Search results for: neural progentor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4926

Search results for: neural progentor cells

3186 Design of 3D Bioprinted Scaffolds for Cartilage Regeneration

Authors: Gloria Pinilla, Jose Manuel Baena, Patricia Gálvez-Martín, Juan Antonio Marchad

Abstract:

Cartilage is a dense connective tissue with limited self-repair properties. Currently, the therapeutic use of autologous or allogenic chondrocytes makes up an alternative therapy to the pharmacological treatment. The design of a bioprinted 3D cartilage with chondrocytes and biodegradable biomaterials offers a new therapeutic alternative able of bridging the limitations of current therapies in the field. We have developed an enhanced printing processes-Injection Volume Filling (IVF) to increase the viability and survival of the cells when working with high-temperature thermoplastics without the limitation of the scaffold geometry in contact with cells. We have demonstrated the viability of the printing process using chondrocytes for cartilage regeneration. This development will accelerate the clinical uptake of the technology and overcomes the current limitation when using thermoplastics as scaffolds. An alginate-based hydrogel combined with human chondrocytes (isolated from osteoarthritis patients) was formulated as bioink-A and the polylactic acid as bioink-B. The bioprinting process was carried out with the REGEMAT V1 bioprinter (Regemat 3D, Granada-Spain) through a IVF. The printing capacity of the bioprinting plus the viability and cell proliferation of bioprinted chondrociytes was evaluated after five weeks by confocal microscopy and Alamar Blue Assay (Biorad). Results showed that the IVF process does not decrease the cell viability of the chondrocytes during the printing process as the cells do not have contact with the thermoplastic at elevated temperatures. The viability and cellular proliferation of the bioprinted artificial 3D cartilage increased after 5 weeks. In conclusion, this study demonstrates the potential use of Regemat V1 for 3D bioprinting of cartilage and the viability of bioprinted chondrocytes in the scaffolds for application in regenerative medicine.

Keywords: cartilage regeneration, bioprinting, bioink, scaffold, chondrocyte

Procedia PDF Downloads 313
3185 Cryotopic Macroporous Polymeric Matrices for Regenerative Medicine and Tissue Engineering Applications

Authors: Archana Sharma, Vijayashree Nayak, Ashok Kumar

Abstract:

Three-dimensional matrices were fabricated from blend of natural-natural polymers like carrageenan-gelatin and synthetic -natural polymers such as PEG- gelatin (PEG of different molecular weights (2,000 and 6,000) using two different crosslinkers; glutaraldehyde and EDC-NHS by cryogelation technique. Blends represented a feasible approach to design 3-D scaffolds with controllable mechanical, physical and biochemical properties without compromising biocompatibility and biodegradability. These matrices possessed interconnected porous structure, good mechanical strength, biodegradable nature, constant swelling kinetics, ability to withstand high temperature and visco-elastic behavior. Hemocompatibility of cryogel matrices was determined by coagulation assays and hemolytic activity assay which demonstrated that these cryogels have negligible effects on coagulation time and have excellent blood compatibility. In vitro biocompatibility (cell-matrix interaction) inferred good cell adhesion, proliferation, and secretion of ECM on matrices. These matrices provide a microenvironment for the growth, proliferation, differentiation and secretion of ECM of different cell types such as IMR-32, C2C12, Cos-7, rat bone marrow derived MSCs and human bone marrow MSCs. Hoechst 33342 and PI staining also confirmed that the cells were uniformly distributed, adhered and proliferated properly on the cryogel matrix. An ideal scaffold used for tissue engineering application should allow the cells to adhere, proliferate and maintain their functionality. Neurotransmitter analysis has been done which indicated that IMR-32 cells adhered, proliferated and secreted neurotransmitters when they interacted with these matrices which showed restoration of their functionality. The cell-matrix interaction up to molecular level was also evaluated so to check genotoxicity and protein expression profile which indicated that these cryogel matrices are non-genotoxic and maintained biofunctionality of cells growing on these matrices. All these cryogels, when implanted subcutaneously in balb/c mice, showed no adverse systemic or local toxicity effects at implantation site. There was no significant increase in inflammatory cell count has otherwise been observed after scaffold implantation. These cryogels are supermacroporous and this porous structure allows cell infiltration and proliferation of host cells. This showed the integration and presence of infiltrated cells into the cryogel implants. Histological analysis confirmed that the implanted cryogels do not have any adverse effect in spite of host immune system recognition at the site of implantation, on its surrounding tissues and other vital host organs. In vivo biocompatibility study after in vitro biocompatibility analysis has also concluded that these synthesized cryogels act as important biological substitutes, more adaptable and appropriate for transplantation. Thus, these cryogels showed their potential for soft tissue engineering applications.

Keywords: cryogelation, hemocompatibility, in vitro biocompatibility, in vivo biocompatibility, soft tissue engineering applications

Procedia PDF Downloads 224
3184 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density

Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany

Abstract:

Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.

Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination

Procedia PDF Downloads 263
3183 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 72
3182 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box

Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar

Abstract:

To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.

Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection

Procedia PDF Downloads 130
3181 Neuroprotective Effect of Germinated Dolichos lablab on 6-Hydroxy Dopamine (6-OHDA) Induced Toxicity in SH-SY5Y Neuroblastoma Cell

Authors: Taek Hwan Lee, Moon Ho Do, Lalita Subedi, Young Un Park, Sun Yeou Kim

Abstract:

Natural and artificial toxic substances namely neurotoxins induce the bitter effect in the nervous system termed as neurotoxicity. It can modulate the normal functioning of the nervous system either hyperactivate it or damage homeostasis of neuronal system. Neurotoxins induced toxicity ultimately kills the neuron. The present study investigated the neuroprotective effects of germinated Dolichos lablab on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using SH-SY5Y neuroblastoma cells. Germination is a process of plant growth from a seed. Sprouting of a seedling from a seed induced many molecular changes in the seed in order to prepare it for further growth. Because of these molecular and chemical changes, the neuroprotective effect of Dolichos lablab is higher in the germinated form than in the normal condition. SH-SY5Y cells were treated with Dolichos lablab extract (50, 100 g/ml) followed by 6-OHDA (25M) induced toxicity. Cell Viability was measured to check the cell survival against 6-OHDA induced toxicity using MTT assay. Dolichos lablab showed a neuroprotective effect against 6-OHDA induced neuronal cell death in neuroblastoma cell at a higher concentration of 100g/ml however the effect is much better even at the lower concentration after germination 50g/ml. Cell survival was increased dramatically after 15 h of germination and increased with time of germination in concentration dependent manner. Trigonelline as a representative compound was validated in germinated Dolichos lablab by HPLC analysis that might enhance the neuroprotective effect of Dolichos lablab. This result suggests that Dolichos lablab possess neuroprotective effect in neuroblastoma cells against 6-OHDA however its activity was more potent in the germinated form.

Keywords: dolichos lablab, germination, neuroprotection, trigonelline

Procedia PDF Downloads 323
3180 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence

Authors: Sehreen Moorat, Mussarat Lakho

Abstract:

A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.

Keywords: medical imaging, cancer, processing, neural network

Procedia PDF Downloads 259
3179 In Vitro Evaluation of the Antimitotic and Genotoxic Effect by the Allium cepa L. Test of the Aqueous Extract of Peganum harmala L. Leaves (Laghouat, Algeria)

Authors: Ouzid Yasmina, Aiche-Iratni Ghenima, Harchaoui Lina, Saadoun Noria, Houali Karim

Abstract:

Medicinal plants are an important source of bioactive molecules with biological activities such as anticancer, antioxidant, anti-inflammatory, antibacterial, antimitotic.... These molecules include alkaloids, polyphenols and terpenes. The latter can be extracted by different solvents, namely: water, ethanol, methanol, butanol, acetone... This is why it seemed interesting to us to evaluate in vitro the antimitotic and genotoxic effect of these secondary metabolites contained in the aqueous extract of the leaves of Peganum harmala L. by the Allium cepa L. test on meristematic cells by calculating the mitotic parameters (The mitotic index, the aberration index and the limit value of cytotoxicity).A spectrophotometric determination of secondary metabolites, namely alkaloids and flavonoids in the aqueous extract of this essence, was performed. As a result, the alkaloid content is estimated to be 28.42 μg EC/mg extract, and the flavonoid content is 12.52 μg EQ/mg extract. The determination of the mitotic index revealed disturbances in cell division with a highly significant difference between the negative control (distilled water) and the different samples (aqueous extracts, colchicine and quecetin). The exposure of meristematic cells to our samples resulted in a large number of chromosomal, nuclear and cellular aberrations with an aberration index reaching 16.21±1.28% for the 4mg/ml aqueous extract and 11.71±3.32% for the 10mg/ml aqueous extract. The limit value of cytotoxicity revealed that our samples are sublethal on Allium cepa L. meristematic cells.

Keywords: allium cepa l., antimitotic and genotoxic effect, aqueous leaf extract, laghouat (algeria), peganum harmala l., secondary metabolites

Procedia PDF Downloads 95
3178 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 398
3177 Artificial Intelligence in the Design of High-Strength Recycled Concrete

Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh

Abstract:

The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.

Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials

Procedia PDF Downloads 13
3176 Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy

Authors: L. Szymanski, Z. Kolacinski, Z. Kamiński, G. Raniszewski, J. Fraczyk, L. Pietrzak

Abstract:

In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz.

Keywords: synthesis of carbon nanotubes, hyperthermia, ligands, carbon nanotubes

Procedia PDF Downloads 286
3175 The Effects of Bisphosphonates on Osteonecrosis of Jaw Bone: A Stem Cell Perspective

Authors: Huseyin Apdik, Aysegul Dogan, Selami Demirci, Ezgi Avsar Apdik, Fikrettin Sahin

Abstract:

Mesenchymal stem cells (MSCs) are crucial cell types for bone maintenance and growth along with resident bone progenitor cells providing bone tissue integrity during osteogenesis and skeletal growth. Any deficiency in this regulation would result in vital bone diseases. Of those, osteoporosis, characterized by a reduction in bone mass and mineral density, is a critical skeletal disease for especially elderly people. The commonly used drugs for the osteoporosis treatment are bisphosphonates (BPs). The most prominent role of BPs is to prevent bone resorption arisen from high osteoclast activity. However, administrations of bisphosphonates may also cause bisphosphonate-induced osteonecrosis of the jaw (BIONJ). Up to the present, the researchers have proposed several circumstances for BIONJ. However, effects of long-term and/or high dose usage of BPs on stem cell’s proliferation, survival, differentiation or maintenance capacity have not been evaluated yet. The present study will be held to; figure out BPs’ effects on MSCs in vitro in the aspect of cell proliferation and toxicity, migration, angiogenic activity, lineage specific gene and protein expression levels, mesenchymal stem cell properties and potential signaling pathways affected by BP treatment. Firstly, mesenchymal stem cell characteristics of Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs) were proved using flow cytometry analysis. Cell viability analysis was completed to determine the cytotoxic effects of BPs (Zoledronate (Zol), Alendronate (Ale) and Risedronate (Ris)) on DPSCs and PDLSCs by the 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay. Non-toxic concentrations of BPs were determined at 24 h under growth condition, and at 21 days under osteogenic differentiation condition for both cells. The scratch assay was performed to evaluate their migration capacity under the usage of determined of BPs concentrations at 24 h. The results revealed that while the scratch closure is 70% in the control group for DPSCs, it was 57%, 66% and 66% in Zol, Ale and Ris groups, respectively. For PDLSs, while wound closure is 71% in control group, it was 65%, 66% and 66% in Zol, Ale and Ris groups, respectively. As future experiments, tube formation assay and aortic ring assay will be done to determinate angiogenesis abilities of DPSCs and PDLSCs treated with BPs. Expression levels of osteogenic differentiation marker genes involved in bone development will be determined using real time-polymerase change reaction (RT-PCR) assay and expression profiles of important proteins involved in osteogenesis will be evaluated using western blotting assay for osteogenically differentiated MSCs treated with or without BPs. In addition to these, von Kossa staining will be performed to measure calcium mineralization status of MSCs.

Keywords: bisphosphonates, bisphosphonate-induced osteonecrosis of the jaw, mesenchymal stem cells, osteogenesis

Procedia PDF Downloads 263
3174 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 158
3173 Improving Forecasting Demand for Maintenance Spare Parts: Case Study

Authors: Abdulaziz Afandi

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: neural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 127
3172 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity

Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink

Abstract:

The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.

Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction

Procedia PDF Downloads 313
3171 Simulation of Red Blood Cells in Complex Micro-Tubes

Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi

Abstract:

In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.

Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics

Procedia PDF Downloads 174
3170 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing

Authors: Reena Murali, David Peter S.

Abstract:

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA

Procedia PDF Downloads 526
3169 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 33
3168 Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases

Authors: Shaimaa Eltanani, Thangal Yumnamcha, Ahmed S. Ibrahim

Abstract:

Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases.

Keywords: human retinal endothelial cells (hrecs), rotenone, oligomycin, fccp, oxidative phosphorylation, oxphos, capacitance, impedance, ecis modeling, rb resistance, α resistance, and barrier integrity

Procedia PDF Downloads 100
3167 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering

Authors: Alieh Farshbaf

Abstract:

Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.

Keywords: stem cell, AIDS, gene modification, cell engineering

Procedia PDF Downloads 301
3166 Right Atrial Tissue Morphology in Acquired Heart Diseases

Authors: Edite Kulmane, Mara Pilmane, Romans Lacis

Abstract:

Introduction: Acquired heart diseases remain one of the leading health care problems in the world. Changes in myocardium of the diseased hearts are complex and pathogenesis is still not fully clear. The aim of this study was to identify appearance and distribution of apoptosis, homeostasis regulating factors, and innervation and ischemia markers in right atrial tissue in different acquired heart diseases. Methods: During elective open heart surgery were taken right atrial tissue fragments from 12 patients. All patients were operated because of acquired heart diseases- aortic valve stenosis (5 patients), coronary heart disease (5 patients), coronary heart disease and secondary mitral insufficiency (1 patient) and mitral disease (1 patient). The mean age was (mean±SD) 70,2±7,0 years (range 58-83 years). The tissues were stained with haematoxylin and eosin methods for routine light-microscopical examination and for immunohistochemical detection of protein gene peptide 9.5 (PGP 9.5), human atrial natriuretic peptide (hANUP), vascular endothelial growth factor (VEGF), chromogranin A and endothelin. Apoptosis was detected by TUNEL method. Results: All specimens showed degeneration of cardiomyocytes with lysis of myofibrils, diffuse vacuolization especially in perinuclear region, different size of cells and their nuclei. The severe invasion of connective tissue was observed in main part of all fragments. The apoptotic index ranged from 24 to 91%. One specimen showed region of newly performed microvessels with cube shaped endotheliocytes that were positive for PGP 9.5, endothelin, chromogranin A and VEGF. From all fragments, taken from patients with coronary heart disease, there were observed numerous PGP 9.5-containing nerve fibres, except in patient with secondary mitral insufficiency, who showed just few PGP 9.5 positive nerves. In majority of specimens there were regions observed with cube shaped mixed -VEGF immunoreactive endocardial and epicardial cells. Only VEGF positive endothelial cells were observed just in few specimens. There was no significant difference of hANUP secreting cells among all specimens. All patients operated due to the coronary heart disease moderate to numerous number of chromogranin A positive cells were seen while in patients with aortic valve stenosis tissue demonstrated just few factor positive cells. Conclusions: Complex detection of different factors may indicate selectively disordered morphopathogenetical event of heart disease: decrease of PGP 9.5 nerves suggests the decreased innervation of organ; increased apoptosis indicates the cell death without ingrowth of connective tissue; persistent presence of hANUP proves the unchanged homeostasis of cardiomyocytes probably supported by expression of chromogranins. Finally, decrease of VEGF detects the regions of affected blood vessels in heart affected by acquired heart disease.

Keywords: heart, apoptosis, protein-gene peptide 9.5, atrial natriuretic peptide, vascular endothelial growth factor, chromogranin A, endothelin

Procedia PDF Downloads 295
3165 Pregnancy - The Unique Immunological Paradigm

Authors: Husham Bayazed

Abstract:

Purpose of presentation: Pregnancy represents the most important period for the conservation of the species. The immune system is one of the most important systems protecting the mother against the environment and preventing damage to the fetus. This presentation aims to review and discuss the role of the immune system during pregnancy, the evolutionary inflammatory process through pregnancy, infectious and environmental exposure influences on the mother and the fetus, and the impacts of sexual dimorphism of the placenta on offspring susceptibility to different disorders. Recent Findings: In 1960, Peter Medawar (Nobel Prize Winner) proposed that the fetus, a semi-allograft, is similar to a tissue graft that escapes rejection through a mechanism involving systemic immune suppression (Graft –Host response). However, recent researchers and studies have documented that implantation means inflammation, and the inflammatory process is considered a breach of tolerance in pregnancy with immune induction, which is necessary for the protection of the mother and the fetus against infections and environmental triggers. This inflammatory process should be maintained during different pregnancy phases till parturition, and any block at any phase will be associated with pregnancy complications, including pregnancy failure or loss, miscarriage, and preterm birth subsequently. Maternal immune activation following any trigger can have a positive effect on the fetus. The old concept of the placenta being asexual is inaccurate, and being with sexual dimorphism with clear differences in susceptibility to different factors that stimulate maternal immunity. Summary: The presence of different immune cells ((i.e., T cells, B cells, NK cells, etc.) at the implantation site is considered proof of a strong maternal immune response to the fetus. Therefore, human pregnancy is considered a unique immunological paradigm requiring maternal immune modulation rather than suppression. So Medawar's postulation of maternal systemic immunosuppression is wrong. Maternal immune system activation triggered by infections, stress, diet, and pollution can have a positive effect on the fetus, with the development of fetal-trained immunity necessary for survival. The sexual dimorphism of the placenta seems to have an impact on the differences in sex susceptible to the environment maternal risk stimuli. This link to why the incidence of autism is increasing more among boys than girls.

Keywords: pregnancy, maternal immunity, implantation and inflammation, placenta sexual dimorphism

Procedia PDF Downloads 93
3164 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control

Procedia PDF Downloads 136
3163 Caffeic Acid in Cosmetic Formulations: An Innovative Assessment

Authors: Caroline M. Spagnol, Vera L. B. Isaac, Marcos A. Corrêa, Hérida R. N. Salgado

Abstract:

Phenolic compounds are abundant in the Brazilian plant kingdom and they are part of a large and complex group of organic substances. Cinnamic acids are part of this group of organic compounds, and caffeic acid (CA) is one of its representatives. Antioxidants are compounds which act as free radical scavengers and, in other cases, such as metal chelators, both in the initiation stage and the propagation of oxidative process. The tyrosinase, polyphenol oxidase, is an enzyme that acts at various stages of melanin biosynthesis within the melanocytes and is considered a key molecule in this process. Some phenolic compounds exhibit inhibitory effects on melanogenesis by inhibiting the tyrosinase enzymatic activity and therefore has been the subject of studies. However, few studies have reported the effectiveness of these products and their safety. Objectives: To assess the inhibitory activity of tyrosinase, the antioxidant activity of CA and its cytotoxic potential. The method to evaluate the inhibitory activity of tyrosinase aims to assess the reduction transformation of L-dopa into dopaquinone reactions catalyzed by the enzyme. For evaluating the antioxidant activity was used the analytical methodology of DPPH radical inhibition. The cytotoxicity evaluation was carried out using the MTT method (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide), a colorimetric assay which determines the amount of insoluble violet crystals formed by the reduction of MTT in the mitochondria of living cells. Based on the results obtained during the study, CA has low activity as a depigmenting agent. However, it is a more potent antioxidant than ascorbic acid (AA), since a lower amount of CA is sufficient to inhibit 50% of DPPH radical. The results are promising since CA concentration that promoted 50% toxicity in HepG2 cells (IC50=781.8 μg/mL) is approximately 330 to 400 times greater than the concentration required to inhibit 50% of DPPH (IC50 DPPH= 2.39 μg/mL) and ABTS (IC50 ABTS= 1.96 μg/mL) radicals scavenging activity, respectively. The maximum concentration of caffeic acid tested (1140 mg /mL) did not reach 50% of cell death in HaCat cells. Thus, it was concluded that the caffeic acid does not cause toxicity in HepG2 and HaCat cells in the concentrations required to promote antioxidant activity in vitro, and it can be applied in topical products.

Keywords: caffeic acid, antioxidant, cytotoxicity, cosmetic

Procedia PDF Downloads 379
3162 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 460
3161 Epididymis in the Agouti (Dasyprocta azarae): Light Microscope Study

Authors: Bruno C. Schimming, Leandro L. Martins, PatríCia F. F. Pinheiro, Raquel F. Domeniconi, FabríCio S. Oliveira

Abstract:

The agouti is a wildlife rodent that can be used as an alternative source of animal protein and this species has been raised in captivity in Brazil with the aim of providing meat. Thus, the knowledge of their reproductive biology and morphology of the reproductive organs is important. The objective of this study was to describe the morphology of epididymis in the Azara’s agouti, by light microscopy. Samples of epididymis were obtained from five adult Azara’s agouti (Dasyprocta azarae) during castration surgery performed at the Municipal Zoo of Catanduva, Brazil. Fragments of the epididymal regions (initial segment, caput, corpus and cauda) were collected. The biological samples were immediately fixed in paraformaldehyde for 24 hours, followed by histologic procedures comprising embedding in ParaplastTM (Sigma, St. Louis, MO, USA), sections of 5 µm, and staining with HE and Masson’s trichrome. The epididymis was a highly convoluted tubule that links the testis to the vas deferens. The epithelium lining was pseudostratified columnar surrounded by a periductal stroma. The epithelium contains several cell types: principal, basal, apical, clear, and hallo cells. Principal cells were the most abundant cell type. There were observed also migratory cells named halo cells. The caput epididymis was divided into two different regions: initial segment and caput. The initial segment has a very wide lumen, a high epithelium with conspicuous microvilli and the lumen was wide with exfoliated material. The other region of the caput epididymis, showed a lower epithelium when compared with the initial segment, large amounts of spermatozoa in the lumen, and a cytoplasmic vacuolization. This region presented many narrows cells. Many spermatozoa appeared in the lumen of corpus epididymis. The cauda region had a lower epithelium than the other epididymal regions in the agouti. The cauda epithelium presented plicae protruding into the lumen. Large amounts of spermatozoa are also present in the lumen. Small microvilli uniformly arranged so as to form a kind of “brush border” are observed on the apical surface of the cauda epithelium. The pattern of the epithelium lining the duct of the agouti epididymis does not differ greatly from that reported to other mammals, such as domestic and wildlife animals. These findings can cooperate with future investigations especially those related to rational exploration of these animals. All experimental procedures were approved by the institutional ethics committee (CEUA 796/2015). This study was supported by FAPESP (Grants 2015/23822-1).

Keywords: wildlife, testis excurrent ducts, epididymis, morphology

Procedia PDF Downloads 236
3160 LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma

Authors: Jin Hwan Cheong, Mina Hwang, Myung Hoon Han, Je Il Ryu, Young ha Oh, Seong Ho Koh, Wu Duck Won, Byung Jin Ha

Abstract:

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inꠓhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream sigꠓnaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.

Keywords: LGR5, neuroblastoma, meningioma, pituitary adenoma, hnRNP

Procedia PDF Downloads 56
3159 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution

Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone

Abstract:

The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.

Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder

Procedia PDF Downloads 112
3158 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 113
3157 Transition to Hydrogen Cities in Korea and Japan

Authors: Minhee Son, Kyung Nam Kim

Abstract:

This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability.

Keywords: fuel cell, hydrogen city, hydrogen fuel cell vehicle, hydrogen station, hydrogen energy

Procedia PDF Downloads 490