Search results for: David Long
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6774

Search results for: David Long

5034 An Exploratory Study of Chinese Paper-Cut Art in Household Product Design

Authors: Ruining Wu, Na Song

Abstract:

Paper-cut, as one of the Chinese traditional folk decoration art, has become a unique visual aesthetic characteristics of the Chinese nation in the long-term evolution of cultural symbols. Chinese paper-cut art is the treasure-house for product design in natural resources. This paper first analyzed Chinese folk art of historical origin, cultural background, cultural values, aesthetic value, style features of Chinese paper cut art, then analyzed the design thought and design cases of paper-cut art application in different areas, such as clothing design, logo design and product design areas. Through the research of Chinese paper-cut art culture and design elements, this paper aims to build a household product design concept of Chinese traditional culture.

Keywords: paper-cut art, culture, household products, design

Procedia PDF Downloads 614
5033 A Blueprint for Responsible Launch of Small Satellites from a Debris Perspective

Authors: Jeroen Rotteveel, Zeger De Groot

Abstract:

The small satellite community is more and more aware of the need to start operating responsibly and sustainably in order to secure the use of outer space in the long run. On the technical side, many debris mitigation techniques have been investigated and demonstrated on board small satellites, showing that technically, a lot of things can be done to curb the growth of space debris and operate more responsible. However, in the absence of strict laws and constraints, one cannot help but wonder what the incentive is to incur significant costs (paying for debris mitigation systems and the launch mass of these systems) and to lose performance onboard resource limited small satellites (mass, volume, power)? Many small satellite developers are operating under tight budgets, either from their sponsors (in case of academic and research projects) or from their investors (in case of startups). As long as it is not mandatory to act more responsibly, we might need to consider the implementation of incentives to stimulate developers to accommodate deorbiting modules, etc. ISISPACE joined the NetZeroSpace initiative in 2021 with the aim to play its role in secure the use of low earth orbit for the next decades by facilitating more sustainable use of space. The company is in a good position as both a satellite builder, a rideshare launch provider, and a technology development company. ISISPACE operates under one of the stricter space laws in the world in terms of maximum orbital lifetime and has been active in various debris mitigation and debris removal in-orbit demonstration missions in the past 10 years. ISISPACE proposes to introduce together with launch partners and regulators an incentive scheme for CubeSat developers to baseline debris mitigation systems on board their CubeSats in such a way that is does not impose too many additional costs to the project. Much like incentives to switch to electric cars or install solar panels on your house, such an incentive can help to increase market uptake of behavior or solutions prior to legislation or bans of certain practices. This can be achieved by: Introducing an extended launch volume in CubeSat deployers to accommodate debris mitigation systems without compromising available payload space for the payload of the main mission Not charging the fee for the launch mass for the additional debris mitigation module Whenever possible, find ways to further co-fund the purchase price, or otherwise reduce the cost of flying debris mitigation modules onboard the CubeSats. The paper will outline the framework of such an incentive scheme and provides ISISPACE’s way forward to make this happen in the near future.

Keywords: netZerospace, cubesats, debris mitigation, small satellite community

Procedia PDF Downloads 161
5032 The Covid Pandemic at a Level III Trauma Center: Challenges in the Management of the Spine Trauma.

Authors: Joana PaScoa Pinheiro, David Goncalves Ferreira, Filipe Ramos, Joaquim Soares Do Brito, Samuel Martins, Marco Sarmento

Abstract:

Introduction: The SARS-CoV-2 (COVID-19) pandemic was identified in January 2020 in China, in the city of Wuhan. The increase in the number of cases over the following months was responsible for the restructuring of hospitals and departments in order to accommodate admissions related to COVID-19. Essential services, such as trauma, had to readapt to maintain their functionality and thus guarantee quick and safe access in case of an emergency. Objectives: This study describes the impact of COVID-19 on a Level III Trauma Center and particularly on the clinical management of hospitalized patients with spine injuries. Study Design & Methods: This is a retrospective cohort study whose results were obtained through the medical records of patients with spine injuries who underwent surgical intervention in the years 2019 and 2020 (period from March 1st to December 31st). A comparison between the two groups was made. In the study patients with injuries in the context of trauma were included who underwent surgery in the periods previously described. Patients hospitalized with a spine injury in a non-traumatic context and/or were not surgically treated were excluded. Results: In total, 137 patients underwent trauma spine surgery of which 71 in 2019 (51.8%) were without significant differences in intergroup comparisons. The most frequent injury mechanism in 2019 was motor vehicle crash (47.9%) compared to 2020 which was of a person falling from a height between 2-4 meters (37.9%). Cervical trauma was reported to be the most frequent spine injury in both years. There was a significant decrease in the need for intensive care in 2020, 51.4% vs 30.3%, p = .015 and the number of complications was also lower in 2020 (1.35% vs 0.98%), including the number of deaths, being the difference marginally significant. There were no significant differences regarding time for presentation to surgery or in the total days of hospitalization. Conclusions: The restructuring made in the trauma unit at a Level III Trauma Center in the context of the current COVID-19 pandemic was effective, with no significant differences between the years of 2019 vs 2020 when compared with the time for presentation to surgery or the number of days of hospitalization. It was also found that lockdown rules in 2020 were probably responsible for the decrease in the number of road traffic accidents, which justifies a significant decrease in the need for intensive care as well as in the number of complications in patients hospitalized in the context of spine trauma.

Keywords: trauma, spine, impact, covid-19

Procedia PDF Downloads 259
5031 Pre- and Post-Brexit Experiences of the Bulgarian Working Class Migrants: Qualitative and Quantitative Approaches

Authors: Mariyan Tomov

Abstract:

Bulgarian working class immigrants are increasingly concerned with UK’s recent immigration policies in the context of Brexit. The new ID system would exclude many people currently working in Britain and would break the usual immigrant travel patterns. Post-Brexit Britain would aim to repeal seasonal immigrants. Measures for keeping long-term and life-long immigrants have been implemented and migrants that aim to remain in Britain and establish a household there would be more privileged than temporary or seasonal workers. The results of such regulating mechanisms come at the expense of migrants’ longings for a ‘normal’ existence, especially for those coming from Central and Eastern Europe. Based on in-depth interviews with Bulgarian working class immigrants, the study found out that their major concerns following the decision of the UK to leave the EU are related with the freedom to travel, reside and work in the UK. Furthermore, many of the interviewed women are concerned that they could lose some of the EU's fundamental rights, such as maternity and protection of pregnant women from unlawful dismissal. The soar of commodity prices and university fees and the limited access to public services, healthcare and social benefits in the UK, are also subject to discussion in the paper. The most serious problem, according to the interview, is that the attitude towards Bulgarians and other immigrants in the UK is deteriorating. Both traditional and social media in the UK often portray the migrants negatively by claiming that they take British job positions while simultaneously abuse the welfare system. As a result, the Bulgarian migrants often face social exclusion, which might have negative influence on their health and welfare. In this sense, some of the interviewed stress on the fact that the most important changes after Brexit must take place in British society itself. The aim of the proposed study is to provide a better understanding of the Bulgarian migrants’ economic, health and sociocultural experience in the context of Brexit. Methodologically, the proposed paper leans on: 1. Analysing ethnographic materials dedicated to the pre- and post-migratory experiences of Bulgarian working class migrants, using SPSS. 2. Semi-structured interviews are conducted with more than 50 Bulgarian working class migrants [N > 50] in the UK, between 18 and 65 years. The communication with the interviewees was possible via Viber/Skype or face-to-face interaction. 3. The analysis is guided by theoretical frameworks. The paper has been developed within the framework of the research projects of the National Scientific Fund of Bulgaria: DCOST 01/25-20.02.2017 supporting COST Action CA16111 ‘International Ethnic and Immigrant Minorities Survey Data Network’.

Keywords: Bulgarian migrants in UK, economic experiences, sociocultural experiences, Brexit

Procedia PDF Downloads 133
5030 Going the Distance – Building Peer Support during a Time of Crisis

Authors: Lisa Gray, Henry Kronner, Tameca Harris-Jackson, Mimi Sodhi, Ruth Gerritsen-McKane, Donette Considine

Abstract:

The MSW Peer Mentorship Program (PMP) was developed as one of several approaches to foster student success. The key purposes of the PMP are to help new graduate students transition to a graduate program, facilitate relationship building between students, grow and sustain student satisfaction, and build a strong connection to the MSW program. This pilot program also serves as an additional source of support for students during the era of the Covid-19 pandemic. Further, the long-term goals of the program are to assist in student retention. Preliminary findings suggest that both mentors and mentees enrolled in PMP find the peer mentoring relationship to have a positive impact on their graduate learning experience.

Keywords: covid-19, mentorship, peer support, student success

Procedia PDF Downloads 225
5029 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 75
5028 Re-Invent Corporate Governance - Ethical Way

Authors: Talha Sareshwala

Abstract:

The purpose of this research paper is to help entrepreneurs build an environment of trust, transparency and accountability necessary for fostering long term investment, financial stability and business integrity and to guide future Entrepreneurs into a promising future. The study presents a broader review on Corporate Governance, starting from its definition and antecedents. This is the most important aspect of ethical business. In fact, the 3 main pillars of corporate governance are: Transparency; Accountability; Security. The combination of these 3 pillars in running a company successfully and forming solid professional relationships among its stakeholders, which includes key managerial employees and, most important, the shareholders This paper is sharing an experience how an entrepreneur can act as a catalyst while ensuring them that ethics and transparency do pay in business when followed in true spirit and action.

Keywords: business, entrepreneur, ethics, governance, transparency.

Procedia PDF Downloads 79
5027 Plasma Arc Burner for Pulverized Coal Combustion

Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava

Abstract:

Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.

Keywords: coal combustion, plasma arc, plasma torches, pulverized coal

Procedia PDF Downloads 163
5026 Wrapping–Decorative Movement of Time

Authors: Rudranil Das

Abstract:

Wrapping is a basic textile technique; it is having a great quality of decorative view. Since long back it has been embellishing life of people and their culture in different forms. It links cultures, beliefs, thoughts, technology, and above all, people. Through etymology we can study the movement of the word power of wrapping undoubtedly but in depth analyze it could provide many concepts of structural ability. Only in India, more than 105 different processes exist in the way of saree [a type of women attire] wrapping. Then many more other clothing we found in allover world which connects this technique and construction too. One of the main objectives of this study is to enrich wrapping explanation and come up with surfaces by this technique. The deliberate more fragile and stretchable structural framework makes it more appropriate in different users according to their necessity. Developments of design and technology could create new industry segment and generate a marginalized employment for the people too.

Keywords: concept, existence, philosophical attachment, technological advancement

Procedia PDF Downloads 233
5025 The Nexus between Renewable Energy, Urbanization, Industrialization and Economic Growth in Pakistan

Authors: Zubda Zia, Zainab Masood

Abstract:

This study has investigated the relationship between renewable energy, urbanization, industrialization, and economic growth in Pakistan, through the years 1990-2016. All the three explanatory variables play a pivotal role in their contribution to growth in any economy, especially a developing one such as Pakistan. Auto-regressive distributive lag (ARDL) model has been used to determine the co-integration and relationship between the variables. The empirical results indicate that there exists a positive and significant relationship between all the three variables and economic growth and that there is a stable, long-run relationship among them. Policy suggestions that incorporate the results include having a larger share of renewable energy in the energy sector, using urbanization as a means to remove the big city trend and move towards, smaller sustainable cities, etc.

Keywords: economic growth, energy crisis, industrialization, renewable energy, SGDs, urbanization

Procedia PDF Downloads 194
5024 Stilbenes as Sustainable Antimicrobial Compounds to Control Vitis Vinifera Diseases

Authors: David Taillis, Oussama Becissa, Julien Gabaston, Jean-Michel Merillon, Tristan Richard, Stephanie Cluzet

Abstract:

Nowadays, there is a strong pressure to reduce the phytosanitary inputs of synthetic chemistry in vineyards. It is, therefore, necessary to find viable alternatives in order to protect the vine against its major diseases. For this purpose, we suggest the use of a plant extract enriched in antimicrobial compounds. Being produced from vine trunks and roots, which are co-products of wine production, the extract produced is part of a circular economy. The antimicrobial molecules present in this plant material are polyphenols and, more particularly, stilbenes, which are derived from a common base, the resveratrol unit, and that are well known vine phytoalexins. The stilbenoids were extracted from trunks and roots (30/70, w/w) by a double extraction with ethyl acetate followed by enrichment by liquid-liquid extraction. The produced extract was characterized by UHPLC-MS, then its antimicrobial activities were tested on Plasmopara viticola and Botrytis cinerea in the laboratory and/or in greenhouse and in vineyard. The major compounds were purified, and their antimicrobial activity was evaluated on B. cinerea. Moreover, after its spraying, the effect of the stilbene extract on the plant defence status was evaluated by analysis of defence gene expression. UHPLC-MS analysis revealed that the extract contains 50% stilbenes with resveratrol, ε-viniferin and r-viniferin as major compounds. The extract showed antimicrobial activities on P. viticola with IC₅₀ and IC₁₀₀ respectively of 90 and 300 mg/L in the laboratory. In addition, it inhibited 40% of downy mildew development in greenhouse. However, probably because of the sensitivity of stilbenes to the environment, such as UV degradation, no activity has been observed in vineyard towards P. viticola development. For B. cinerea, the extract IC50 was 123 mg/L, with resveratrol and ε-viniferin being the most active stilbenes (IC₅₀ of 88 and 142 mg/L, respectively). The analysis of the expression of defence genes revealed that the extract can induce the expression of some defence genes 24, 48, and 72 hours after treatment, meaning that the extract has a defence-stimulating effect at least for the first three days after treatment. In conclusion, we produced a plant extract enriched in stilbenes with antimicrobial properties against two major grapevine pathogenic agents P. viticola and B. cinerea. In addition, we showed that this extract displayed eliciting activity of plant defences. This extract can therefore represent, after formulation development, a viable eco-friendly alternative for vineyard protection. Subsequently, the effect of the stilbenoid extract on primary metabolism will be evaluated by quantitative NMR.

Keywords: antimicrobial, bioprotection, grapevine, Plasmopara viticola, stilbene

Procedia PDF Downloads 225
5023 The Effects of Total Resistance Exercises Suspension Exercises Program on Physical Performance in Healthy Individuals

Authors: P. Cavlan, B. Kırmızıgil

Abstract:

Introduction: Each exercise in suspension exercises offer the use of gravity and body weight; and is thought to develop the equilibrium, flexibility and body stability necessary for daily life activities and sports, in addition to creating the correct functional force. Suspension exercises based on body weight focus the human body as an integrated system. Total Resistance Exercises (TRX) suspension training that physiotherapists, athletic health clinics, exercise centers of hospitals and chiropractic clinics now use for rehabilitation purposes. The purpose of this study is to investigate and compare the effects of TRX suspension exercises on physical performance in healthy individuals. Method: Healthy subjects divided into two groups; the study group and the control group with 40 individuals for each, between ages 20 to 45 with similar gender distributions. Study group had 2 sessions of suspension exercises per week for 8 weeks and control group had no exercises during this period. All the participants were given explosive strength, flexibility, strength and endurance tests before and after the 8 week period. The tests used for evaluation were respectively; standing long jump test and single leg (left and right) long jump tests, sit and reach test, sit up and back extension tests. Results: In the study group a statistically significant difference was found between prior- and final-tests in all evaluations, including explosive strength, flexibility, core strength and endurance of the group performing TRX exercises. These values were higher than the control groups’ values. The final test results were found to be statistically different between the study and control groups. Study group showed development in all values. Conclusions: In this study, which was conducted with the aim of investigating and comparing the effects of TRX suspension exercises on physical performance, the results of the prior-tests of both groups were similar. There was no significant difference between the prior and the final values in the control group. It was observed that in the study group, explosive strength, flexibility, strength, and endurance development was achieved after 8 weeks. According to these results, it was shown that TRX suspension exercise program improved explosive strength, flexibility, especially core strength and endurance; therefore the physical performance. Based on the results of our study, it was determined that the physical performance, an indispensable requirement of our life, was developed by the TRX suspension system. We concluded that TRX suspension exercises can be used to improve the explosive strength and flexibility in healthy individuals, as well as developing the muscle strength and endurance of the core region. The specific investigations could be done in this area so that programs that emphasize the TRX's physical performance features could be created.

Keywords: core strength, endurance, explosive strength, flexibility, physical performance, suspension exercises

Procedia PDF Downloads 173
5022 Sustainable Traditional Architecture and Urban Planning in Hot–Humid Climate of Iran

Authors: Farnaz Nazem

Abstract:

This paper concentrates on the sustainable traditional architecture and urban planning in hot-humid regions of Iran. In a vast country such as Iran with different climatic zones traditional builders have presented series of logical solutions for human comfort. The aim of this paper is to demonstrate traditional architecture in hot-humid climate of Iran as a sample of sustainable architecture. Iranian traditional architecture has been able to response to environmental problems for a long period of time. Its features are based on climatic factors, local construction materials of hot-humid regions and culture. This paper concludes that Iranian traditional architecture can be addressed as a sustainable architecture.

Keywords: hot-humid climate, Iran, sustainable traditional architecture, urban planning

Procedia PDF Downloads 613
5021 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 128
5020 The Potential Fresh Water Resources of Georgia and Sustainable Water Management

Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili

Abstract:

Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.

Keywords: GIS, management, rivers, water resources

Procedia PDF Downloads 375
5019 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 112
5018 A Comparative Study of Environmental, Social and Economic Cross-Border Cooperation in Post-Conflict Environments: The Israel-Jordan Border

Authors: Tamar Arieli

Abstract:

Cross-border cooperation has long been hailed as a means for stabilizing and normalizing relations between former enemies. Cooperation in problem-solving and realizing of local interests in post-conflict environments can indeed serve as a basis for developing dialogue and meaningful relations between neighbors across borders. Hence the potential for formerly sealed borders to serve as a basis for generating local and national perceptions of interdependence and as a buffer against the resume of conflict. Central questions which arise for policy-makers and third parties are how to facilitate cross-border cooperation and which areas of cooperation best serve to normalize post-conflict border regions. The Israel-Jordan border functions as a post-conflict border, in that it is a peaceful border since the 1994 Israel-Jordan peace treaty yet cross-border relations are defined but the highly securitized nature of the border region and the ongoing Arab-Israel regional conflict. This case study is based on long term qualitative research carried out in the border regions of both Israel and Jordan, which mapped and analyzed cross-border in a wide range of activities – social interactions sponsored by peace-facilitating NGOs, government sponsored agricultural cooperation, municipal initiated emergency planning in cross-border continuous urban settings, private cross-border business ventures and various environmental cooperative initiatives. These cooperative initiatives are evaluated through multiple interviews carried out with initiators and partners in cross-border cooperation as well as analysis of documentation, funding and media. These cooperative interactions are compared based on levels of cross-border local and official awareness and involvement as well as sustainability over time. This research identifies environmental cooperation as the most sustainable area of cross- border cooperation and as most conducive to generating perceptions of regional interdependence. This is a variation to the ‘New Middle East’ vision of business-based cooperation leading to conflict amelioration and regional stability. Environmental cooperation serving the public good rather than personal profit enjoys social legitimization even in the face of widespread anti-normalization sentiments common in the post-conflict environment. This insight is examined in light of philosophical and social aspects of the natural environment and its social perceptions. This research has theoretical implications for better understanding dynamics of cooperation and conflict, as well as practical ramifications for practitioners in border region policy and management.

Keywords: borders, cooperation, post-conflict, security

Procedia PDF Downloads 317
5017 The Principle of Transparency as a Tool to Potentiate Gender-Based Approaches in the World Trade Organization

Authors: Desiree Llaguno Cerezo, Elizabeth Valdes-Miranda Fernandez

Abstract:

Women have a critical role in sustaining the economy and in the development of trade. However, such a role has long been invisible due to orthodox conceptions that have ignored the gender variable in commercial analyses. Today, it is generally accepted that neither the economy nor business are gender-neutral and that the performance of these activities often impact negatively the lives of women. Women’s participation in trade, on equal terms as men, in any of the various possible roles -producer, wage earner, consumer, merchant, taxpayer- will not only favour the lives of women but also the performance of the economies in which they participate. Transparency, as a principle of the multilateral trading system, can play a significant role as a strategy for the empowerment of women.

Keywords: trade, human rights, gender equality, transparency, WTO, women workers, women's economic empowerment

Procedia PDF Downloads 161
5016 Financial Inclusion for Inclusive Growth in an Emerging Economy

Authors: Godwin Chigozie Okpara, William Chimee Nwaoha

Abstract:

The paper set out to stress on how financial inclusion index could be calculated and also investigated the impact of inclusive finance on inclusive growth in an emerging economy. In the light of these objectives, chi-wins method was used to calculate indexes of financial inclusion while co-integration and error correction model were used for evaluation of the impact of financial inclusion on inclusive growth. The result of the analysis revealed that financial inclusion while having a long-run relationship with GDP growth is an insignificant function of the growth of the economy. The speed of adjustment is correctly signed and significant. On the basis of these results, the researchers called for tireless efforts of government and banking sector in promoting financial inclusion in developing countries.

Keywords: chi-wins index, co-integration, error correction model, financial inclusion

Procedia PDF Downloads 658
5015 Catastrophic Health Expenditures: Evaluating the Effectiveness of Nepal's National Health Insurance Program Using Propensity Score Matching and Doubly Robust Methodology

Authors: Simrin Kafle, Ulrika Enemark

Abstract:

Catastrophic health expenditure (CHE) is a critical issue in low- and middle-income countries like Nepal, exacerbating financial hardship among vulnerable households. This study assesses the effectiveness of Nepal’s National Health Insurance Program (NHIP), launched in 2015, to reduce out-of-pocket (OOP) healthcare costs and mitigate CHE. Conducted in Pokhara Metropolitan City, the study used an analytical cross-sectional design, sampling 1276 households through a two-stage random sampling method. Data was collected via face-to-face interviews between May and October 2023. The analysis was conducted using SPSS version 29, incorporating propensity score matching to minimize biases and create comparable groups of enrolled and non-enrolled households in the NHIP. PSM helped reduce confounding effects by matching households with similar baseline characteristics. Additionally, a doubly robust methodology was employed, combining propensity score adjustment with regression modeling to enhance the reliability of the results. This comprehensive approach ensured a more accurate estimation of the impact of NHIP enrollment on CHE. Among the 1276 samples, 534 households (41.8%) were enrolled in NHIP. Of them, 84.3% of households renewed their insurance card, though some cited long waiting times, lack of medications, and complex procedures as barriers to renewal. Approximately 57.3% of households reported known diseases before enrollment, with 49.8% attending routine health check-ups in the past year. The primary motivation for enrollment was encouragement from insurance employees (50.2%). The data indicates that 12.5% of enrolled households experienced CHE versus 7.5% among non-enrolled. Enrollment into NHIP does not contribute to lower CHE (AOR: 1.98, 95% CI: 1.21-3.24). Key factors associated with increased CHE risk were presence of non-communicable diseases (NCDs) (AOR: 3.94, 95% CI: 2.10-7.39), acute illnesses/injuries (AOR: 6.70, 95% CI: 3.97-11.30), larger household size (AOR: 3.09, 95% CI: 1.81-5.28), and households below the poverty line (AOR: 5.82, 95% CI: 3.05-11.09). Other factors such as gender, education level, caste/ethnicity, presence of elderly members, and under-five children also showed varying associations with CHE, though not all were statistically significant. The study concludes that enrollment in the NHIP does not significantly reduce the risk of CHE. The reason for this could be inadequate coverage, where high-cost medicines, treatments, and transportation costs are not fully included in the insurance package, leading to significant out-of-pocket expenses. We also considered the long waiting time, lack of medicines, and complex procedures for the utilization of NHIP benefits, which might result in the underuse of covered services. Finally, gaps in enrollment and retention might leave certain households vulnerable to CHE despite the existence of NHIP. Key factors contributing to increased CHE include NCDs, acute illnesses, larger household sizes, and poverty. To improve the program’s effectiveness, it is recommended that NHIP benefits and coverage be expanded to better protect against high healthcare costs. Additionally, simplifying the renewal process, addressing long waiting times, and enhancing the availability of services could improve member satisfaction and retention. Targeted financial protection measures should be implemented for high-risk groups, and efforts should be made to increase awareness and encourage routine health check-ups to prevent severe health issues that contribute to CHE.

Keywords: catastrophic health expenditure, effectiveness, national health insurance program, Nepal

Procedia PDF Downloads 32
5014 Cessna Citation X Business Aircraft Stability Analysis Using Linear Fractional Representation LFRs Model

Authors: Yamina Boughari, Ruxandra Mihaela Botez, Florian Theel, Georges Ghazi

Abstract:

Clearance of flight control laws of a civil aircraft is a long and expensive process in the Aerospace industry. Thousands of flight combinations in terms of speeds, altitudes, gross weights, centers of gravity and angles of attack have to be investigated, and proved to be safe. Nonetheless, in this method, a worst flight condition can be easily missed, and its missing would lead to a critical situation. Definitively, it would be impossible to analyze a model because of the infinite number of cases contained within its flight envelope, that might require more time, and therefore more design cost. Therefore, in industry, the technique of the flight envelope mesh is commonly used. For each point of the flight envelope, the simulation of the associated model ensures the satisfaction or not of specifications. In order to perform fast, comprehensive and effective analysis, other varying parameters models were developed by incorporating variations, or uncertainties in the nominal models, known as Linear Fractional Representation LFR models; these LFR models were able to describe the aircraft dynamics by taking into account uncertainties over the flight envelope. In this paper, the LFRs models are developed using the speeds and altitudes as varying parameters; The LFR models were built using several flying conditions expressed in terms of speeds and altitudes. The use of such a method has gained a great interest by the aeronautical companies that have seen a promising future in the modeling, and particularly in the design and certification of control laws. In this research paper, we will focus on the Cessna Citation X open loop stability analysis. The data are provided by a Research Aircraft Flight Simulator of Level D, that corresponds to the highest level flight dynamics certification; this simulator was developed by CAE Inc. and its development was based on the requirements of research at the LARCASE laboratory. The acquisition of these data was used to develop a linear model of the airplane in its longitudinal and lateral motions, and was further used to create the LFR’s models for 12 XCG /weights conditions, and thus the whole flight envelope using a friendly Graphical User Interface developed during this study. Then, the LFR’s models are analyzed using Interval Analysis method based upon Lyapunov function, and also the ‘stability and robustness analysis’ toolbox. The results were presented under the form of graphs, thus they have offered good readability, and were easily exploitable. The weakness of this method stays in a relatively long calculation, equal to about four hours for the entire flight envelope.

Keywords: flight control clearance, LFR, stability analysis, robustness analysis

Procedia PDF Downloads 355
5013 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 145
5012 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 76
5011 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 71
5010 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials

Authors: Mohammad Nadeem, Haider Banka, R. Venugopal

Abstract:

Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.

Keywords: fine material, granulation, intelligent technique, modelling

Procedia PDF Downloads 378
5009 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption

Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda

Abstract:

The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.

Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming

Procedia PDF Downloads 92
5008 Building Resilience to El Nino Related Flood Events in Northern Peru Using a Structured Facilitation Approach to Interdisciplinary Problem Solving

Authors: Roger M. Wall, David G. Proverbs, Yamina Silva, Danny Scipion

Abstract:

This paper critically reviews the outcomes of a 4 day workshop focused on building resilience to El Niño related Flood Events in northern Perú. The workshop was run jointly by Birmingham City University (BCU) in partnership with Instituto Geofísico del Perú (IGP) and was hosted by the Universidad de Piura (UDEP). The event took place in August 2018 and was funded by the Newton-Paulet fund administered by the British Council. The workshop was a response to the severe flooding experienced in Piura during the El Niño event of March 2017 which damaged over 100,000 homes and destroyed much local infrastructure including around 100 bridges. El Niño is a recurrent event and there is concern that its frequency and intensity may change in the future as a consequence of climate change. A group of 40 early career researchers and practitioners from the UK and Perú were challenged with working together across disciplines to identify key cross-cutting themes and make recommendations for building resilience to similar future events. Key themes identified on day 1 of the workshop were governance; communities; risk information; river management; urban planning; health; and infrastructure. A field study visit took place on day 2 so that attendees could gain first-hand experience of affected and displaced communities. Each of the themes was then investigated in depth on day 3 by small interdisciplinary teams drawing on their own expertise, local knowledge and the experiences of the previous day’s field trip. Teams were responsible for developing frameworks for analysis of their chosen theme and presenting their findings to the whole group. At this point, teams worked together to develop links between the different themes so that an integrated approach could be developed and presented on day 4. This paper describes the approaches taken by each team and the way in which these were integrated to form an holistic picture of the whole system. The findings highlighted the importance of risk-related information and the need for strong governance structures to enforce planning regulations and development. The structured facilitation approach proved to be very effective and it is recommended that the process be repeated with a broader group of stakeholders from across the region.

Keywords: El Niño, integrated flood risk management, Perú, structured facilitation, systems approach, resilience

Procedia PDF Downloads 150
5007 The Environmental Challenges of Energy Generation and Usage in Nigeria

Authors: Aliyu Mohammed Lawal, Dahiru Ya'u Gital

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria are: Potential damage to the environment health by Co, Co2, Sox and Nox effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of Co2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: energy generation, environmental health, effluent gas emission, global warming, fossil fuel

Procedia PDF Downloads 463
5006 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 172
5005 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa

Authors: Gae Hee Song

Abstract:

This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.

Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability

Procedia PDF Downloads 130