Search results for: electrochemical hydrogen storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3513

Search results for: electrochemical hydrogen storage

1773 Co-Hydrothermal Gasification of Microalgae Biomass and Solid Biofuel for Biogas Production

Authors: Daniel Fozer

Abstract:

Limiting global warming to 1.5°C to the pre-industrial levels urges the application of efficient and sustainable carbon dioxide removal (CDR) technologies. Microalgae based biorefineries offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value added products by applying thermochemical processes. In this paper we report on the utilization of hydrochar as a blending component in hydrothermal gasification (HTG) process. The effects of blending ratio and hydrochar quality were investigated on the biogas yield and and composition. It is found that co-gasifying the hydrochar and the algae biomass can increase significantly the total gas yield and influence the biogas (H2, CH4, CO2, CO, C2H4, C2H6) composition. It is determined that the carbon conversion ratio, hydrogen and methane selectivity can be increased by influencing the fuel ratio of hydrochar via hydrothermal carbonization. In conclusion, it is found that increasing the synergy between hydrothermal technologies result in elevated conversion efficiency.

Keywords: biogas, CDR, Co-HTG, hydrochar, microalgae

Procedia PDF Downloads 149
1772 Synthesis of Ce Impregnated on Functionalized Graphene Oxide Nanosheets for Transesterification of Propylene Carbonate and Ethanol to Produce Diethyl Carbonate

Authors: Kumar N., Verma S., Park J., Srivastava V. C.

Abstract:

Organic carbonates have the potential to be used as fuels and because of this, their production through non-phosgene routes is a thrust area of research. Di-ethyl carbonate (DEC) synthesis from propylene carbonate (PC) in the presence of alcohol is a green route. In this study, the use of reduced graphene oxide (rGO) based metal oxide catalysts [rGO-MO, where M = Ce] with different amounts of graphene oxide (0.2%, 0.5%, 1%, and 2%) has been investigated for the synthesis of DEC by using PC and ethanol as reactants. The GO sheets were synthesized by an electrochemical process and the catalysts were synthesized using an in-situ method. A theoretical study of the thermodynamics of the reaction was done, which revealed that the reaction is mildly endothermic. The theoretical value of optimum temperature was found to be 420 K. The synthesized catalysts were characterized for their morphological, structural and textural properties using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption, thermogravimetric analysis (TGA), and Raman spectroscopy. Optimization studies were carried out to study the effect of different reaction conditions like temperature (140 °C to 180 °C) and catalyst dosage (0.102 g to 0.255 g) on the yield of DEC. Amongst the various synthesized catalysts, 1% rGO-CeO2 gave the maximum yield of DEC.

Keywords: GO, DEC, propylene carbonate, transesterification, thermodynamics

Procedia PDF Downloads 82
1771 Pre-harvest Application of Nutrients on Quality and Storability of Litchi CV Bombai

Authors: Nazmin Akter, Tariqul Islam, Abu Sayed

Abstract:

Food loss and waste have become critical global issues, with approximately one-third of the world's food production being wasted. Among the various food products, horticultural fruits and vegetables are especially susceptible to loss due to their relatively short shelf lives. Litchi (Litchi chinensis) is one of Bangladesh's most important horticultural fruits. But the problem with this fruit is its short shelf life by losing weight faster after harvest. The experiment was carried out at Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200 Bangladesh during 2020-2021. The objective of this experiment was to see the impact of nutrients viz., urea (1%), calcium chloride (1%), borax (1%), and their combinations on fruit quality and shelf life of litchi cv. Bombai. The experiment was laid out in a randomized block design with 7 treatments and 3 replications. Two sprays of each treatment were applied from the last week of May to June (at 20-day intervals). The results indicated that all the treatments significantly improved the quality parameters of litchi fruits as compared to the control. In terms of physicochemical characteristics fruit weight (20.30g), fruit volume (20m ml), and pulp percent (17.14) were found maximum with minimum stone percent (11.09) with the application of urea 1% + borax 1%+ calcium chloride 1%. Maximum TSS (19.62oBrix), TSS/acidity ratio (24.57), maximum ascorbic acid (45.19 mg/100 g pulp), and minimum acidity (0.80%) were reported with the application of T6 (Urea 1% + borax 1%+ calcium chloride 1%) treatments whereas fruits treated with urea 1% + borax 1% gave maximum total sugars (26.64%) and reducing sugars (19.19%) as compared to control. In the case of storage characters, application of Urea 1% + borax 1%+ calcium chloride 1% resulted in a minimum physiological loss in weight (6.11%), (8.41%), and (10.65%) for 2 days, 4 days, and 6 days respectively. In conclusion, to obtain better quality and increased storage period of litchi fruits, two sprays of urea, borax, and calcium chloride (1%) could be used during the fruit growth and development period at fortnightly intervals.

Keywords: litchi chinensis, preharvest, quality, shelf life, postharvest

Procedia PDF Downloads 71
1770 A Review of Recent Studies on Advanced Technologies for Water Treatment

Authors: Deniz Sahin

Abstract:

Growing concern for the presence and contamination of heavy metals in our water supplies has steadily increased over the last few years. A number of specialized technologies including precipitation, coagulation/flocculation, ion exchange, cementation, electrochemical operations, have been developed for the removal of heavy metals from wastewater. However, these technologies have many limitations in the application, such as high cost, low separation efficiency, Recently, numerous approaches have been investigated to overcome these difficulties and membrane filtration, advanced oxidation technologies (AOPs), and UV irradiation etc. are sufficiently developed to be considered as alternative treatments. Many factors come into play when selecting wastewater treatment technology, such as type of wastewater, operating conditions, economics etc. This study describes these various treatment technologies employed for heavy metal removal. Advantages and disadvantages of these technologies are also compared to highlight their current limitations and future research needs. For example, we investigated the applicability of the ultrafiltration technology for treating of heavy metal ions (e.g., Cu(II), Pb(II), Cd(II), Zn(II)) from synthetic wastewater solutions. Results shown that complete removal of metal ions, could be achieved.

Keywords: heavy metal, treatment methodologies, water, water treatment

Procedia PDF Downloads 170
1769 Electrocoagulation of Ni(OH)2/NiOOH for the Removal of Boron Using Nickel Foam as Sacrificial Anode

Authors: Yu-Jen Shih, Yao-Hui Hunag

Abstract:

Electrocoagulation (EC) using metallic nickel foam as anode and cathode for the removal of boron from solution was studied. The electrolytic parameters included pH, current density, and initial boron concentration for optimizing the EC process. Experimental results showed that removal efficiency was increased by elevating pH from 4.0 to 8.0, and then decreased at higher pH. The electrolytic efficacy was not affected by current density. In respect of energy consumption, 1.25 mA/cm2 of current density was acceptable for an effective EC of boron, while increasing boric acid from 10 to 100 ppm-B did not impair removal efficiency too much. Cyclic voltammetry indicated that the oxide film, Ni(OH)2 and NiOOH, at specific overpotentials would result in less weight loss of anode than that predicted by the Faraday’s law. The optimal conditions under which 99.2% of boron was removed and less than 1 ppm-B remained in the electrolyte would be pH 8, four pairs of electrodes, and 1.25 mA/cm2 in 120 min as treating wastewaters containing 10 ppm-B. XRD and SEM characterization suggested that the granular crystallites of hydroxide precipitates was composed of theophrastite.

Keywords: borohydrides, hydrogen generation, NiOOH, electrocoagulation, cyclic voltammetry, boron removal

Procedia PDF Downloads 260
1768 Development of Polymeric Fluorescence Sensor for the Determination of Bisphenol-A

Authors: Neşe Taşci, Soner Çubuk, Ece Kök Yetimoğlu, M. Vezir Kahraman

Abstract:

Bisphenol-A (BPA), 2,2-bis(4-hydroxyphenly)propane, is one of the highest usage volume chemicals in the world. Studies showed that BPA maybe has negative effects on the central nervous system, immune and endocrine systems. Several of analytical methods for the analysis of BPA have been reported including electrochemical processes, chemical oxidation, ozonization, spectrophotometric, chromatographic techniques. Compared with other conventional analytical techniques, optic sensors are reliable, providing quick results, low cost, easy to use, stands out as a much more advantageous method because of the high precision and sensitivity. In this work, a new photocured polymeric fluorescence sensor was prepared and characterized for Bisphenol-A (BPA) analysis. Characterization of the membrane was carried out by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM) techniques. The response characteristics of the sensor including dynamic range, pH effect and response time were systematically investigated. Acknowledgment: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 115Y469.

Keywords: bisphenol-a, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 236
1767 Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells

Authors: Zakaria Ahmed, Khaled Charradi, Sherif M. A. S. Keshk, Radhouane Chtourou

Abstract:

Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes.

Keywords: SPEEK, sepiolite clay, LDH clay, proton exchange membrane

Procedia PDF Downloads 123
1766 Effect of Welding Heat Input on Intergranular Corrosion of Inconel 625 Overlay Weld Metal

Authors: Joon-Suk Kim, Hae-Woo Lee

Abstract:

This study discusses the effect of welding heat input on intergranular corrosion of the weld metal of Inconel 625 alloy. A specimen of Inconel 625 with a weld metal that controlled welding heat input was manufactured, and aging heat treatment was conducted to investigate sensitization by chromium carbides. The electrochemical SL and DL EPR experiments, together with the chemical ferric sulfate-sulfuric acid and nitric acid tests, were conducted to determine intergranular corrosion susceptibility between the specimens. In the SL and DL EPR experiments, specimens were stabilized in the weld metal, and therefore intergranular corrosion susceptibility could not be determined. However, in the ferric sulfate-sulfuric acid and nitric acid tests, the corrosion speed increased as heat input increased. This was because the amount of diluted Fe increased as the welding heat input increased, leading to microsegregation between the dendrites, which had a negative effect on the corrosion resistance.

Keywords: Inconel 625, weling, overlay, heat input, intergranular corrosion

Procedia PDF Downloads 357
1765 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou

Abstract:

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells

Procedia PDF Downloads 589
1764 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 608
1763 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 318
1762 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications

Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley

Abstract:

Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.

Keywords: batteries, energy, iron, nickel, storage

Procedia PDF Downloads 440
1761 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery

Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.

Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT

Procedia PDF Downloads 231
1760 The Study of Cost Accounting in S Company Based on TDABC

Authors: Heng Ma

Abstract:

Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost. Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost. The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.

Keywords: third-party logistics enterprises, TDABC, cost management, S company

Procedia PDF Downloads 359
1759 Applications and Development of a Plug Load Management System That Automatically Identifies the Type and Location of Connected Devices

Authors: Amy Lebar, Kim L. Trenbath, Bennett Doherty, William Livingood

Abstract:

Plug and process loads (PPLs) account for 47% of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering and data storage. A laboratory proof of concept (PoC) demonstrated all but the data storage capabilities and these capabilities were validated using an office building scenario. The PoC can identify when a device is plugged into an outlet and the location of the device in the building. When a device is moved, the PoC’s dashboard and database are automatically updated with the new location. The PoC implements controls to devices from the system dashboard so that devices maintain correct schedules regardless of where they are plugged in within a building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. A system like ATLIS could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.

Keywords: commercial buildings, grid-interactive efficient buildings (GEB), miscellaneous electric loads (MELs), plug loads, plug load management (PLM)

Procedia PDF Downloads 132
1758 Monitoring of Sustainability of Extruded Soya Product TRADKON SPC-TEX in Order to Define Expiration Date

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

New attitudes about nutrition impose new styles, and therefore a neNew attitudes about nutrition impose new styles, and therefore a new kind of food. The goal of our work was to define the shelf life of new extruded soya product with minimum 65% of protein based on the analyses. According to the plan it was defined that a certain quantity of the same batch of new product (soybean flakes) which had predicted shelf life of 2 years had to be stored for 24 months in storage and analyzed at the beginning and end of sustainability plan on instrumental analyses (heavy metals, pesticides and mycotoxins) and every month on sensory analyses (odor, taste, color, consistency), microbiological analyses (Salmonella spp., Escherichia coli, Enterobacteriaceae, sulfite-reducing clostridia, Listeria monocytogenes), chemical analyses (protein, ash, fat, crude cellulose, granulation) and at the beginning on GMO analyses. All analyses were tested according to: sensory analyses ISO 6658, Salmonella spp ISO 6579, Escherichia coli ISO 16649-2, Enterobacteriaceae ISO 21528-2, sulfite-reducing clostridia ISO 15213 and Listeria monocytogenes ISO 11290-2, chemical and instrumental analyses Serbian ordinance on the methods of physico-chemical analyses and GMO analyses JRC Compendium. The results obtained after the analyses which were done according to the plan during the 24 months indicate that are no changes of products concerning both sensory and chemical analyses. As far as microbiological results are concerned Salmonella spp was not detected and all other quantitative analyses showed values <10 cfu/g. The other parameters for food safety (heavy metals, pesticides and mycotoxins) were not present in analyzed samples and also all analyzed samples were negative concerning genetic testing. On the basis of monitoring the sample under defined storage conditions and analyses of quality control, GMO analyses and food safety of the sample during the shelf within two years, the results showed that all the parameters of the sample during defined period is in accordance with Serbian regulative so that indicate that predicted shelf life can be adopted.w kind of food. The goal of our work was to define the shelf life of new extruded soya product with minimum 65% of protein based on the analyses. According to the plan it was defined that a certain quantity of the same batch of new product (soybean flakes) which had predicted shelf life of 2 years had to be stored for 24 months in storage and analyzed at the beginning and end of sustainability plan on instrumental analyses (heavy metals, pesticides and mycotoxins) and every month on sensory analyses (odor, taste, color, consistency), microbiological analyses (Salmonella spp., Escherichia coli, Enterobacteriaceae, sulfite-reducin clostridia, Listeria monocytogenes), chemical analyses (protein, ash, fat, crude cellulose, granulation) and at the beginning on GMO analyses. All analyses were tested according: sensory analyses ISO 6658, Salmonella spp ISO 6579, Escherichia coli ISO 16649-2, Enterobacteriaceae ISO 21528-2, sulfite-reducing clostridia ISO 15213 and Listeria monocytogenes ISO 11290-2, chemical and instrumental analyses Serbian ordinance on the methods of physico-chemical analyses and GMO analyses JRC Compendium. The results obtained after the analyses which were done according to the plan during the 24 months indicate that are no changes of products concerning both sensory and chemical analyses. As far as microbiological results are concerned Salmonella spp was not detected and all other quantitative analyses showed values <10 cfu/g. The other parameters for food safety (heavy metals, pesticides and mycotoxins) were not present in analyzed samples and also all analyzed samples were negative concerning genetic testing. On the basis of monitoring the sample under defined storage conditions and analyses of quality control, GMO analyses and food safety of the sample during the shelf within two years, the results showed that all the parameters of the sample during defined period is in accordance with Serbian regulative so that indicate that predicted shelf life can be adopted.

Keywords: extruded soya product, food safety analyses, GMO analyses, shelf life

Procedia PDF Downloads 296
1757 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 119
1756 Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism

Authors: Arish Iqbal, Santosh Kumar Singh

Abstract:

Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed.

Keywords: CBM (coal bed methane), CCS (carbon capture and storage), CCT (clean coal technology), CMM (coal mining methane)

Procedia PDF Downloads 242
1755 Medication Errors in Neonatal Intensive Care Unit

Authors: Ramzi Shawahna

Abstract:

Background: Neonatal intensive care units are high-risk settings where medication errors can occur and cause harm to this fragile segment of patients. This multicenter qualitative study was conducted to describe medication errors that occurred in neonatal intensive care units in Palestine from the perspectives of healthcare providers. Methods: This exploratory multicenter qualitative study was conducted and reported in adherence to the consolidated criteria for reporting qualitative research checklist. Semi-structured in-depth interviews were conducted with healthcare professionals (4 pediatricians/neonatologists and 11 intensive care unit nurses) who provided care services for patients admitted to neonatal intensive care units in Palestine. An interview schedule guided the semi-structured in-depth interviews. The qualitative interpretive description approach was used to thematically analyze the data. Results: The total duration of the interviews was 282 min. The healthcare providers described their experiences with 41 different medication errors. These medication errors were categorized under 3 categories and 10 subcategories. Errors that occurred while preparing/diluting/storing medications were related to calculations, using a wrong solvent/diluent, dilution errors, failure to adhere to guidelines while preparing the medication, failure to adhere to storage/packaging guidelines, and failure to adhere to labeling guidelines. Errors that occurred while prescribing/administering medications were related to inappropriate medication for the neonate, using a different administration technique from the one that was intended and administering a different dose from the one that was intended. Errors that occurred after administering the medications were related to failure to adhere to monitoring guidelines. Conclusion: In this multicenter study, pediatricians/neonatologists and neonatal intensive care unit nurses described medication errors occurring in intensive care units in Palestine. Medication errors occur in different stages of the medication process: preparation/dilution/storage, prescription/administration, and monitoring. Further studies are still needed to quantify medication errors occurring in neonatal intensive care units and investigate if the designed strategies could be effective in minimizing medication errors.

Keywords: medication errors, pharmacist, pharmacology, neonates

Procedia PDF Downloads 80
1754 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 235
1753 A Low-Cost Disposable PDMS Microfluidic Cartridge with Reagent Storage Silicone Blisters for Isothermal DNA Amplification

Authors: L. Ereku, R. E. Mackay, A. Naveenathayalan, K. Ajayi, W. Balachandran

Abstract:

Over the past decade the increase of sexually transmitted infections (STIs) especially in the developing world due to high cost and lack of sufficient medical testing have given rise to the need for a rapid, low cost point of care medical diagnostic that is disposable and most significantly reproduces equivocal results achieved within centralised laboratories. This paper present the development of a disposable PDMS microfluidic cartridge incorporating blisters filled with reagents required for isothermal DNA amplification in clinical diagnostics and point-of-care testing. In view of circumventing the necessity for external complex microfluidic pumps, designing on-chip pressurised fluid reservoirs is embraced using finger actuation and blister storage. The fabrication of the blisters takes into consideration three proponents that include: material characteristics, fluid volume and structural design. Silicone rubber is the chosen material due to its good chemical stability, considerable tear resistance and moderate tension/compression strength. The case of fluid capacity and structural form go hand in hand as the reagent need for the experimental analysis determines the volume size of the blisters, whereas the structural form has to be designed to provide low compression stress when deformed for fluid expulsion. Furthermore, the top and bottom section of the blisters are embedded with miniature polar opposite magnets at a defined parallel distance. These magnets are needed to lock or restrain the blisters when fully compressed so as to prevent unneeded backflow as a result of elasticity. The integrated chip is bonded onto a large microscope glass slide (50mm x 75mm). Each part is manufactured using a 3D printed mould designed using Solidworks software. Die-casting is employed, using 3D printed moulds, to form the deformable blisters by forcing a proprietary liquid silicone rubber through the positive mould cavity. The set silicone rubber is removed from the cast and prefilled with liquid reagent and then sealed with a thin (0.3mm) burstable layer of recast silicone rubber. The main microfluidic cartridge is fabricated using classical soft lithographic techniques. The cartridge incorporates microchannel circuitry, mixing chamber, inlet port, outlet port, reaction chamber and waste chamber. Polydimethylsiloxane (PDMS, QSil 216) is mixed and degassed using a centrifuge (ratio 10:1) is then poured after the prefilled blisters are correctly positioned on the negative mould. Heat treatment of about 50C to 60C in the oven for about 3hours is needed to achieve curing. The latter chip production stage involves bonding the cured PDMS to the glass slide. A plasma coroner treater device BD20-AC (Electro-Technic Products Inc., US) is used to activate the PDMS and glass slide before they are both joined and adequately compressed together, then left in the oven over the night to ensure bonding. There are two blisters in total needed for experimentation; the first will be used as a wash buffer to remove any remaining cell debris and unbound DNA while the second will contain 100uL amplification reagents. This paper will present results of chemical cell lysis, extraction using a biopolymer paper membrane and isothermal amplification on a low-cost platform using the finger actuated blisters for reagent storage. The platform has been shown to detect 1x105 copies of Chlamydia trachomatis using Recombinase Polymerase Amplification (RPA).

Keywords: finger actuation, point of care, reagent storage, silicone blisters

Procedia PDF Downloads 369
1752 MIL-88b(Fe)-MOF Grafted Carbon Dot Nanocomposites as Effective Photocatalysts for Fenton-Like Photodegradation of Amphotericin B and Naproxen Under Visible Light Irradiation

Authors: Payam Hayati, Fateme Firoozbakht, Gholamhassan Azimi, Shahram Tangestaninejad

Abstract:

The synthesis of a photocatalytic adsorbent involved the integration of carbon dots (CD) into a metal-organic framework (MOF) of MIL-88B(Fe) using the solvothermal technique. Characterization of the resulting CD@MIL-88B(Fe) was conducted using various analytical methods, including X-ray-based microscopic and spectroscopic techniques, electrochemical impedance spectroscopy, UV–Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The adsorbent demonstrated significant photocatalytic activity, achieving up to 92% and 90% removal of amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, with an RSD value of around 5%. The study explored the factors influencing the degradation of pharmaceuticals and determined the optimal conditions for the process, including pH values of 3 and 4 for AmB and Nap, a photocatalyst concentration of 0.2 g L-1, and an H2O2 concentration ranging from 40 to 50 mM. Reactive oxidative species such as ⋅OH and ⋅O2 were identified through the examination of different scavengers. Additionally, the adsorption isotherm and kinetic studies revealed that the synthesized photocatalyst functions as an effective adsorbent, with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap, while also serving as a photocatalytic agent for removal purposes.

Keywords: fenton-like degradation, metal-organic frameworks, heterogenous photocatalysts, naproxen

Procedia PDF Downloads 76
1751 Synthesis and Study of Structural, Morphological, and Electrochemical Properties of Ceria co-doped for SOFC Applications

Authors: Fatima Melit, Nedjemeddine Bounar

Abstract:

Polycrystalline samples of Ce1-xMxO2-δ (x=0.1, 0.15, 0.2)(M=Gd, Y) were prepared by solid-state chemical reaction from mixtures of pre-dried oxides powders of CeO2, Gd2O3 and Y2O3 in the appropriate stoichiometric ratio to explore their use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their crystal structures and ionic conductivities were characterised by X-ray powder diffraction (XRD) and AC complex impedance spectroscopy (EIS). The XRD analyses confirm that all the resulting synthesised co-doped cerium oxide powders are single-phase and crystallise in the cubic structure system with the space group Fm3m. On the one hand, the lattice parameter (a ) of the phases increases with increasing Gd content; on the other hand, with increasing Y-substitution rate, the latter decreases. The results of complex impedance conductivity measurements have shown that doping has a remarkable effect on conductivity. The co-doped cerium phases showed significant ionic conductivity values, making these materials excellent candidates for solid oxide electrolytes at intermediate temperatures.

Keywords: electrolyte, Ceria, X-ray diffraction, EIS, SEM, SOFC

Procedia PDF Downloads 144
1750 Preservation and Packaging Techniques for Extending the Shelf Life of Cucumbers: A Review of Methods and Factors Affecting Quality

Authors: Abdul Umaro Tholley

Abstract:

The preservation and packaging of cucumbers are essential to maintain their shelf life and quality. Cucumbers are a perishable food item that is highly susceptible to spoilage due to their high-water content and delicate nature. Therefore, proper preservation and packaging techniques are crucial to extend their shelf life and prevent economic loss. There are several methods of preserving cucumbers, including refrigeration, canning, pickling, and dehydration. Refrigeration is the most used preservation method, as it slows down the rate of deterioration and maintains the freshness and quality of the cucumbers. Canning and pickling are also popular preservation methods that use heat treatment and acidic solutions, respectively, to prevent microbial growth and increase shelf life. Dehydration involves removing the water content from cucumbers to increase their shelf life, but it may affect their texture and taste. Packaging also plays a vital role in preserving cucumbers. The packaging materials should be selected based on their ability to maintain the quality and freshness of the cucumbers. The most used packaging materials for cucumbers are polyethylene bags, which prevent moisture loss and protect the cucumbers from physical damage. Other packaging materials, such as corrugated boxes and wooden crates, may also be used, but they offer less protection against moisture loss and damage. The quality of cucumbers is affected by several factors, including storage temperature, humidity, and exposure to light. Cucumbers should be stored at temperatures between 7 and 10 °C, with a relative humidity of 90-95%, to maintain their freshness and quality. Exposure to light should also be minimized to prevent the formation of yellowing and decay. In conclusion, the preservation and packaging of cucumbers are essential to maintain their quality and extend their shelf life. Refrigeration, canning, pickling, and dehydration are common preservation methods that can be used to preserve cucumbers. The packaging materials used should be carefully selected to prevent moisture loss and physical damage. Proper storage conditions, such as temperature, humidity, and light exposure, should also be maintained to ensure the quality and freshness of cucumbers. Overall, proper preservation and packaging techniques can help reduce economic loss and provide consumers with high-quality cucumbers.

Keywords: cucumbers, preservation, packaging, shelf life

Procedia PDF Downloads 97
1749 Optimal Feedback Linearization Control of PEM Fuel Cell

Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh

Abstract:

This paper presents a new method to design nonlinear feedback linearization controller for polymer electrolyte membrane fuel cells (PEMFCs). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEM fuel cells. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEM fuel cell system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA_II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.

Keywords: nonlinear dynamic model, polymer electrolyte membrane fuel cells, feedback linearization, optimal control, NSGA_II

Procedia PDF Downloads 518
1748 Production and Characterization of Silver Doped Hydroxyapatite Thin Films for Biomedical Applications

Authors: C. L Popa, C.S. Ciobanu, S. L. Iconaru, P. Chapon, A. Costescu, P. Le Coustumer, D. Predoi

Abstract:

In this paper, the preparation and characterization of silver doped hydroxyapatite thin films and their antimicrobial activity characterized is reported. The resultant Ag: HAp films coated on commercially pure Si disks substrates were systematically characterized by Scanning Electron Microscopy (SEM) coupled with X-ray Energy Dispersive Spectroscopy detector (X-EDS), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared spectroscopy (FT-IR). GDOES measurements show that a substantial Ag content has been deposited in the films. The X-EDS and GDOES spectra revealed the presence of a material composed mainly of phosphate, calcium, oxygen, hydrogen and silver. The antimicrobial efficiency of Ag:HAp thin films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated. Ag:HAp thin films could lead to a decrease of infections especially in the case of bone and dental implants by surface modification of implantable medical devices.

Keywords: silver, hydroxyapatite, thin films, GDOES, SEM, FTIR, antimicrobial effect

Procedia PDF Downloads 425
1747 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 338
1746 Development of Alternative Fuels Technologies for Transportation

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide.

Keywords: alternative fuels, CNG (Compressed Natural Gas), LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles)

Procedia PDF Downloads 181
1745 Evaluating the Process of Biofuel Generation from Grass

Authors: Karan Bhandari

Abstract:

Almost quarter region of Indian terrain is covered by grasslands. Grass being a low maintenance perennial crop is in abundance. Farmers are well acquainted with its nature, yield and storage. The aim of this paper is to study and identify the applicability of grass as a source of bio fuel. Anaerobic break down is a well-recognized technology. This process is vital for harnessing bio fuel from grass. Grass is a lignocellulosic material which is fibrous and can readily cause problems with parts in motion. Further, it also has a tendency to float. This paper also deals with the ideal digester configuration for biogas generation from grass. Intensive analysis of the literature is studied on the optimum production of grass storage in accordance with bio digester specifications. Subsequent to this two different digester systems were designed, fabricated, analyzed. The first setup was a double stage wet continuous arrangement usually known as a Continuously Stirred Tank Reactor (CSTR). The next was a double stage, double phase system implementing Sequentially Fed Leach Beds using an Upflow Anaerobic Sludge Blanket (SLBR-UASB). The above methodologies were carried for the same feedstock acquired from the same field. Examination of grass silage was undertaken using Biomethane Potential values. The outcomes portrayed that the Continuously Stirred Tank Reactor system produced about 450 liters of methane per Kg of volatile solids, at a detention period of 48 days. The second method involving Leach Beds produced about 340 liters of methane per Kg of volatile solids with a detention period of 28 days. The results showcased that CSTR when designed exclusively for grass proved to be extremely efficient in methane production. The SLBR-UASB has significant potential to allow for lower detention times with significant levels of methane production. This technology has immense future for research and development in India in terms utilizing of grass crop as a non-conventional source of fuel.

Keywords: biomethane potential values, bio digester specifications, continuously stirred tank reactor, upflow anaerobic sludge blanket

Procedia PDF Downloads 246
1744 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties

Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm

Abstract:

Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.

Keywords: phase change material, microencapsulation, adhesive bonding, thermal management

Procedia PDF Downloads 72