Search results for: binary spray and wait
943 Preparation and Characterization of Phosphate-Nickel-Titanium Composite Coating Obtained by Sol Gel Process for Corrosion Protection
Authors: Khalidou Ba, Abdelkrim Chahine, Mohamed Ebn Touhami
Abstract:
A strong industrial interest is focused on the development of coatings for anticorrosion protection. In this context, phosphate composite materials are expanding strongly due to their chemical characteristics and their interesting physicochemical properties. Sol-gel coatings offer high homogeneity and purity that may lead to obtain coating presenting good adhesion to metal surface. The goal behind this work is to develop efficient coatings for corrosion protection of steel to extend its life. In this context, a sol gel process allowing to obtain thin film coatings on carbon steel with high resistance to corrosion has been developed. The optimization of several experimental parameters such as the hydrolysis time, the temperature, the coating technique, the molar ratio between precursors, the number of layers and the drying mode has been realized in order to obtain a coating showing the best anti-corrosion properties. The effect of these parameters on the microstructure and anticorrosion performance of the films sol gel coating has been investigated using different characterization methods (FTIR, XRD, Raman, XPS, SEM, Profilometer, Salt Spray Test, etc.). An optimized coating presenting good adhesion and very stable anticorrosion properties in salt spray test, which consists of a corrosive attack accelerated by an artificial salt spray consisting of a solution of 5% NaCl, pH neutral, under precise conditions of temperature (35 °C) and pressure has been obtained.Keywords: sol gel, coating, corrosion, XPS
Procedia PDF Downloads 128942 Synergistic Sorption of Cr(VI) and Cu(II) onto Sweet Potato Vine from Binary Mixtures Cr(VI)-Cu(II)
Authors: Chang Liu, Nuria Fiol, Isabel Villaescusa, Jordi Poch
Abstract:
Over the last decades, biosorption has been an alternative to costly wastewaters treatment for metal removal. Most of the literature on metal biosorption was devoted to studying of single metal ions but nowadays studies on multi-components biosorption are booming. Hexavalent chromium is usually found in mixtures with divalent metal ions in industries wastewaters. However, studies on the simultaneous removal of Cr(VI) and divalent metals are hardly found and the cooperative or competitive mechanism governing each metal ions sorption is still unclear. In this work, simultaneous sorption of Cr(VI) and Cu(II) from their binary mixtures by using sweet potato vine (SPV) was investigated. Sweet potato is one of the four major grain crops in China. Each year about 2000 tons of SPV are generated as by-products. SPV could be a low-cost biosorbent for metal ions due to its rich in cellulose and lignin. In this work, the sorption of Cr(VI) and Cu(II) from their binary mixtures solutions was studied by using SPV sorbent. Equilibrium studies were carried out in binary mixtures in which Cr(VI) and Cu(II) concentration was both varied between 0.1 mM and 0.3 mM, Cr(VI) and Cu(II) single solutions were also prepared as comparison. All the experiments were performed at pH 3±0.05 under 30±2°C for 7 days to make sure sorption achieved equilibrium. Results showed that (i) chromium was partially (10.93%-42.04%) eliminated under studied conditions through reduction and sorption of hexavalent and trivalent forms. The presence of Cu(II) exerts a synergistic effect on the overall sorption process in all the cases of the 0.1-0.3 mM binary mixtures concentration range. (ii) Cr(VI) removal by SPV is favoured by the presence of Cu(II) in solution, because more protons needed for Cr(VI) reduction are available due to Cu(II)-proton competition; however sorption of the formed Cr(III) is unfavoured as a result of the competition between Cr(III) and Cu(II) for protons and sorbent active sites. (iii) Copper was partially (9.26%-13.91%) sorbed onto SPV under studied conditions. The presence of Cr(VI) in binary mixtures also exerts a synergistic effect on the Cu(II) removal in all the cases of the 0.1-0.3 mM binary mixtures concentration range. The results of the present work indicate that sweet potato vine can be successfully employed for the simultaneously removal of Cr(VI) and Cu(II) in binary mixtures, taking advantage of the synergistic effect provoked by one of the metal ion to each other, even though the acquisition of higher removal yields has to be further investigated. Acknowledgements—This work has been financially supported by Ministry of Human Resources and Social Security of PRC (Anhui15), Education Department of Anhui Province (KJ2016A270) and Anhui Normal University (2015rcpy33, 2014bsqdjj53).Keywords: sweet potato vine, chromium reduction, divalent metal, synergistic sorption
Procedia PDF Downloads 169941 Unequal Error Protection of VQ Image Transmission System
Authors: Khelifi Mustapha, A. Moulay lakhdar, I. Elawady
Abstract:
We will study the unequal error protection for VQ image. We have used the Reed Solomon (RS) Codes as Channel coding because they offer better performance in terms of channel error correction over a binary output channel. One such channel (binary input and output) should be considered if it is the case of the application layer, because it includes all the features of the layers located below and on the what it is usually not feasible to make changes.Keywords: vector quantization, channel error correction, Reed-Solomon channel coding, application
Procedia PDF Downloads 365940 Study of Intermolecular Interactions in Binary Mixtures of 1-Butyl-3-Methyl Imidazolium Bis (Trifluoro Methyl Sulfonyl) Imide and 1-Ethyl-3-Methyl Imidazolium Ethyl Sulphate at Different Temperature from 293.18 to 342.15 K
Authors: V. Lokesh, M. Manjunathan, S. Sairam, K. Saithsh Kumar, R. Anantharaj
Abstract:
The densities of pure and its binary mixtures of 1-Butyl-3-methyl imidazolium bis (trifluoro methyl sulfonyl) imide and 1–Ethyl-3-methyl imidazolium ethyl sulphate at different temperature, over the entire composition range were measured at 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, 33.15, 338.15, 343.15 K. In this study, the liquid-liquid extraction procedure was used. From this experimental data, the excess molar volumes, apparent molar volume, partial molar volumes and the excess partial molar volumes have been calculated for over the whole composition range. Hence, the effect of temperature and composition on all derived thermodynamic properties of this binary mixture will be discussed in terms of intermolecular interactions.Keywords: ionic liquid, interaction energy, effect of temperature, effect of composition
Procedia PDF Downloads 172939 Investigation of the Grain-Boundary Segregation Transition in the Binary Fe-C Alloy
Authors: Végh Ádám, Mekler Csaba, Dezső András, Szabó Dávid, Stomp Dávid, Kaptay György
Abstract:
Grain boundary segregation transition (GBST) has been calculated by a thermodynamic model in binary alloys. The method is used on cementite (Fe3C) segregation in base-centered cubic (ferrite) iron (Fe) in the Fe-C binary system. The GBST line is shown in the Fe3C lacking part of the phase diagram with high solvent (Fe) concentration. At a lower solute content (C) or at higher temperature the grain boundary is composed mostly of the solvent atoms (Fe). On higher concentration compared to the GBST line or at lower temperature a phase transformation occurs at the grain boundary, the latter mostly composed of the associates (Fe3C). These low-segregation and high-segregation states are first order interfacial phase transitions of the grain boundary and can be transformed into each other reversibly. These occur when the GBST line is crossed by changing the bulk composition or temperature.Keywords: GBST, cementite, segregation, Fe-C alloy
Procedia PDF Downloads 583938 High Sensitive Graphene-Based Strain Sensors for SHM of Composite Laminates
Authors: A. Rinaldi, A. Proietti, C. Aquarelli, F. Marra, A. Tamburrano, M. Ciminello, M. S. Sarto
Abstract:
A new type of high sensitive piezoresistive sensors based on graphene was developed within the SARISTU project for application on Structural Health Monitoring (SHM). The new sensor consists of a graphene-based film, obtained through the spray deposition of a colloidal suspension of Multi-Layer Graphene (MLGs) nano platelets over a substrate. MLGs are produced by liquid exfoliation of thermally expanded Graphite Intercalation Compound. An array of 8 sensors is produced by spray deposition over an aeronautical CFRC plate of dimensions 550 mm (length) × 550 mm (width) × 3 mm (thickness). Electromechanical tests were performed in order to assess the sensitivity of the new piezoresistive sensors, which are characterized by an isotropic response. In the quasi-static characterizations, the CFRC plate was clamped on one side and loaded on the opposite one. The local strain map of the plate was then obtained from displacement measurements and numerical analysis. The dynamic tests were performed lying the plate over an anti-vibration table and actuating a piezoelectric element located in the middle of the sensing array. The obtained experimental results demonstrated that the sensors possess a good repeatability and a high constant gauge factor (~200) in the applied strain range 0.001%-0.02%. Moreover, they can follow dynamics up to 400 kHz and for this reason they are good candidates for Lamb-wave analysis.Keywords: graphene, strain sensor, spray deposition, lamb-wave analysis
Procedia PDF Downloads 431937 Plackett-Burman Design for Microencapsulation of Blueberry Bioactive Compounds
Authors: Feyza Tatar, Alime Cengiz, Dilara Sandikçi, Muhammed Dervisoglu, Talip Kahyaoglu
Abstract:
Blueberries are known for their bioactive properties such as high anthocyanin contents, antioxidant activities and potential health benefits. However, anthocyanins are sensitive to environmental conditions during processes. The objective of this study was to evaluate the effects of spray drying conditions on the blueberry microcapsules by Plackett-Burman experimental design. Inlet air temperature (120 and 180°C), feed pump rate (20% and 40%), DE of maltodextrin (6 and 15 DE), coating concentration (10% and 30%) and source of blueberry (Duke and Darrow) were independent variables, tested at high (+1) and low (-1) levels. Encapsulation efficiency (based on total phenol) of blueberry microcapsules was the dependent variable. In addition, anthocyanin content, antioxidant activity, water solubility, water activity and bulk density were measured for blueberry powders. The antioxidant activity of blueberry powders ranged from 72 to 265 mmol Trolox/g and anthocyanin content was changed from 528 to 5500 mg GAE/100g. Encapsulation efficiency was significantly affected (p<0.05) by inlet air temperature and coating concentration. Encapsulation efficiency increased with increasing inlet air temperature and decreasing coating concentration. The highest encapsulation efficiency could be produced by spray drying at 180°C inlet air temperature, 40% pump rate, 6 DE of maltodextrin, 13% maltodextrin concentration and source of duke blueberry.Keywords: blueberry, microencapsulation, Plackett-Burman design, spray drying
Procedia PDF Downloads 287936 Microswitches with Sputtered Au, Aupd, Au-on-Aupt, and Auptcu Alloy - Electric Contacts
Authors: Nikolay Konukhov
Abstract:
This paper to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1–2Keywords: alloys, electric contacts, microelectromechanical systems (MEMS), microswitch
Procedia PDF Downloads 172935 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 92934 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins
Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova
Abstract:
Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins
Procedia PDF Downloads 168933 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 65932 Modified Ninhydrin Reagent for the Detection of Amino Acids on TLC Paper
Authors: H. Elgubbi, A. Mlitan, A. Alzridy
Abstract:
Ninhydrin is the most well known spray reagent for identification of amino acids. Spring with Ninhydrin as a non-specific reagent is well-known and widely used for its remarkable high sensitivity. Using Ninhydrin reagent alone to detect amino acid on thin layer chromatography (TLA) paper is not advisable due to its lower sensitivity. A new spray reagent, Stannus chloride solution (Sn CL2) has been used to detect amino acids on filtter paper (witman 14) and TLC paper, silica Gel, 60 F254 TLC Aluminium Sheet 20x20cm Merck- Germany. Also, modified TLC pre-staining method was used, which only consisted of 3 steps: spotting, separating and color. The improved method was rapid and inexpensive and the results obtained were clear and reliable. In addition, it is suitable for screening different amino acid.Keywords: amino acid, ninhydrin, modified ninhydrin reagent, stannus chloride reagent, thin-layer chromatography (TLC), TLC pre-staining
Procedia PDF Downloads 416931 Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method
Abstract:
In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating the internal and external parts of the exhaust pipe was reduced and its effects on harmful exhaust emissions were investigated. As a result of the experiments; a remarkable improvement was determined in emission values as a result of delay in cooling of exhaust gases due to the coating.Keywords: chrome carbide, diesel engine, exhaust emission, thermal barrier
Procedia PDF Downloads 268930 Effect of Highly Pressurized Dispersion Arc Nozzle on Breakup of Oil Leakage in Offshore
Authors: N. M. M. Ammar, S. M. Mustaqim, N. M. Nadzir
Abstract:
The most important problem occurs on oil spills in sea water is to reduce the oil spills size. This study deals with the development of high pressurized nozzle using dispersion method for oil leakage in offshore. 3D numerical simulation results were obtained using ANSYS Fluent 13.0 code and correlate with the experimental data for validation. This paper studies the contribution of the process on flow speed and pressure of the flow from two different geometrical designs of nozzles and to generate a spray pattern suitable for dispersant application. Factor of size distribution of droplets generated by the nozzle is calculated using pressures ranging from 2 to 6 bars. Results obtain from both analyses shows a significant spray pattern and flow distribution as well as distance. Results also show a significant contribution on the effect of oil leakage in terms of the diameter of the oil spills break up.Keywords: arc nozzle, CFD simulation, droplets, oil spills
Procedia PDF Downloads 417929 Large Eddy Simulations for Flow Blurring Twin-Fluid Atomization Concept Using Volume of Fluid Method
Authors: Raju Murugan, Pankaj S. Kolhe
Abstract:
The present study is mainly focusing on the numerical simulation of Flow Blurring (FB) twin fluid injection concept was proposed by Ganan-Calvo, which involves back flow atomization based on global bifurcation of liquid and gas streams, thus creating two-phase flow near the injector exit. The interesting feature of FB injector spray is an insignificant effect of variation in atomizing air to liquid ratio (ALR) on a spray cone angle. Besides, FB injectors produce a nearly uniform spatial distribution of mean droplet diameter and are least susceptible to variation in thermo-physical properties of fuels, making it a perfect candidate for fuel flexible combustor development. The FB injector working principle has been realized through experimental flow visualization techniques only. The present study explores potential of ANSYS Fluent based Large Eddy Simulation(LES) with volume of fluid (VOF) method to investigate two-phase flow just upstream of injector dump plane and spray quality immediate downstream of injector dump plane. Note that, water and air represent liquid and gas phase in all simulations and ALR is varied by changing the air mass flow rate alone. Preliminary results capture two phase flow just upstream of injector dump plane and qualitative agreement is observed with the available experimental literature.Keywords: flow blurring twin fluid atomization, large eddy simulation, volume of fluid, air to liquid ratio
Procedia PDF Downloads 214928 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems
Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair
Abstract:
Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.Keywords: breeding blanket, corrosion protection, coating, plasma spray
Procedia PDF Downloads 308927 Effect of Saponin Enriched Soapwort Powder on Structural and Sensorial Properties of Turkish Delight
Authors: Ihsan Burak Cam, Ayhan Topuz
Abstract:
Turkish delight has been produced by bleaching the plain delight mix (refined sugar, water and starch) via soapwort extract and powdered sugar. Soapwort extract which contains high amount of saponin, is an additive used in Turkish delight and tahini halvah production to improve consistency, chewiness and color due to its bioactive saponin content by acting as emulsifier. In this study, soapwort powder has been produced by determining optimum process conditions of soapwort extract by using response-surface method. This extract has been enriched with saponin by reverse osmosis (contains %63 saponin in dry bases). Büchi mini spray dryer B-290 was used to produce spray-dried soapwort powder (aw=0.254) from the enriched soapwort concentrate. Processing steps optimization and saponin content enrichment of soapwort extract has been tested on Turkish Delight production. Delight samples, produced by soapwort powder and commercial extract (control), were compared in chewiness, springiness, stickiness, adhesiveness, hardness, color and sensorial characteristics. According to the results, all textural properties except hardness of delights produced by powder were found to be statistically different than control samples. Chewiness, springiness, stickiness, adhesiveness and hardness values of samples (delights produced by the powder / control delights) were determined to be 361.9/1406.7, 0.095/0.251, -120.3/-51.7, 781.9/1869.3, 3427.3g/3118.4g, respectively. According to the quality analysis that has been ran with the end products it has been determined that; there is no statistically negative effect of the soapwort extract and the soapwort powder on the color and the appearance of Turkish Delight.Keywords: saponin, delight, soapwort powder, spray drying
Procedia PDF Downloads 253926 Effects of Foliar Application of Glycine Betaine under Nickel Toxicity of Oat (Avena Sativa L.)
Authors: Khizar Hayat Bhatti, Fiza Javed, Misbah Zafar
Abstract:
Oat (Avena sativa L.) is a major cereal plant belonging to the family Poaceae. It is a very important source of carbohydrates, starch, minerals, vitamins and proteins that are beneficial for general health. Plants grow in the heavy metals contaminated soils that results in decline in growth. Glycine betaine application may improve plant growth, survival and resistance to metabolic disturbances due to stresses. Heavy metals, like nickels, have been accumulated for a long time in the soil because of industrial waste and sewage. The experiment was intended to alleviate the detrimental effects of heavy metal nickel stress on two oat varieties ‘Sgd-2011 and Hay’ using Glycine betain. Nickel was induced through soil application while GB was applied as foliar spray. After 10 days of nickel treatment, an exogenous spray of glycine betaine on the intact plant leaves. Data analysis was carried out using a Completely Randomized Design (CRD) with three replications in this study. For the analysis of all the data of the current research, Mini-Tab 19 software was used to compare the mean value of all treatments and Microsoft Excel software for generating the bars graphs. Significant accelerated plant growth was recorded when Ni exposed plants were treated with GB. Based on data findings, 3mM GB caused significant recovery from Ni stress doses. Overall results also demonstrated that the sgd-2011 variety of oats had the greatest outcomes for all parameters.Keywords: CRD, foliar spray method, glycine betaine, heavy metals, nickel, ROS
Procedia PDF Downloads 6925 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 163924 Low Density Parity Check Codes
Authors: Kassoul Ilyes
Abstract:
The field of error correcting codes has been revolutionized by the introduction of iteratively decoded codes. Among these, LDPC codes are now a preferred solution thanks to their remarkable performance and low complexity. The binary version of LDPC codes showed even better performance, although it’s decoding introduced greater complexity. This thesis studies the performance of binary LDPC codes using simplified weighted decisions. Information is transported between a transmitter and a receiver by digital transmission systems, either by propagating over a radio channel or also by using a transmission medium such as the transmission line. The purpose of the transmission system is then to carry the information from the transmitter to the receiver as reliably as possible. These codes have not generated enough interest within the coding theory community. This forgetfulness will last until the introduction of Turbo-codes and the iterative principle. Then it was proposed to adopt Pearl's Belief Propagation (BP) algorithm for decoding these codes. Subsequently, Luby introduced irregular LDPC codes characterized by a parity check matrix. And finally, we study simplifications on binary LDPC codes. Thus, we propose a method to make the exact calculation of the APP simpler. This method leads to simplifying the implementation of the system.Keywords: LDPC, parity check matrix, 5G, BER, SNR
Procedia PDF Downloads 153923 Theoretical and Experimental Study of Iron Oxide Thin Film
Authors: Fahima Djefaflia, M. Loutfi Benkhedir
Abstract:
The aim of this work was to development and characterisation of iron oxide thin films by spray pyrolysis technique. Influences of deposition parameters pile temperature on structural and optical properties have been studied Thin films are analysed by various techniques of materials. The structural characterization of films by analysis of spectra of X-ray diffraction showed that the films prepared at T=350,400,450 are crystalline and amorphous at T=300C. For particular condition, two phases hematiteFe2O3 and magnetite Fe3O4 have been observed.The UV-Visible spectrophotometer of this films confirms that it is possible to obtain films with a transmittance of about 15-30% in the visible range. In addition, this analysis allowed us to determine the optical gap and disorder of films. We conclude that the increase in temperature is accompanied by a reduction in the optical gap with increasing in disorder. An ab initio calculation for this phase shows that the results are in good agreement with the experimental results.Keywords: spray pyrolysis technique, iron oxide, ab initio calculation, optical properties
Procedia PDF Downloads 557922 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection
Procedia PDF Downloads 169921 Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air
Authors: Hanjie Xie, Raphael Semiat, Ziyi Zhong
Abstract:
It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts.Keywords: oxygen vacancy, catalytic oxidation, binary transition oxide, formaldehyde
Procedia PDF Downloads 133920 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study
Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya
Abstract:
The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory
Procedia PDF Downloads 408919 Performance of Different Spray Nozzles in the Application of Defoliant on Cotton Plants (Gossypium hirsutum L.)
Authors: Mohamud Ali Ibrahim, Ali Bayat, Ali Bolat
Abstract:
Defoliant spraying is an important link in the mechanized cotton harvest because adequate and uniform spraying can improve defoliation quality and reduce cotton trash content. In defoliant application, application volume and spraying technology are extremely important. In this study, the effectiveness of defoliant application to cotton plant that has come to harvest with two different application volumes and three different types of nozzles with a standard field crop sprayer was determined. Experiments were carried in two phases as field area trials and laboratory analysis. Application rates were 250 l/ha and 400 L/ha, and spraying nozzles were (1) Standard flat fan nozzle (TP8006), (2) Air induction nozzle (AI 11002-VS), and (3) Dual Pattern nozzle (AI307003VP). A tracer (BSF) and defoliant were applied to mature cotton with approximately 60% open bolls and samplings for BSF deposition and spray coverage on the cotton plant were done at two plant height (upper layer, lower layer) of plant. Before and after spraying, bolls open and leaves rate on cotton plants were calculated, and filter papers were used to detect BSF deposition, and water sensitive papers (WSP) were used to measure the coverage rate of spraying methods used. Spectrofluorophotometer was used to detect the amount of tracer deposition on targets, and an image process computer programme was used to measure coverage rate on WSP. In analysis, conclusions showed that air induction nozzle (AI 11002-VS) achieved better results than the dual pattern and standard flat fan nozzles in terms of higher depositions, coverages, and leaf defoliations, and boll opening rates. AI nozzles operating at 250 L/ha application rate provide the highest deposition and coverage rate on applications of the defoliant; in addition, BSF as an indicator of the defoliant used reached on leaf beneath in merely this spray nozzle. After defoliation boll opening rate was 85% on the 7th and 12th days after spraying and falling rate of leaves was 76% at application rate of 250 L/ha with air induction (AI1102) nozzle.Keywords: cotton defoliant, air induction nozzle, dual pattern nozzle, standard flat fan nozzle, coverage rate, spray deposition, boll opening rate, leaves falling rate
Procedia PDF Downloads 197918 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels
Authors: Tal Remez, Or Litany, Alex Bronstein
Abstract:
The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.Keywords: binary pixels, maximum likelihood, neural networks, sparse coding
Procedia PDF Downloads 201917 Improvement of Oxidative Stability of Edible Oil by Microencapsulation Using Plant Proteins
Authors: L. Le Priol, A. Nesterenko, K. El Kirat, K. Saleh
Abstract:
Introduction and objectives: Polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 are widely recognized as being beneficial to the health and normal growth. Unfortunately, due to their highly unsaturated nature, these molecules are sensitive to oxidation and thermic degradation leading to the production of toxic compounds and unpleasant flavors and smells. Hence, it is necessary to find out a suitable way to protect them. Microencapsulation by spray-drying is a low-cost encapsulation technology and most commonly used in the food industry. Many compounds can be used as wall materials, but there is a growing interest in the use of biopolymers, such as proteins and polysaccharides, over the last years. The objective of this study is to increase the oxidative stability of sunflower oil by microencapsulation in plant protein matrices using spray-drying technique. Material and methods: Sunflower oil was used as a model substance for oxidable food oils. Proteins from brown rice, hemp, pea, soy and sunflower seeds were used as emulsifiers and microencapsulation wall materials. First, the proteins were solubilized in distilled water. Then, the emulsions were pre-homogenized using a high-speed homogenizer (Ultra-Turrax) and stabilized by using a high-pressure homogenizer (HHP). Drying of the emulsion was performed in a Mini Spray Dryer. The oxidative stability of the encapsulated oil was determined by performing accelerated oxidation tests with a Rancimat. The size of the microparticles was measured using a laser diffraction analyzer. The morphology of the spray-dried microparticles was acquired using environmental scanning microscopy. Results: Pure sunflower oil was used as a reference material. Its induction time was 9.5 ± 0.1 h. The microencapsulation of sunflower oil in pea and soy protein matrices significantly improved its oxidative stability with induction times of 21.3 ± 0.4 h and 12.5 ± 0.4 h respectively. The encapsulation with hemp proteins did not significantly change the oxidative stability of the encapsulated oil. Sunflower and brown rice proteins were ineffective materials for this application, with induction times of 7.2 ± 0.2 h and 7.0 ± 0.1 h respectively. The volume mean diameter of the microparticles formulated with soy and pea proteins were 8.9 ± 0.1 µm and 16.3 ± 1.2 µm respectively. The values for hemp, sunflower and brown rice proteins could not be obtained due to the agglomeration of the microparticles. ESEM images showed smooth and round microparticles with soy and pea proteins. The surfaces of the microparticles obtained with sunflower and hemp proteins were porous. The surface was rough when brown rice proteins were used as the encapsulating agent. Conclusion: Soy and pea proteins appeared to be efficient wall materials for the microencapsulation of sunflower oil by spray drying. These results were partly explained by the higher solubility of soy and pea proteins in water compared to hemp, sunflower, and brown rice proteins. Acknowledgment: This work has been performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investments for the Future (Investissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.Keywords: biopolymer, edible oil, microencapsulation, oxidative stability, release, spray-drying
Procedia PDF Downloads 137916 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe
Authors: Elsadig Naseraddeen Ahmed Mohamed
Abstract:
In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon
Procedia PDF Downloads 175915 The Influence of the Normative Gender Binary in Diversity Management: A Multi-Method Study on Gender Diversity of Diversity Management
Authors: Robin C. Ladwig
Abstract:
Diversity Management, as a substantial element of Human Resource Management, aims to secure the economic benefit that assumingly comes with a diverse workforce. Consequently, diversity managers focus on the protection of employees and securing equality measurements to assure organisational gender diversity. Gender diversity as one aspect of Diversity Management seems to adhere to gender binarism and cis-normativity. Workplaces are gendered spaces which are echoing the binary gender-normativity presented in Diversity Management, sold under the label of gender diversity. While the expectation of Diversity Management implies the inclusion of a multiplicity of marginalised groups, such as trans and gender diverse people, in current literature and practice, the reality is curated by gender binarism and cis-normativity. The qualitative multi-method research showed a lack of knowledge about trans and gender diverse matters within the profession of Diversity Management and Human Resources. The semi-structured interviews with trans and gender diverse individuals from various backgrounds and occupations in Australia exposed missing considerations of trans and gender diverse experiences in the inclusivity and gender equity of various workplaces. Even if practitioners consider trans and gender diverse matters under gender diversity, the practical execution is limited to gender binary structures and cis-normative actions as the photo-elicit questionnaire with diversity managers, human resource officers, and personnel management demonstrates. Diversity Management should approach a broader source of informed practice by extending their business focus to the knowledge of humanity studies. Humanity studies could include diversity, queer, or gender studies to increase the inclusivity of marginalised groups such as trans and gender diverse employees and people. Furthermore, the definition of gender diversity should be extended beyond the gender binary and cis-normative experience. People may lose trust in Diversity Management as a supportive ally of marginalised employees if the understanding of inclusivity is limited to a gender binary and cis-normativity value system that misrepresents the richness of gender diversity.Keywords: cis-normativity, diversity management, gender binarism, trans and gender diversity
Procedia PDF Downloads 202914 The Influence of Imposter Phenomenon on the Experiences of Intimacy in Non-Binary Young Adults
Authors: Muskan Jain, Baiju Gopal
Abstract:
Objectives: Intimacy in interpersonal relationships is integral to psychological health and everyday wellbeing; the focus is on intimacy, which can be described as feelings of closeness, connection, and belonging within relationships, which is influenced by an individual's gender identity as well as life experiences. The study aims to explore the experiences of intimacy of the non-binary gender; this marginalized community has increased risks of developing the imposter phenomenon. The study explores the influence of IP on the development and sustenance of intimacy in relationships. Methods: The present study accumulates detailed narratives from 10 non-binary young adults ages 18 to 25 in metropolitan cities of India. Thematic analysis was used for the data analysis. Results: Seven major themes have emerged revolving around internalized criticism and self-depreciating behavior, which causes distance between partners. The four themes that result in the internalization of criticism are lack of social stability, invalidation by social units, adverse life experiences, and estrangement due to gender identity. Three themes that encapsulate major difficulties in relationships are limited self-disclosure, inhibition of physical needs, and fear of taking space. The findings have been critically compared and contrasted with the existing body of literature in the domain, which sets the agenda for further inquiry. Conclusion: It is important for future studies to capture the experiences of non-binary genders in India to provide better therapeutic support in order to assist them in forming meaningful and authentic relationships, thus increasing overall wellbeing.Keywords: imposter phenomenon, intimacy, internalized criticism, marginalized community
Procedia PDF Downloads 58