested for 7 days, 14 days, 21 days and 28 days. Although, the water absorption level of the bricks produced were high (5.635 to 33.4 %), the compressive strength on the 28th day was within the accepted British Standard. The Igbokoda dredge sample is a good material for the production of bricks when mixed with Oroto Dredged sample because the compressive strength of the material is within the accepted limit.Keywords: bricks, dredged, moisture content, suitability
Procedia PDF Downloads 2392218 Investigation of Antibacterial Property of Bamboo In-Terms of Percentage on Comparing with ZnO Treated Cotton Fabric
Authors: Arjun Dakuri, J. Hayavadana
Abstract:
The study includes selection of 100 % bamboo fabric and cotton fabric for the study. The 100% bamboo fabrics were of 127 g/m², and 112 g/m² and 100% cotton grey fabric were of 104 g/m². The cotton fabric was desized, scoured, bleached and then treated with ZnO (as antimicrobial agent) with 1%, 2% and 3% using pad-dry cure method, whereas the bamboo fabrics were only desized. The antimicrobial activity of bamboo and ZnO treated cotton fabrics were evaluated and compared against E. coli and S. aureus as per the standard AATCC - 147. Moisture management properties of selected fabrics were also analyzed. Further, the selected fabric samples were tested for comfort properties like bending length, tearing strength, drape-ability, and specific handle force and air permeability. It was observed that bamboo fabrics show significant antibacterial activity and the same was shown by 3% ZnO treated cotton fabric. Both cotton and bamboo fabrics show improved moisture management properties than the cotton fabric. The comfort properties of bamboo fabrics are found to be superior to cotton fabrics making it more suitable for applications in place of cotton.Keywords: antimicrobial activity, bamboo, cotton, comfort properties, moisture management, zinc oxide
Procedia PDF Downloads 3532217 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression
Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas
Abstract:
Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.Keywords: acoustic emission, geomaterial, laser ultrasound, uniaxial compression
Procedia PDF Downloads 3762216 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects
Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif
Abstract:
Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission
Procedia PDF Downloads 3072215 Spectroscopic Investigations of Nd³⁺ Doped Lithium Lead Alumino Borate Glasses for 1.06μM Laser Applications
Authors: Nisha Deopa, A. S. Rao
Abstract:
Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li₂O – 10PbO – (10-x) Al₂O₃ – 70B₂O₃ – xNd₂O₃ (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentiality. From the absorption spectra, Judd-Ofelt intensity parameters along with various spectroscopic parameters have been estimated. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions, ⁴F₃/₂→⁴I₁₁/₂ (1063 nm) and ⁴F₃/₂→⁴I₉/₂ (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd³⁺ ion concentration up to 1 mol %, and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd³⁺ ions concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively high values of emission cross-section, branching ratio, lifetimes and quantum efficiency suggest that 1.0 mol% of Nd³⁺ in LiPbAlB glasses is aptly suitable to generate lasing action in NIR region at 1063 nm.Keywords: energy transfer, glasses, J-O parameters, photoluminescence
Procedia PDF Downloads 1922214 On Board Measurement of Real Exhaust Emission of Light-Duty Vehicles in Algeria
Authors: R. Kerbachi, S. Chikhi, M. Boughedaoui
Abstract:
The study presents an analysis of the Algerian vehicle fleet and resultant emissions. The emission measurement of air pollutants emitted by road transportation (CO, THC, NOX and CO2) was conducted on 17 light duty vehicles in real traffic. This sample is representative of the Algerian light vehicles in terms of fuel quality (gasoline, diesel and liquefied petroleum gas) and the technology quality (injection system and emission control). The experimental measurement methodology of unit emission of vehicles in real traffic situation is based on the use of the mini-Constant Volume Sampler for gas sampling and a set of gas analyzers for CO2, CO, NOx and THC, with an instrumentation to measure kinematics, gas temperature and pressure. The apparatus is also equipped with data logging instrument and data transfer. The results were compared with the database of the European light vehicles (Artemis). It was shown that the technological injection liquefied petroleum gas (LPG) has significant impact on air pollutants emission. Therefore, with the exception of nitrogen oxide compounds, uncatalyzed LPG vehicles are more effective in reducing emissions unit of air pollutants compared to uncatalyzed gasoline vehicles. LPG performance seems to be lower under real driving conditions than expected on chassis dynamometer. On the other hand, the results show that uncatalyzed gasoline vehicles emit high levels of carbon monoxide, and nitrogen oxides. Overall, and in the absence of standards in Algeria, unit emissions are much higher than Euro 3. The enforcement of pollutant emission standard in developing countries is an important step towards introducing cleaner technology and reducing vehicular emissions.Keywords: on-board measurements of unit emissions of CO, HC, NOx and CO2, light vehicles, mini-CVS, LPG-fuel, artemis, Algeria
Procedia PDF Downloads 2762213 The Construction Technology of Dryer Silo Materials to Grains Made from Webbing Bamboo: A Drying Technology Solutions to Empowerment Farmers in Yogyakarta, Indonesia
Authors: Nursigit Bintoro, Abadi Barus, Catur Setyo Dedi Pamungkas
Abstract:
Indonesia is an agrarian country have almost population work as farmers. One of the popular agriculture commodity in Indonesia is paddy and corn. Production of paddy and corn are increased, but not balanced to the development of appropriate technology to farmers. Methods of drying applied with farmers still using sunshine. Drying by this method has some drawbacks, such as differences moisture content of corn grains, time used to dry around 3 days, and less quality of the products obtained. Beside it, the method of drying by using sunshine can’t do when the rainy season arrives. On this season the product obtained has less quality. One solution to the above problems is to create a dryer with simple technology. That technology is made silo dryer from webbing bamboo and wood. This technology is applicable to be applied to farmers' groups as well as the creation technology is quite cheap. The experiment material used in this research will be obtained from the corn grains. The equipment used are woven bamboo with a height of 3 meters and have capacity of up to 900 kgs as a silo, gas, burner, blower, bucket elevators, thermocouple, Arduino microcontroller 2560. This tools automatically records all the data of temperature and relative humidity. During on drying, each 30 minutes take 9 sample for measuring moisture content with moisture meter. By using this technology, farmers can save time, energy, and cost to the drying their agriculture product. In addition, by using this technology have good quality moisture content of grains and have a longer shelf life because the temperature when the heating process is controlled. Therefore, this technology is applicable to be applied to the public because the materials used to make the dryer easier to find, cheaper, and manufacture of the dryer made simple with good quality.Keywords: grains, dryer, moisture content, appropriate technology
Procedia PDF Downloads 3592212 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks
Authors: Maya S. Rathod, Bahadur Singh Hathan
Abstract:
Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, hardness, antioxidant activity, total phenolic content and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100 g premix having 16.8 % moisture content (w.b).Keywords: extrusion, mustard leaves powder, optimization, response surface methodology
Procedia PDF Downloads 5462211 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer
Authors: R. Karmouch
Abstract:
A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.Keywords: photodeterioration, silicon nanocrystals, ion implantation, photoluminescence, surface plasmons
Procedia PDF Downloads 4212210 Impact of Heat Moisture Treatment on the Yield of Resistant Starch and Evaluation of Functional Properties of Modified Mung Bean (Vigna radiate) Starch
Authors: Sreejani Barua, P. P. Srivastav
Abstract:
Formulation of new functional food products for diabetes patients and obsessed people is a challenge for food industries till date. Starch is a certainly happening, ecological, reasonable and profusely obtainable polysaccharide in plant material. In the present scenario, there is a great interest in modifying starch functional properties without destroying its granular structure using different modification techniques. Resistant starch (RS) contains almost zero calories and can control blood glucose level to prevent diabetes. The current study focused on modification of mung bean starch which is a good source of legumes carbohydrate for the production of functional food. Heat moisture treatment (HMT) of mung starch was conducted at moisture content of 10-30%, temperature of 80-120 °C and time of 8-24 h.The content of resistant starch after modification was significantly increased from native starches containing RS 7.6%. The design combinations of HMT had been completed through Central Composite Rotatable Design (CCRD). The effects of HMT process variables on the yield of resistant starch was studied through Rapid Surface Methodology (RSM). The highest increase of resistant starch was found up to 34.39% when treated the native starch with 30% m.c at 120 °C temperature for 24 h.The functional properties of both native and modified mung bean starches showed that there was a reduction in the swelling power and swelling volume of HMT starches. However, the solubility of the HMT starches was higher than that of untreated native starch and also observed change in structural (scanning electron microscopy), X-Ray diffraction (XRD) pattern, blue value and thermal (differential scanning calorimetry) properties. Therefore, replacing native mung bean starch with heat-moisture treated mung bean starch leads to the development of new products with higher resistant starch levels and functional properties.Keywords: Mung bean starch, heat moisture treatment, functional properties, resistant starch
Procedia PDF Downloads 2022209 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics
Authors: C. S. Saini
Abstract:
The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.Keywords: black gram, corn flour, extrusion, physical characteristics
Procedia PDF Downloads 4792208 Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends
Authors: Virender Singh Gurau, Akash Deep, Sarbjot S. Sandhu
Abstract:
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel.Keywords: biodiesel, transesterification, bitter apricot kernel oil, performance and emission testing
Procedia PDF Downloads 3382207 Screening of Rice Genotypes in Methane and Carbon Dioxide Emissions Under Different Water Regimes
Authors: Mthiyane Pretty, Mitsui Toshiake, Nagano Hirohiko, Aycan Murat
Abstract:
Among the most significant greenhouse gases released from rice fields are methane and carbon dioxide. The primary focus of this research was to quantify CH₄ and CO₂ gas using different 4 rice cultivars, two water regimes, and a recording of soil moisture and temperature. In this study, we hypothesized that paddy field soils may directly affect soil enzymatic activities and physicochemical properties in the rhizosphere soil of paddy fields and subsequently indirectly affect the activity, abundance, diversity, and community composition of methanogens, ultimately affecting CH₄ flux. The experiment was laid out in the randomized block design with two treatments and three replications for each genotype. In two treatments, paddy fields and artificial soil were used. 35 days after planting (DAP), continuous flooding irrigation, Alternate wetting, and drying (AWD) were applied during the vegetative stage. The highest recorded measurements of soil and environmental parameters were soil moisture at 76%, soil temperature at 28.3℃, Bulk EC at 0.99 ds/m, and pore water EC at 1,25, using HydraGO portable soil sensor system. Gas samples were carried out once on a weekly basis at 09:00 am and 12: 00 pm to obtain the mean GHG flux. Gas Chromatography (GC, Shimadzu, GC-2010, Japan) was used for the analysis of CH4 and CO₂. The treatments with paddy field soil had a 1.3℃ higher temperature than artificial soil. The overall changes in Bulk EC were not significant across the treatment. The CH₄ emission patterns were observed in all rice genotypes, although they were less in treatments with AWD with artificial soil. This shows that AWD creates oxic conditions in the rice soil. CO₂ was also quantified, but it was in minute quantities, as rice plants were using CO₂ for photosynthesis. The highest tillering number was 7, and the lowest was 3 in cultivars grown. The rice varieties to be used for breeding are Norin 24, with showed a high number of tillers with less CH₄.Keywords: greenhouse gases, methane, morphological characterization, alternating wetting and drying
Procedia PDF Downloads 802206 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance
Authors: Reina Kawase, Yuzuru Matsuoka
Abstract:
To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand
Procedia PDF Downloads 5532205 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).Keywords: acoustic emission, dual phase steels, deformation, failure, fracture
Procedia PDF Downloads 4032204 Climate Change Effects of Vehicular Carbon Monoxide Emission from Road Transportation in Part of Minna Metropolis, Niger State, Nigeria
Authors: H. M. Liman, Y. M. Suleiman A. A. David
Abstract:
Poor air quality often considered one of the greatest environmental threats facing the world today is caused majorly by the emission of carbon monoxide into the atmosphere. The principal air pollutant is carbon monoxide. One prominent source of carbon monoxide emission is the transportation sector. Not much was known about the emission levels of carbon monoxide, the primary pollutant from the road transportation in the study area. Therefore, this study assessed the levels of carbon monoxide emission from road transportation in the Minna, Niger State. The database shows the carbon monoxide data collected. MSA Altair gas alert detector was used to take the carbon monoxide emission readings in Parts per Million for the peak and off-peak periods of vehicular movement at the road intersections. Their Global Positioning System (GPS) coordinates were recorded in the Universal Transverse Mercator (UTM). Bar chart graphs were plotted by using the emissions level of carbon dioxide as recorded on the field against the scientifically established internationally accepted safe limit of 8.7 Parts per Million of carbon monoxide in the atmosphere. Further statistical analysis was also carried out on the data recorded from the field using the Statistical Package for Social Sciences (SPSS) software and Microsoft excel to show the variance of the emission levels of each of the parameters in the study area. The results established that emissions’ level of atmospheric carbon monoxide from the road transportation in the study area exceeded the internationally accepted safe limits of 8.7 parts per million. In addition, the variations in the average emission levels of CO between the four parameters showed that morning peak is having the highest average emission level of 24.5PPM followed by evening peak with 22.84PPM while morning off peak is having 15.33 and the least is evening off peak 12.94PPM. Based on these results, recommendations made for poor air quality mitigation via carbon monoxide emissions reduction from transportation include Introduction of the urban mass transit would definitely reduce the number of traffic on the roads, hence the emissions from several vehicles that would have been on the road. This would also be a cheaper means of transportation for the masses and Encouraging the use of vehicles using alternative sources of energy like solar, electric and biofuel will also result in less emission levels as the these alternative energy sources other than fossil fuel originated diesel and petrol vehicles do not emit especially carbon monoxide.Keywords: carbon monoxide, climate change emissions, road transportation, vehicular
Procedia PDF Downloads 3762203 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy securityKeywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization
Procedia PDF Downloads 1392202 Study of Rehydration Process of Dried Squash (Cucurbita pepo) at Different Temperatures and Dry Matter-Water Ratios
Authors: Sima Cheraghi Dehdezi, Nasser Hamdami
Abstract:
Air-drying is the most widely employed method for preserving fruits and vegetables. Most of the dried products must be rehydrated by immersion in water prior to their use, so the study of rehydration kinetics in order to optimize rehydration phenomenon has great importance. Rehydration typically composes of three simultaneous processes: the imbibition of water into dried material, the swelling of the rehydrated products and the leaching of soluble solids to rehydration medium. In this research, squash (Cucurbita pepo) fruits were cut into 0.4 cm thick and 4 cm diameter slices. Then, squash slices were blanched in a steam chamber for 4 min. After cooling to room temperature, squash slices were dehydrated in a hot air dryer, under air flow 1.5 m/s and air temperature of 60°C up to moisture content of 0.1065 kg H2O per kg d.m. Dehydrated samples were kept in polyethylene bags and stored at 4°C. Squash slices with specified weight were rehydrated by immersion in distilled water at different temperatures (25, 50, and 75°C), various dry matter-water ratios (1:25, 1:50, and 1:100), which was agitated at 100 rpm. At specified time intervals, up to 300 min, the squash samples were removed from the water, and the weight, moisture content and rehydration indices of the sample were determined.The texture characteristics were examined over a 180 min period. The results showed that rehydration time and temperature had significant effects on moisture content, water absorption capacity (WAC), dry matter holding capacity (DHC), rehydration ability (RA), maximum force and stress in dried squash slices. Dry matter-water ratio had significant effect (p˂0.01) on all squash slice properties except DHC. Moisture content, WAC and RA of squash slices increased, whereas DHC and texture firmness (maximum force and stress) decreased with rehydration time. The maximum moisture content, WAC and RA and the minimum DHC, force and stress, were observed in squash slices rehydrated into 75°C water. The lowest moisture content, WAC and RA and the highest DHC, force and stress, were observed in squash slices immersed in water at 1:100 dry matter-water ratio. In general, for all rehydration conditions of squash slices, the highest water absorption rate occurred during the first minutes of process. Then, this rate decreased. The highest rehydration rate and amount of water absorption occurred in 75°C.Keywords: dry matter-water ratio, squash, maximum force, rehydration ability
Procedia PDF Downloads 3142201 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium
Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin
Abstract:
The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen
Procedia PDF Downloads 3872200 Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City
Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse
Abstract:
Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters
Procedia PDF Downloads 1302199 Comparative Analysis of Mechanical Properties of Paddy Rice for Different Variety-Moisture Content Interactions
Authors: Johnson Opoku-Asante, Emmanuel Bobobee, Joseph Akowuah, Eric Amoah Asante
Abstract:
In recent years, the issue of postharvest losses has become a serious concern in Sub-Saharan Africa. Postharvest technology development and adaptation need urgent attention, particularly for small and medium-scale rice farmers in Africa. However, to better develop any postharvest technology, knowledge of the mechanical properties of different varieties of paddy rice is vital. There is also the issue of the development of new rice cultivars. The objectives of this research are to (1) determine the mechanical properties of the selected paddy rice varieties at varying moisture content. (2) conduct a comparative analysis of the mechanical properties of selected rice paddy for different variety-moisture content interactions. (3) determine the significant statistical differences between the mean values of the various variety-moisture content interactions The mechanical properties of AGRA rice, CRI-Amankwatia, CRI-Enapa and CRI-Dartey, four local varieties developed by Crop Research Institute of Ghana are compared at 11.5%, 13.0% and 16.5% dry basis moisture content. The mechanical properties measured are Sphericity, Aspect ratio, Grain mass, 1000 Grain mass, Bulk Density, True Density, Porosity and Angle of Repose. Samples were collected from the Kwadaso Agric College of the CRI in Kumasi. The samples were threshed manually and winnowed before conducting the experiment. The moisture content was determined on a dry basis using the Moistex Screw-Type Digital Grain Moisture Meter. Other equipment used for data collection were venire calipers and Citizen electronic scale. A 4×3 factorial arrangement was used in a completely randomized design in three replications. Tukey's HSD comparisons test was conducted during data analysis to compare all possible pairwise combinations of the various varieties’ moisture content interaction. From the results, it was concluded that Sphericity recorded 0.391 mm³ to 0.377 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5%, respectively, whereas Aspect Ratio recorded 0.298 mm³ to 0.269 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5% respectively. For grain mass, AGRA rice at 13.0% also recorded 0.0312 g as the highest score and CRI-Enapa at 13.0% obtained 0.0237 as the lowest score. For the GM1000, it was observed that it ranges from 29.33 g for CRI-Amankwatia at 16.5% moisture content to 22.54 g for CRI-Enapa at 16.5% interactions. Bulk Density ranged from 654.0 kg/m³ to 422.9 kg/m³ for CRI-Amankwatia at 16.5% and CRI-Enapa at 11.5% as the highest and lowest recordings, respectively. It was also observed that the true Density ranges from 1685.8 kg/m3 for AGRA rice at 13.0% moisture content to 1352.5 kg/m³ for CRI-Enapa at 16.5% interactions. In the case of porosity, CRI-Enapa at 11.5% received the highest score of 70.83% and CRI-Amankwatia at 16.5 received the lowest score of 55.88%. Finally, in the case of Angle of Repose, CRI-Amankwatia at 16.5% recorded the highest score of 47.3o and CRI-Enapa at 11.5% recorded the least score of 34.27o. In all cases, the difference in mean value was less than the LSD. This indicates that there were no significant statistical differences between their mean values, indicating that technologies developed and adapted for one variety can equally be used for all the other varieties.Keywords: angle of repose, aspect ratio, bulk density, porosity, sphericity, mechanical properties
Procedia PDF Downloads 1032198 Performance of Riped and Unriped Plantain-Wheat Flour Blend in Biscuit Production
Authors: J. O. Idoko, I. Nwajiaku
Abstract:
Unripe and ripe plantain were dried and milled into flour and used with wheat flour in biscuit production to determine the best plantain-wheat composite flour for biscuit production. The blends as follows: 100% wheat flour, 100% ripe plantain flour, 100% unripe plantain flour, 50% wheat flour and 50% ripe plantain flour and 50% wheat flour and 50% unripe plantain flour. The Biscuit samples were stored at ambient temperature for 8 weeks after which the equilibrium moisture content and water activity were determined. The sensory evaluation of the biscuit samples was also determined. The results of these analyses showed 100% unripe plantain flour as the most stable of the biscuit samples judging from its equilibrium moisture content level of 0.32% and water activity of 0.62. The sensory evaluation results showed Biscuit made from 150:50 ripe plantain and wheat flour as most generally accepted at 5% level of significance.Keywords: biscuit, equilibrium moisture content, performance, plantain, water activity
Procedia PDF Downloads 2152197 Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF
Authors: Sezen Gurdag, Ayse Ebru Akin
Abstract:
There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only.Keywords: halloysite, nanoclay, fiberboard, urea-formaldehyde adhesive
Procedia PDF Downloads 1602196 Barrier Properties of Starch-Ethylene Vinyl Alcohol Nanocomposites
Authors: Farid Amidi Fazli
Abstract:
Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1 -15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also, the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.Keywords: starch, EVOH, nanocrystalline cellulose, hydrophilicity
Procedia PDF Downloads 4112195 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio
Authors: Habib Alehossein, M. S. K. Fernando
Abstract:
Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content
Procedia PDF Downloads 942194 Hygro-Thermal Modelling of Timber Decks
Authors: Stefania Fortino, Petr Hradil, Timo Avikainen
Abstract:
Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM
Procedia PDF Downloads 1762193 Optimization of Moisture Content for Highest Tensile Strength of Instant Soluble Milk Tablet and Flowability of Milk Powder
Authors: Siddharth Vishwakarma, Danie Shajie A., Mishra H. N.
Abstract:
Milk powder becomes very useful in the low milk supply area but the exact amount to add for one glass of milk and the handling is difficult. So, the idea of instant soluble milk tablet comes into existence for its high solubility and easy handling. The moisture content of milk tablets is increased by the direct addition of water with no additives for binding. The variation of the tensile strength of instant soluble milk tablets and the flowability of milk powder with the moisture content is analyzed and optimized for the highest tensile strength of instant soluble milk tablets and flowability, above a particular value of milk powder using response surface methodology. The flowability value is necessary for ease in quantifying the milk powder, as a feed, in the designed tablet making machine. The instant soluble nature of milk tablets purely depends upon the disintegration characteristic of tablets in water whose study is under progress. Conclusions: The optimization results are very useful in the commercialization of milk tablets.Keywords: flowability, milk powder, response surface methodology, tablet making machine, tensile strength
Procedia PDF Downloads 182