Search results for: high resolution satellite image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23076

Search results for: high resolution satellite image

5556 Effects of a Simulated Power Cut in Automatic Milking Systems on Dairy Cows Heart Activity

Authors: Anja Gräff, Stefan Holzer, Manfred Höld, Jörn Stumpenhausen, Heinz Bernhardt

Abstract:

In view of the increasing quantity of 'green energy' from renewable raw materials and photovoltaic facilities, it is quite conceivable that power supply variations may occur, so that constantly working machines like automatic milking systems (AMS) may break down temporarily. The usage of farm-made energy is steadily increasing in order to keep energy costs as low as possible. As a result, power cuts are likely to happen more frequently. Current work in the framework of the project 'stable 4.0' focuses on possible stress reactions by simulating power cuts up to four hours in dairy farms. Based on heart activity it should be found out whether stress on dairy cows increases under these circumstances. In order to simulate a power cut, 12 random cows out of 2 herds were not admitted to the AMS for at least two hours on three consecutive days. The heart rates of the cows were measured and the collected data evaluated with HRV Program Kubios Version 2.1 on the basis of eight parameters (HR, RMSSD, pNN50, SD1, SD2, LF, HF and LF/HF). Furthermore, stress reactions were examined closely via video analysis, milk yield, ruminant activity, pedometer and measurements of cortisol metabolites. Concluding it turned out, that during the test only some animals were suffering from minor stress symptoms, when they tried to get into the AMS at their regular milking time, but couldn´t be milked because the system was manipulated. However, the stress level during a regular “time-dependent milking rejection” was just as high. So the study comes to the conclusion, that the low psychological stress level in the case of a 2-4 hours failure of an AMS does not have any impact on animal welfare and health.

Keywords: dairy cow, heart activity, power cut, stable 4.0

Procedia PDF Downloads 311
5555 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: piezoelectric stack, linear motor, rigid clamping, elliptical trajectory

Procedia PDF Downloads 153
5554 Spatial and Geostatistical Analysis of Surficial Soils of the Contiguous United States

Authors: Rachel Hetherington, Chad Deering, Ann Maclean, Snehamoy Chatterjee

Abstract:

The U.S. Geological Survey conducted a soil survey and subsequent mineralogical and geochemical analyses of over 4800 samples taken across the contiguous United States between the years 2007 and 2013. At each location, samples were taken from the top 5 cm, the A-horizon, and the C-horizon. Many studies have looked at the correlation between the mineralogical and geochemical content of soils and influencing factors such as parent lithology, climate, soil type, and age, but it seems little has been done in relation to quantifying and assessing the correlation between elements in the soil on a national scale. GIS was used for the mapping and multivariate interpolation of over 40 major and trace elements for surficial soils (0-5 cm depth). Qualitative analysis of the spatial distribution across the U.S. shows distinct patterns amongst elements both within the same periodic groups and within different periodic groups, and therefore with different behavioural characteristics. Results show the emergence of 4 main patterns of high concentration areas: vertically along the west coast, a C-shape formed through the states around Utah and northern Arizona, a V-shape through the Midwest and connecting to the Appalachians, and along the Appalachians. The Band Collection Statistics tool in GIS was used to quantitatively analyse the geochemical raster datasets and calculate a correlation matrix. Patterns emerged, which were not identified in qualitative analysis, many of which are also amongst elements with very different characteristics. Preliminary results show 41 element pairings with a strong positive correlation ( ≥ 0.75). Both qualitative and quantitative analyses on this scale could increase knowledge on the relationships between element distribution and behaviour in surficial soils of the U.S.

Keywords: correlation matrix, geochemical analyses, spatial distribution of elements, surficial soils

Procedia PDF Downloads 126
5553 Students' Perceptions of Assessment and Feedback in Higher Education

Authors: Jonathan Glazzard

Abstract:

National student satisfaction data in England demonstrate that undergraduate students are less satisfied overall with assessment and feedback than other aspects of their higher education courses. Given that research findings suggest that high-quality feedback is a critical factor associated with academic achievement, it is important that feedback enables students to demonstrate improved academic achievement in their subsequent assessments. Given the growing importance of staff-student partnerships in higher education, this research examined students’ perceptions of assessment and feedback in one UK university. Students’ perceptions were elicited through the use of a university-wide survey which was completed by undergraduate students. In addition, three focus groups were used to provide qualitative student perception data across the three university Facilities. The data indicate that whilst students valued detailed feedback on their work, less detailed feedback could be compensated for by the development of pre-assessment literacy skills which are front-loaded into courses. Assessment literacy skills valued by students included the use of clear assessment criteria and assignment briefings which enabled students to fully understand the assessment task. Additionally, students valued assessment literacy pre-assessment tasks which enabled them to understand the standards which they were expected to achieve. Students valued opportunities for self and peer assessment prior to the final assessment and formative assessment feedback which matched the summative assessment feedback. Students also valued dialogic face-to-face feedback after receiving written feedback Above all, students valued feedback which was particular to their work and which gave recognition for the effort they had put into completing specific assessments. The data indicate that there is a need for higher education lecturers to receive systematic training in assessment and feedback which provides a comprehensive grounding in pre-assessment literacy skills.

Keywords: formative assessment, summative assessment, feedback, marking

Procedia PDF Downloads 322
5552 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species

Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu

Abstract:

Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.

Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species

Procedia PDF Downloads 362
5551 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis

Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas

Abstract:

Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.

Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux

Procedia PDF Downloads 135
5550 Correlation Between Diastolic Function and Lower GLS in Hypertensive Patients

Authors: A. Kherraf, S. Ouarrak, L. Azzouzi, R. Habbal

Abstract:

Introduction: Preserved LVEF heart failure is an important cause of mortality and morbidity in hypertensive patients. A strong correlation between impaired diastolic function and longitudinal systolic dysfunction. could have several explanations, first, the diastole is an energy dependent process, especially during its first phase, it also includes active systolic components during the phase of iso volumetric relaxation, in addition, the impairment of the intrinsic myocytic function is part of hypertensive pathology as evidenced by recent studies. METHODS AND MATERIALS: This work consists of performing in a series of 333 hypertensive patients (aged 25 to 75 years) a complete echocardiographic study, including LVEF by Simpson biplane method, the calculation of the indexed left ventricular mass, the analysis of the diastolic function, and finally, the study of the longitudinal deformation of the LV by the technique of speckletracking (calculation of the GLS). Patients with secondary hypertension, leaky or stenosing valve disease, arrhythmia, and a history of coronary insufficiency were excluded from this study. RESULTS: Of the 333 hypertensive patients, 225 patients (67.5%) had impaired diastolic function, of which 60 patients (18%) had high filling pressures. 49.39% had echocardigraphic HVG, Almost all of these patients (60 patients) had low GLS. There is a statistically very significant relationship between lower GLS and increased left ventricular filling pressures in hypertensive patients. These results suggest that increased filling pressures are closely associated with atrioventricular interaction in patients with hypertension, with a strong correlation with impairment of longitudinal systolic function and diastolic function CONCLUSION: Overall, a linear relationship is established between increased left ventricular mass, diastolic dysfunction, and longitudinal LV systolic dysfunction

Keywords: hypertension, diastolic function, left ventricle, heart failure

Procedia PDF Downloads 126
5549 Designing Dibenzosilole and Methyl Carbazole Based Donor Materials with Favourable Photovoltaic Parameters for Bulk Heterojunction Organic Solar Cells

Authors: J. Iqbal, Z. Zara

Abstract:

Five new Acceptor-Donor-Acceptor (A-D-A) type small donor molecules (M1-M5) namely; dimethyl cyanoacetate terthiophene di(methylthiophene) dibenzosilole (DMCAO3TBS) (M1), dimelononitrile terthiophene di(methylthiophene) dibenzosilole (DMCNTBS) (M2), dimethyl rhodanine terthiophene di(methylthiophene) dibenzosilole (DMRTBS) (M3), dimelanonitrile terthiophene di(methylthiophene) methyl fluorene (DMCNTF) (M4) and dimethyl rhodanine terthiophene di(methylthiophene) methyl fluorine (DMRTF) (M5) were designed and theoretically explored their electronic, photophysical and geometrical properties via DFT best functional MPW1PW91/6-311G (d,p) level of theory with respect to reference molecules dioctyl cyanoacetate terthiophene di(octylthiophene) dioctylfluorene (DCAO3TF) (Ra) and dioctyl cyanoacetate terthiophene di(octylthiophene) octylcarbazole (DCAO3TCz) (Rb). Among the designed donor molecules (M1-M5), M2 and M4 represented lowest band gap value (2.480 eV and 2.47 eV) with distinctive broad absorption peak at 598 and 601 nm in chloroform due to the presence of stronger electron withdrawing acceptor molecule which pulls the λmax value towards red shift. Theoretically estimated reorganization energies of these molecules recommended excellent property of charge mobility. The designed donor molecules M1-M5, demonstrated lower λe value with reference to their λh, showing that these molecules could be ideal candidates for the transfer of electron with and M2, M4 are best among these as champion molecules with having lowest λe (0.006 D and 0.005 D respectively). Additionally, the Voc of M2 and M4 are 2.01 eV and 1.85 eV respectively with reference respect to PCBM. Thus, our present investigation suggested that our designed donor molecules (M1-M5) are suitable candidates for the solar cell and proposed for high and better performance for the small molecule based solar cell devices.

Keywords: dibenzisilol, donor materials, hole mobility, organic solar cells

Procedia PDF Downloads 203
5548 A Linguistic Product of K-Pop: A Corpus-Based Study on the Korean-Originated Chinese Neologism Simida

Authors: Hui Shi

Abstract:

This article examines the online popularity of Chinese neologism simida, which is a loanword derived from Korean declarative sentence-final suffix seumnida. Facilitated by corpus data obtained from Weibo, the Chinese counterpart of Twitter, this study analyzes the morphological and syntactical processes behind simida’s coinage, as well as the causes of its prevalence on Chinese social media. The findings show that simida is used by Weibo bloggers in two manners: (1) as an alternative word of 'Korea' and 'Korean'; (2) as a redundant sentence-final particle which adds a Korean-like speech style to a statement. Additionally, Weibo user profile analysis further reveals demographical distribution patterns concerning this neologism and highlights young Weibo users in the third-tier cities as the leading adopters of simida. These results are accounted for under the theoretical framework of social indexicality, especially how variations generate style in the indexical field. This article argues that the creation of such an ethnically-targeted neologism is a linguistic demonstration of Chinese netizen’s two-sided attitudes toward the previously heated Korean-wave. The exotic suffix seumnida is borrowed to Chinese as simida due to its high-frequency in Korean cultural exports. Therefore, it gradually becomes a replacement of Korea-related lexical items due to markedness, regardless of semantic prosody. Its innovative implantation to Chinese syntax, on the other hand, reflects Chinese netizens’ active manipulation of language for their online identity building. This study has implications for research on the linguistic construction of identity and style and lays the groundwork for linguistic creativity in the Chinese new media.

Keywords: Chinese neologism, loanword, humor, new media

Procedia PDF Downloads 174
5547 Culture, Consumption, and Markets of Aesthetics: A10-Year Literature Review

Authors: Chin-Hsiang Chu

Abstract:

This article review the literature in the field among the marketing and aesthetics, the current market and customer-oriented product sales, and gradually from the practical functionality, transformed into the visual appearance of the concept note and the importance of marketing experience substance 'economic Aesthetics' trend. How to introduce the concept of aesthetic and differentiate products have become an important content of marketing management in for an organization in marketing.In previous studies,marketing aesthetic related researches are rare.Therefore, the purpose of this study to explore the connection between aesthetics and marketing of the market economy, and aggregated content through literature review, trying to find related research implications for the management of marketing aesthetics, market-oriented and customer value and development of the product. In this study, the problem statement and background, the development of the theory of evolution, as well as methods and results of discovery stage, literature review was conducted to explore. The results found: (1) Study of Aesthetics will help deepen the shopping environment and service environment commonly understood. (2) the perceived value of products imported aesthetic, consumer willingness to buy, and even premium products will be more attractive. (3) marketing personnel for general marketing management with a high degree of aesthetic identity. (4) management in marketing aesthetics connotation, aesthetic characteristics of five elements is greatly valued by the real-time, complex, specificity, attract sexual and richness. (5) allows consumers to experience through the process due to stimulate the senses, the mind and thinking with the corporate brand or have a deeper link. Results of this study can be used as business in a competitive market, new product development and design of the guide.

Keywords: marketing aesthetics, aesthetics economic, aesthetic, experiential marketing

Procedia PDF Downloads 258
5546 A Content Analysis of ‘Junk Food’ Content in Children’s TV Programs: A Comparison of UK Broadcast TV and Video-On-Demand Services

Authors: Alexander B. Barker, Megan Parkin, Shreesh Sinha, Emma Wilson, Rachael L. Murray

Abstract:

Objectives: Exposure to HFSS imagery is associated with consumption of foods high in fat, sugar, or salt (HFSS), and subsequently obesity, among young people. We report and compare the results of two content analyses, one of two popular terrestrial children’s television channels in the UK and the other of a selection of children’s programs available on video-on-demand (VOD) streaming sites. Design: Content analysis of three days’ worth of programs (including advertisements) on two popular children’s television channels broadcast on UK television (CBeebies and Milkshake) as well as a sample of 40 highest-rated children’s programs available on the VOD platforms, Netflix and Amazon Prime, using 1-minute interval coding. Setting: United Kingdom, Participants: None. Results: HFSS content was seen in 181 broadcasts (36%) and in 417 intervals (13%) on terrestrial television, ‘Milkshake’ had a significantly higher proportion of programs/adverts which contained HFSS content than ‘CBeebies’. In VOD platforms, HFSS content was seen in 82 episodes (72% of the total number of episodes), across 459 intervals (19% of the total number of intervals), with no significant difference in the proportion of programs containing HFSS content between Netflix and Amazon Prime. Conclusions: This study demonstrates that HFSS content is common in both popular UK children’s television channels and children's programs on VOD services. Since previous research has shown that HFSS content in the media has an effect on HFSS consumption, children’s television programs broadcast either on TV or VOD services are likely having an effect on HFSS consumption in children and legislative opportunities to prevent this exposure are being missed.

Keywords: public health, epidemiology, obesity, content analysis

Procedia PDF Downloads 187
5545 Synthesis and Characterization of Pure and Doped Li7La3Zr2O12 Li-Ion Conducting Solid Electrolyte for Lithium Batteries

Authors: Shari Ann S. Botin, Ruziel Larmae T. Gimpaya, Rembrant Rockwell Gamboa, Rinlee Butch M. Cervera

Abstract:

In recent years, demand for the use of solid electrolytes as alternatives to liquid electrolytes has increased due to recurring battery safety and stability issues, in addition to an increase in energy density requirement which can be made possible by using solid electrolytes. Among the solid electrolyte systems, Li7La3Zr2O12 (LLZ) is one of the most promising as it exhibits good chemical stability against Li metal and has a relatively high ionic conductivity. In this study, pure and doped LLZ were synthesized via conventional solid state reaction. The precursor chemicals (such as LiOH, La2O3, Ga2O3 and ZrO2) were ground and then calcined at 900 °C, pressed into pellets and finally sintered at 1000 °C to 1200 °C. The microstructure and ionic conductivity of the obtained samples have been investigated. Results show that for pure LLZ, sintering at lower temperature (1000 °C) produced tetragonal LLZ while sintering at higher temperatures (≥ 1150 °C) produced cubic LLZ based from the XRD results. However, doping with Ga produces an easier formation of LLZ with cubic structure at lower sintering duration. On the other hand, the lithium conductivity of the samples was investigated using electrochemical impedance spectroscopy at room temperature. Among the obtained samples, Ga-doped LLZ sintered at 1150 °C obtained the highest ionic conductivity reaching to about 1x10⁻⁴ S/cm at room temperature. In addition, fabrication and initial investigation of an all-solid state Lithium Battery using the synthesized LLZ sample with the use of commercial cathode materials have been investigated.

Keywords: doped LLZ, lithium-ion battery, pure LLZ, solid electrolytes

Procedia PDF Downloads 263
5544 Theoretical Investigations and Simulation of Electromagnetic Ion Cyclotron Waves in the Earth’s Magnetosphere Through Magnetospheric Multiscale Mission

Authors: A. A. Abid

Abstract:

Wave-particle interactions are considered to be the paramount in the transmission of energy in collisionless space plasmas, where electromagnetic fields confined the charged particles movement. One of the distinct features of energy transfer in collisionless plasma is wave-particle interaction which is ubiquitous in space plasmas. The three essential populations of the inner magnetosphere are cold plasmaspheric plasmas, ring-currents, and radiation belts high energy particles. The transition region amid such populations initiates wave-particle interactions among distinct plasmas and the wave mode perceived in the magnetosphere is the electromagnetic ion cyclotron (EMIC) wave. These waves can interact with numerous particle species resonantly, accompanied by plasma particle heating is still in debate. In this work we paid particular attention to how EMIC waves impact plasma species, specifically how they affect the heating of electrons and ions during storm and substorm in the Magnetosphere. Using Magnetospheric Multiscale (MMS) mission and electromagnetic hybrid simulation, this project will investigate the energy transfer mechanism (e.g., Landau interactions, bounce resonance interaction, cyclotron resonance interaction, etc.) between EMIC waves and cold-warm plasma populations. Other features such as the production of EMIC waves and the importance of cold plasma particles in EMIC wave-particle interactions will also be worth exploring. Wave particle interactions, electromagnetic hybrid simulation, electromagnetic ion cyclotron (EMIC) waves, Magnetospheric Multiscale (MMS) mission, space plasmas, inner magnetosphere

Keywords: MMS, magnetosphere, wave particle interraction, non-maxwellian distribution

Procedia PDF Downloads 62
5543 The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus

Authors: Mustafa Dagbasi, Olusola Bamisile, Adii Chinedum

Abstract:

The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity.

Keywords: solar power, photovoltaic plant, parabolic trough plant, techno-economic analysis

Procedia PDF Downloads 283
5542 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform

Authors: Temidayo Otunniyi

Abstract:

This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.

Keywords: software defined radio, channelization, critical sample rate, over-sample rate

Procedia PDF Downloads 148
5541 Quantitative Proteome Analysis and Bioactivity Testing of New Zealand Honeybee Venom

Authors: Maryam Ghamsari, Mitchell Nye-Wood, Kelvin Wang, Angela Juhasz, Michelle Colgrave, Don Otter, Jun Lu, Nazimah Hamid, Thao T. Le

Abstract:

Bee venom, a complex mixture of peptides, proteins, enzymes, and other bioactive compounds, has been widely studied for its therapeutic application. This study investigated the proteins present in New Zealand (NZ) honeybee venom (BV) using bottom-up proteomics. Two sample digestion techniques, in-solution digestion and filter-aided sample preparation (FASP), were employed to obtain the optimal method for protein digestion. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH–MS) analysis was conducted to quantify the protein compositions of NZ BV and investigate variations in collection years. Our results revealed high protein content (158.12 µg/mL), with the FASP method yielding a larger number of identified proteins (125) than in-solution digestion (95). SWATH–MS indicated melittin and phospholipase A2 as the most abundant proteins. Significant variations in protein compositions across samples from different years (2018, 2019, 2021) were observed, with implications for venom's bioactivity. In vitro testing demonstrated immunomodulatory and antioxidant activities, with a viable range for cell growth established at 1.5-5 µg/mL. The study underscores the value of proteomic tools in characterizing bioactive compounds in bee venom, paving the way for deeper exploration into their therapeutic potentials. Further research is needed to fractionate the venom and elucidate the mechanisms of action for the identified bioactive components.

Keywords: honeybee venom, proteomics, bioactivity, fractionation, swath-ms, melittin, phospholipase a2, new zealand, immunomodulatory, antioxidant

Procedia PDF Downloads 40
5540 The Sensitivity of Electrical Geophysical Methods for Mapping Salt Stores within the Soil Profile

Authors: Fathi Ali Swaid

Abstract:

Soil salinization is one of the most hazardous phenomenons accelerating the land degradation processes. It either occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth and productivity leading land degradation ultimately. Thus, it is important to monitor and map soil salinity at an early stage to enact effective soil reclamation program that helps lessen or prevent future increase in soil salinity. Geophysical method has outperformed the traditional method for assessing soil salinity offering more informative and professional rapid assessment techniques for monitoring and mapping soil salinity. Soil sampling, EM38 and 2D conductivity imaging have been evaluated for their ability to delineate and map the level of salinity variations at Second Ponds Creek. The three methods have shown that the subsoil in the study area is saline. Salt variations were successfully observed under either method. However, EM38 reading and 2D inversion data show a clear spatial structure comparing to EC1:5 of soil samples in spite of that all soil samples, EM38 and 2D imaging were collected from the same location. Because EM38 readings and 2D imaging data are a weighted average of electrical soil conductance, it is more representative of soil properties than the soil samples method. The mapping of subsurface soil at the study area has been successful and the resistivity imaging has proven to be an advantage. The soil salinity analysis (EC1:5) correspond well to the true resistivity bringing together a good result of soil salinity. Soil salinity clearly indicated by previous investigation EM38 have been confirmed by the interpretation of the true resistivity at study area.

Keywords: 2D conductivity imaging, EM38 readings, soil salinization, true resistivity, urban salinity

Procedia PDF Downloads 376
5539 Seroprevalence of Bovine Brucellosis and its Public Health Significance in Selected Sites of Central High Land of Ethiopia

Authors: Temesgen Kassa Getahun, Gezahegn Mamo, Beksisa Urge

Abstract:

A cross-sectional study was conducted from December 2019 to May 2020 with the aim of determining the seroprevalence of brucellosis in dairy cows and their owners in the central highland of Oromia, Ethiopia. A total of 352 blood samples from dairy cattle, 149 from animal owners, and 17 from farm workers were collected and initially screened using the Rose Bengal Plate test and confirmed by the Complement Fixation test. Overall seroprevalence was 0.6% (95% CI: 0.0016–0.0209) in bovines and 1.2% (95% CI: 0.0032–0.0427) in humans. Market-based stock replacement (OR=16.55, p=0.002), breeding by artificial insemination (OR=7.58, p=0.05), and parturition pen (OR = 11.511, p=0.027) were found to be significantly associated with the seropositivity for Brucella infection in dairy cattle. Human housing (OR=1.8, p=0.002), contact with an aborted fetus (OR=21.19, p=0.017), drinking raw milk from non-aborted (OR=24.99, p=0.012), aborted (OR=5.72, p=0.019) and retained fetal membrane (OR=4.22, p=0.029) cows had a significant influence on human brucellosis. A structured interview question was administered to 284 respondents. Accordingly, most respondents had no knowledge of brucellosis (93.3%), and in contrast, 90% of them consumed raw milk. In conclusion, the present seroprevalence study revealed that brucellosis was low among dairy cattle and exposed individuals in the study areas. However, since there were no control strategies implemented in the study areas, there is a potential risk of transmission of brucellosis in dairy cattle and the exposed human population in the study areas. Implementation of a test and slaughter strategy with compensation to farmers is recommended, while in the case of human brucellosis, continuous social training and implementing one health approach framework must be applied.

Keywords: abortion, bovine brucellosis, human brucellosis, risk factors, seroprevalence

Procedia PDF Downloads 106
5538 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material

Authors: Ghazi R. Reda Mahmoud Reda

Abstract:

Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.

Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption

Procedia PDF Downloads 363
5537 Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant

Authors: S. Mokhtar, R. Ibrahim, K. Abdan, A. Rashidi

Abstract:

The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations.

Keywords: biocomposite, natural reinforce fiber, smart farming, vertical farming

Procedia PDF Downloads 165
5536 Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum

Authors: Luciana C. Ramos, Leandro J. Sousa, Antônio Ferreira da Silva, Valéria Gomes Oliveira Falcão, Suzana T. Cunha Lima

Abstract:

The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of Phaeodactylum tricornutum. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m-2s-1, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae.

Keywords: biomass, diatom, flocculation, microalgae

Procedia PDF Downloads 330
5535 In-Vitro Dextran Synthesis and Characterization of an Intracellular Glucosyltransferase from Leuconostoc Mesenteroides AA1

Authors: Afsheen Aman, Shah Ali Ul Qader

Abstract:

Dextransucrase [EC 2.4.1.5] is a glucosyltransferase that catalysis the biosynthesis of a natural biopolymer called dextran. It can catalyze the transfer of D-glucopyranosyl residues from sucrose to the main chain of dextran. This unique biopolymer has multiple applications in several industries and the key utilization of dextran lies on its molecular weight and the type of branching. Extracellular dextransucrase from Leuconostoc mesenteroides is most extensively studied and characterized. Limited data is available regarding cell-bound or intracellular dextransucrase and on the characterization of dextran produced by in-vitro reaction of intracellular dextransucrase. L. mesenteroides AA1 is reported to produce extracellular dextransucrase that catalyzes biosynthesis of a high molecular weight dextran with only α-(1→6) linkage. Current study deals with the characterization of an intracellular dextransucrase and in vitro biosynthesis of low molecular weight dextran from L. mesenteroides AA1. Intracellular dextransucrase was extracted from cytoplasm and purified to homogeneity for characterization. Kinetic constants, molecular weight and N-terminal sequence analysis of intracellular dextransucrase reveal unique variation with previously reported extracellular dextransucrase from the same strain. In vitro synthesized biopolymer was characterized using NMR spectroscopic techniques. Intracellular dextransucrase exhibited Vmax and Km values of 130.8 DSU ml-1 hr-1 and 221.3 mM, respectively. Optimum catalytic activity was detected at 35°C in 0.15 M citrate phosphate buffer (pH-5.5) in 05 minutes. Molecular mass of purified intracellular dextransucrase is approximately 220.0 kDa on SDS-PAGE. N-terminal sequence of the intracellular enzyme is: GLPGYFGVN that showed no homology with previously reported sequence for the extracellular dextransucrase. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions and this biopolymer can be hydrolyzed into different molecular weight fractions for various applications.

Keywords: characterization, dextran, dextransucrase, leuconostoc mesenteroides

Procedia PDF Downloads 396
5534 Synergistic Effect of Doxorubicin-Loaded Silver Nanoparticles – Polymeric Conjugates on Breast Cancer Cells

Authors: Nancy M. El-Baz, Laila Ziko, Rania Siam, Wael Mamdouh

Abstract:

Cancer is one of the most devastating diseases, and has over than 10 million new cases annually worldwide. Despite the effectiveness of chemotherapeutic agents, their systemic toxicity and non-selective anticancer actions represent the main obstacles facing cancer curability. Due to the effective enhanced permeability and retention (EPR) effect of nanomaterials, nanoparticles (NPs) have been used as drug nanocarriers providing targeted cancer drug delivery systems. In addition, several inorganic nanoparticles such as silver (AgNPs) nanoparticles demonstrated a potent anticancer activity against different cancers. The present study aimed at formulating core-shell inorganic NPs-based combinatorial therapy based on combining the anticancer activity of AgNPs along with doxorubicin (DOX) and evaluating their cytotoxicity on MCF-7 breast cancer cells. These inorganic NPs-based combinatorial therapies were designed to (i) Target and kill cancer cells with high selectivity, (ii) Have an improved efficacy/toxicity balance, and (iii) Have an enhanced therapeutic index when compared to the original non-modified DOX with much lower dosage The in-vitro cytotoxicity studies demonstrated that the NPs-based combinatorial therapy achieved the same efficacy of non-modified DOX on breast cancer cell line, but with 96% reduced dose. Such reduction in DOX dose revealed that the combination between DOX and NPs possess a synergic anticancer activity against breast cancer. We believe that this is the first report on a synergic anticancer effect at very low dose of DOX against MCF-7 cells. Future studies on NPs-based combinatorial therapy may aid in formulating novel and significantly more effective cancer therapeutics.

Keywords: nanoparticles-based combinatorial therapy, silver nanoparticles, doxorubicin, breast cancer

Procedia PDF Downloads 437
5533 Climate Change Effects and Cocoa Farmers Coping Strategies in Ilaro Local Government Area of Ogun State, Nigeria

Authors: Irene Oluwatosin Uwabor

Abstract:

Climate change is a global phenomenon which affects the environment and undermines agricultural activities, in particular, cocoa production in Nigeria. This study, therefore, assessed the farmers ‘coping strategies to climate change effects in Ilaro Local Government Area of Ogun State, Nigeria. A simple random sampling technique was used to select twenty-five cocoa farmers from each of the selected six wards to make up 150 cocoa farmers as sample size for this study. Descriptive statistics and chi-square analysis were used for the data analysis. The results showed that the average age of the respondents was 43.8 years and male dominated (80.00%) cocoa production. Most of the respondents had some level of formal education (93.4%). The mean of household and year of experience in cocoa farming were eight people and 11.6 years respectively. Family and Hired labour (41.3%) was the common source of labour to the respondents and majority (86.0%) of the respondents were aware of climate change. The study concluded that respondents experienced low yield and high rate of deformed beans in the pods due to climate change. The adjustment strategies used were planting of diseases and pest resistant cocoa varieties, using of heavy mulching, diversification into other non- agricultural income generating activities and tree crops cultivation to provide shade. Also, significant relationships existed between personal characteristics (χ²= 62.24, df = 6, p = 0.00), adjustment strategies (χ²= 103.1, df = 4, p = 0.00) and effect of climate change. It is hereby recommend that extension service providers should intensify more effort and advocating for improved agronomic practices to increase cocoa productivity in the study area.

Keywords: cocoa farmers, coping strategies, climate change, ilaro

Procedia PDF Downloads 211
5532 Physics-Informed Convolutional Neural Networks for Reservoir Simulation

Authors: Jiangxia Han, Liang Xue, Keda Chen

Abstract:

Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.

Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation

Procedia PDF Downloads 144
5531 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters

Authors: Komal Kumar, Sreedevi Upadhyayula

Abstract:

In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.

Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester

Procedia PDF Downloads 251
5530 Optimization and Energy Management of Hybrid Standalone Energy System

Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif

Abstract:

Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.

Keywords: energy management, hybrid system, renewable energy, remote area, optimization

Procedia PDF Downloads 199
5529 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management

Procedia PDF Downloads 239
5528 ALEF: An Enhanced Approach to Arabic-English Bilingual Translation

Authors: Abdul Muqsit Abbasi, Ibrahim Chhipa, Asad Anwer, Saad Farooq, Hassan Berry, Sonu Kumar, Sundar Ali, Muhammad Owais Mahmood, Areeb Ur Rehman, Bahram Baloch

Abstract:

Accurate translation between structurally diverse languages, such as Arabic and English, presents a critical challenge in natural language processing due to significant linguistic and cultural differences. This paper investigates the effectiveness of Facebook’s mBART model, fine-tuned specifically for sequence-tosequence (seq2seq) translation tasks between Arabic and English, and enhanced through advanced refinement techniques. Our approach leverages the Alef Dataset, a meticulously curated parallel corpus spanning various domains to capture the linguistic richness, nuances, and contextual accuracy essential for high-quality translation. We further refine the model’s output using advanced language models such as GPT-3.5 and GPT-4, which improve fluency, coherence, and correct grammatical errors in translated texts. The fine-tuned model demonstrates substantial improvements, achieving a BLEU score of 38.97, METEOR score of 58.11, and TER score of 56.33, surpassing widely used systems such as Google Translate. These results underscore the potential of mBART, combined with refinement strategies, to bridge the translation gap between Arabic and English, providing a reliable, context-aware machine translation solution that is robust across diverse linguistic contexts.

Keywords: natural language processing, machine translation, fine-tuning, Arabic-English translation, transformer models, seq2seq translation, translation evaluation metrics, cross-linguistic communication

Procedia PDF Downloads 16
5527 Fabrication of Drug-Loaded Halloysite Nanotubes Containing Sodium Alginate/Gelatin Composite Scaffolds

Authors: Masoumeh Haghbin Nazarpak, Hamidreza Tolabi, Aryan Ekhlasi

Abstract:

Bone defects are mentioned as one of the most challenging clinical conditions, affecting millions of people each year. A fracture, osteoporosis, tumor, or infection usually causes these defects. At present, autologous and allogeneic grafts are used to correct bone defects, but these grafts have some difficulties, such as limited access, infection, disease transmission, and immune rejection. Bone tissue engineering is considered a new strategy for repairing bone defects. However, problems with scaffolds’ design with unique structures limit their clinical applications. In addition, numerous in-vitro studies have been performed on the behavior of bone cells in two-dimensional environments. Still, cells grow in physiological situations in the human body in a three-dimensional environment. As a result, the controlled design of porous structures with high structural complexity and providing the necessary flexibility to meet specific needs in bone tissue repair is beneficial. For this purpose, a three-dimensional composite scaffold based on gelatin and sodium alginate hydrogels is used in this research. In addition, the antibacterial drug-loaded halloysite nanotubes were introduced into the hydrogel scaffold structure to provide a suitable substrate for controlled drug release. The presence of halloysite nanotubes improved hydrogel’s properties, while the drug eliminated infection and disease transmission. Finally, it can be acknowledged that the composite scaffold prepared in this study for bone tissue engineering seems promising.

Keywords: halloysite nanotubes, bone tissue engineering, composite scaffold, controlled drug release

Procedia PDF Downloads 74