Search results for: sound propagation models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8105

Search results for: sound propagation models

6395 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 44
6394 Debriefing Practices and Models: An Integrative Review

Authors: Judson P. LaGrone

Abstract:

Simulation-based education in curricula was once a luxurious component of nursing programs but now serves as a vital element of an individual’s learning experience. A debriefing occurs after the simulation scenario or clinical experience is completed to allow the instructor(s) or trained professional(s) to act as a debriefer to guide a reflection with a purpose of acknowledging, assessing, and synthesizing the thought process, decision-making process, and actions/behaviors performed during the scenario or clinical experience. Debriefing is a vital component of the simulation process and educational experience to allow the learner(s) to progressively build upon past experiences and current scenarios within a safe and welcoming environment with a guided dialog to enhance future practice. The aim of this integrative review was to assess current practices of debriefing models in simulation-based education for health care professionals and students. The following databases were utilized for the search: CINAHL Plus, Cochrane Database of Systemic Reviews, EBSCO (ERIC), PsycINFO (Ovid), and Google Scholar. The advanced search option was useful to narrow down the search of articles (full text, Boolean operators, English language, peer-reviewed, published in the past five years). Key terms included debrief, debriefing, debriefing model, debriefing intervention, psychological debriefing, simulation, simulation-based education, simulation pedagogy, health care professional, nursing student, and learning process. Included studies focus on debriefing after clinical scenarios of nursing students, medical students, and interprofessional teams conducted between 2015 and 2020. Common themes were identified after the analysis of articles matching the search criteria. Several debriefing models are addressed in the literature with similarities of effectiveness for participants in clinical simulation-based pedagogy. Themes identified included (a) importance of debriefing in simulation-based pedagogy, (b) environment for which debriefing takes place is an important consideration, (c) individuals who should conduct the debrief, (d) length of debrief, and (e) methodology of the debrief. Debriefing models supported by theoretical frameworks and facilitated by trained staff are vital for a successful debriefing experience. Models differed from self-debriefing, facilitator-led debriefing, video-assisted debriefing, rapid cycle deliberate practice, and reflective debriefing. A reoccurring finding was centered around the emphasis of continued research for systematic tool development and analysis of the validity and effectiveness of current debriefing practices. There is a lack of consistency of debriefing models among nursing curriculum with an increasing rate of ill-prepared faculty to facilitate the debriefing phase of the simulation.

Keywords: debriefing model, debriefing intervention, health care professional, simulation-based education

Procedia PDF Downloads 142
6393 Electroforming of 3D Digital Light Processing Printed Sculptures Used as a Low Cost Option for Microcasting

Authors: Cecile Meier, Drago Diaz Aleman, Itahisa Perez Conesa, Jose Luis Saorin Perez, Jorge De La Torre Cantero

Abstract:

In this work, two ways of creating small-sized metal sculptures are proposed: the first by means of microcasting and the second by electroforming from models printed in 3D using an FDM (Fused Deposition Modeling‎) printer or using a DLP (Digital Light Processing) printer. It is viable to replace the wax in the processes of the artistic foundry with 3D printed objects. In this technique, the digital models are manufactured with resin using a low-cost 3D FDM printer in polylactic acid (PLA). This material is used, because its properties make it a viable substitute to wax, within the processes of artistic casting with the technique of lost wax through Ceramic Shell casting. This technique consists of covering a sculpture of wax or in this case PLA with several layers of thermoresistant material. This material is heated to melt the PLA, obtaining an empty mold that is later filled with the molten metal. It is verified that the PLA models reduce the cost and time compared with the hand modeling of the wax. In addition, one can manufacture parts with 3D printing that are not possible to create with manual techniques. However, the sculptures created with this technique have a size limit. The problem is that when printed pieces with PLA are very small, they lose detail, and the laminar texture hides the shape of the piece. DLP type printer allows obtaining more detailed and smaller pieces than the FDM. Such small models are quite difficult and complex to melt using the lost wax technique of Ceramic Shell casting. But, as an alternative, there are microcasting and electroforming, which are specialized in creating small metal pieces such as jewelry ones. The microcasting is a variant of the lost wax that consists of introducing the model in a cylinder in which the refractory material is also poured. The molds are heated in an oven to melt the model and cook them. Finally, the metal is poured into the still hot cylinders that rotate in a machine at high speed to properly distribute all the metal. Because microcasting requires expensive material and machinery to melt a piece of metal, electroforming is an alternative for this process. The electroforming uses models in different materials; for this study, micro-sculptures printed in 3D are used. These are subjected to an electroforming bath that covers the pieces with a very thin layer of metal. This work will investigate the recommended size to use 3D printers, both with PLA and resin and first tests are being done to validate use the electroforming process of microsculptures, which are printed in resin using a DLP printer.

Keywords: sculptures, DLP 3D printer, microcasting, electroforming, fused deposition modeling

Procedia PDF Downloads 135
6392 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 15
6391 The Effectiveness of Orthogonal Frequency Division Multiplexing as Modulation Technique

Authors: Mohamed O. Babana

Abstract:

In wireless channel multipath is the propagation phenomena where the transmitted signal arrive at the receiver side with many of paths, the signal at these paths arrive with different time delay the results is random signal fading due to intersymbols interference(ISI). This paper deals with identification of orthogonal frequency division multiplexing (OFDM) technology, and how it is used to overcome intersymbol interference due to multipath. Also investigates the effect of Additive White Gaussian Noise Channel (AWGN) on OFDM using multi-level modulation of Phase Shift Keying (PSK), computer simulation to calculate the bit error rate (BER) under AWGN channel is applied. A comparison study is carried out to obtain the Bit Error Rate performance for OFDM to identify the best multi-level modulation of PSK.

Keywords: intersymbol interference(ISI), bit error rate(BER), modulation, multiplexing, simulation

Procedia PDF Downloads 422
6390 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement

Authors: Yu Luan

Abstract:

The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite element analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.

Keywords: artificial ear, bone conducted vibration, occlusion measurement, finite element modeling

Procedia PDF Downloads 88
6389 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections

Authors: Jackeline Kafie-Martinez, Peter B. Keating

Abstract:

A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.

Keywords: clamping stress, fatigue, finite elements, rivet, riveted railroad bridges

Procedia PDF Downloads 280
6388 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: anti-spoofing, CNN, fingerprint recognition, GAN

Procedia PDF Downloads 184
6387 Towards the Reverse Engineering of UML Sequence Diagrams Using Petri Nets

Authors: C. Baidada, M. H. Abidi, A. Jakimi, E. H. El Kinani

Abstract:

Reverse engineering has become a viable method to measure an existing system and reconstruct the necessary model from tis original. The reverse engineering of behavioral models consists in extracting high-level models that help understand the behavior of existing software systems. In this paper, we propose an approach for the reverse engineering of sequence diagrams from the analysis of execution traces produced dynamically by an object-oriented application using petri nets. Our methods show that this approach can produce state diagrams in reasonable time and suggest that these diagrams are helpful in understanding the behavior of the underlying application. Finally we will discuss approachs and tools that are needed in the process of reverse engineering UML behavior. This work is a substantial step towards providing high-quality methodology for effectiveand efficient reverse engineering of sequence diagram.

Keywords: reverse engineering, UML behavior, sequence diagram, execution traces, petri nets

Procedia PDF Downloads 445
6386 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
6385 Urban Life on the Go: Urban Transformation of Public Space

Authors: E. Zippelius

Abstract:

Urban design aims to provide a stage for public life that, when once brought to life, is right away subject to subtle but continuous transformation. This paper explores such transformations and searches for ways how public life can be reinforced in the case of a housing settlement for the displaced in Nicosia, Cyprus. First, a sound basis of theoretical knowledge is established through literature review, notably the theory of the Production of Space by Henri Lefebvre, exploring its potential and defining key criteria for the following empirical analysis. The analysis is pinpointing the differences between spatial practice, representation of space and spaces of representation as well as their interaction, alliance, or even conflict. In doing so uncertainties, chances and challenges are unraveled that will be consequently linked to practice and action and lead to the formulation of a design strategy. A strategy, though, that does not long for achieving an absolute, finite certainty but understands the three dimensions of space formulated by Lefebvre as equal and space as continuously produced, hence, unfinished.

Keywords: production of space, public space, urban life, urban transformation

Procedia PDF Downloads 141
6384 Return of Equity and Labor Productivity Comparison on Some Sino-Foreign Commercial Banks

Authors: Xiaojun Wang

Abstract:

In a lucky emerging market, most Sino commercial banks has developed rapidly and achieved dazzling performance in recent years. As a large sound commercial bank with long history, Wells Fargo Company(WFC) is taken as a mirror in this paper in order to roughly find out the relevance on life circle of the Sino banks in comparison with WFC. Two financial measures return on equity(ROE) and overall labor productivity(OLP), three commercial banks the Hong Kong and Shanghai Banking Corporation Limited(HSBC), the Bank of Communication(BCM) and China Minsheng Bank(CMSB) are selected. The comparison data coming from historical annual reports of each company vary from 13 years to 51 years. Several conclusions from the results indicate that most Sino commercial banks would be continually developing with lower financial measures performance for later several decades.

Keywords: commercial bank, features comparison, labor productivity, return on equity

Procedia PDF Downloads 264
6383 Trends in Conservation and Inheritance of Musical Culture of Ethnic Groups: A Case Study of the Akha Music in Chiang Rai Province, Thailand

Authors: Nutthan Inkhong, Sutthiphong Ruangchante

Abstract:

Chiang Rai province is located at the northern border of Thailand. Most of the geography there is the northern continental highlands, and the population has many types of inhabitants, including Thai people, immigrants and ethnic groups such as Akha, Lahu, Lisu, Yao, etc. Most of these ethnic groups migrated from neighbouring countries such as Myanmar, Laos, China, etc. and settled in the mountains. Each ethnic group has their unique traditions, culture, and ways of life, including the musical culture that the ancestors of each ethnic group brought with them. In the present, the Akha have the largest population in the region and still live together in numerous villages in many districts. Thus, Akha musical culture still appears in the community traditions and cultural events of Chiang Rai province regularly. This article presents the situations of Akha musical culture in the present and the predictions for the future. The study method involves the analysis of music information and the related social contexts, which were collected from the fieldwork of ethnomusicological methodology by in-depth interviews, observations, audio and visual recordings, and related documents. The results found that the important persons who are related with Akha musical culture include (1) a musical instrument maker (lives in Mae Chan district) who produces various Akha musical instruments, including gourd mouth organs, Akha drums, two-way flutes, three-hole flutes, Jew’s harps (the sound of teenage love), buffalo horns (the sound symbol of hunting) and bird call instruments (the imitation of bird sounds), (2) a folk philosopher (lives in Mae Pha Luang district) who can teach music to the new generation of Akha people as well as lecture and demonstrate music to academics and tourists, and (3) a community leader (lives in Mae Chan district) who conserves Akha performances, singing and music through various activities of the students in an informal school. Because of the changes to the social contexts and ways of life of the Akha people, such as the educational system, religion, social media, etc., including the popularity of both Thai and international popular music among the new generation of Akha people, changes to and the fading away of Akha musical culture in the future may likely occur. Therefore, the conservation and inheritance of Akha music is an issue that should be resolved quickly. This primary study leads to the next step of the ethnomusicological work and plays a part in preventing or reducing the problems impacting Akha musical culture survival by the recording of Akha music in all of its dimensions, such as producing musical instruments, playing musical instruments, analysis of tuning systems, recording Akha music as musical notation using symbols, researching related social contexts, etc. and the transcription of this information to create lessons that can be returned to the Akha community.

Keywords: Akha music, Chiang Rai, ethnic music in Thailand, ethnomusicology

Procedia PDF Downloads 161
6382 Identification of Impact Load and Partial System Parameters Using 1D-CNN

Authors: Xuewen Yu, Danhui Dan

Abstract:

The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.

Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem

Procedia PDF Downloads 123
6381 A Control Model for the Dismantling of Industrial Plants

Authors: Florian Mach, Eric Hund, Malte Stonis

Abstract:

The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, the paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.

Keywords: dismantling management, logistics planning and control models, nuclear power plant dismantling, reverse logistics

Procedia PDF Downloads 304
6380 Drying Characteristics of Shrimp by Using the Traditional Method of Oven

Authors: I. A. Simsek, S. N. Dogan, A. S. Kipcak, E. Morodor Derun, N. Tugrul

Abstract:

In this study, the drying characteristics of shrimp are studied by using the traditional drying method of oven. Drying temperatures are selected between 60-80°C. Obtained experimental drying results are applied to eleven mathematical models of Alibas, Aghbashlo et al., Henderson and Pabis, Jena and Das, Lewis, Logaritmic, Midilli and Kucuk, Page, Parabolic, Wang and Singh and Weibull. The best model was selected as parabolic based on the highest coefficient of determination (R²) (0.999990 at 80°C) and the lowest χ² (0.000002 at 80°C), and the lowest root mean square error (RMSE) (0.000976 at 80°C) values are compared to other models. The effective moisture diffusivity (Deff) values were calculated using the Fick’s second law’s cylindrical coordinate approximation and are found between 6.61×10⁻⁸ and 6.66×10⁻⁷ m²/s. The activation energy (Ea) was calculated using modified form of Arrhenius equation and is found as 18.315 kW/kg.

Keywords: activation energy, drying, effective moisture diffusivity, modelling, oven, shrimp

Procedia PDF Downloads 188
6379 Modelling the Art Historical Canon: The Use of Dynamic Computer Models in Deconstructing the Canon

Authors: Laura M. F. Bertens

Abstract:

There is a long tradition of visually representing the art historical canon, in schematic overviews and diagrams. This is indicative of the desire for scientific, ‘objective’ knowledge of the kind (seemingly) produced in the natural sciences. These diagrams will, however, always retain an element of subjectivity and the modelling methods colour our perception of the represented information. In recent decades visualisations of art historical data, such as hand-drawn diagrams in textbooks, have been extended to include digital, computational tools. These tools significantly increase modelling strength and functionality. As such, they might be used to deconstruct and amend the very problem caused by traditional visualisations of the canon. In this paper, the use of digital tools for modelling the art historical canon is studied, in order to draw attention to the artificial nature of the static models that art historians are presented with in textbooks and lectures, as well as to explore the potential of digital, dynamic tools in creating new models. To study the way diagrams of the canon mediate the represented information, two modelling methods have been used on two case studies of existing diagrams. The tree diagram Stammbaum der neudeutschen Kunst (1823) by Ferdinand Olivier has been translated to a social network using the program Visone, and the famous flow chart Cubism and Abstract Art (1936) by Alfred Barr has been translated to an ontological model using Protégé Ontology Editor. The implications of the modelling decisions have been analysed in an art historical context. The aim of this project has been twofold. On the one hand the translation process makes explicit the design choices in the original diagrams, which reflect hidden assumptions about the Western canon. Ways of organizing data (for instance ordering art according to artist) have come to feel natural and neutral and implicit biases and the historically uneven distribution of power have resulted in underrepresentation of groups of artists. Over the last decades, scholars from fields such as Feminist Studies, Postcolonial Studies and Gender Studies have considered this problem and tried to remedy it. The translation presented here adds to this deconstruction by defamiliarizing the traditional models and analysing the process of reconstructing new models, step by step, taking into account theoretical critiques of the canon, such as the feminist perspective discussed by Griselda Pollock, amongst others. On the other hand, the project has served as a pilot study for the use of digital modelling tools in creating dynamic visualisations of the canon for education and museum purposes. Dynamic computer models introduce functionalities that allow new ways of ordering and visualising the artworks in the canon. As such, they could form a powerful tool in the training of new art historians, introducing a broader and more diverse view on the traditional canon. Although modelling will always imply a simplification and therefore a distortion of reality, new modelling techniques can help us get a better sense of the limitations of earlier models and can provide new perspectives on already established knowledge.

Keywords: canon, ontological modelling, Protege Ontology Editor, social network modelling, Visone

Procedia PDF Downloads 127
6378 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran

Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi

Abstract:

This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.

Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean

Procedia PDF Downloads 334
6377 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 364
6376 Sino-Africa Trade Ties: The Curse of African Minerals: Tweaking the Corporate Scorecard to Benefit the Mining Village Communities

Authors: Donald Ouko

Abstract:

For decades, Africa has been home to several foreign companies doing business in various sectors. In recent years, China has consistently positioned itself as a development partner powerhouse among African nations. However, this has not been felt as equally beneficial to the local communities where the partnerships bloom in extractives trading. This paper explores the impact of Chinese involvement in mining on the local communities in three African countries, the factors that enable the sector to thrive amid the impacts, and what could be done differently for the local communities to experience a different outcome. It suggests alternative terms of engagement that aim at transparency, accountability, and anti-corruption to ensure inclusive social and economic development, and sound governance both at state and corporate levels.

Keywords: law and society, social development, corporate governance, China-Africa ties, human rights, socio-economic development, accountability, transparency

Procedia PDF Downloads 28
6375 Performance of Fiber-Reinforced Polymer as an Alternative Reinforcement

Authors: Salah E. El-Metwally, Marwan Abdo, Basem Abdel Wahed

Abstract:

Fiber-reinforced polymer (FRP) bars have been proposed as an alternative to conventional steel bars; hence, the use of these non-corrosive and nonmetallic reinforcing bars has increased in various concrete projects. This concrete material is lightweight, has a long lifespan, and needs minor maintenance; however, its non-ductile nature and weak bond with the surrounding concrete create a significant challenge. The behavior of concrete elements reinforced with FRP bars has been the subject of several experimental investigations, even with their high cost. This study aims to numerically assess the viability of using FRP bars, as longitudinal reinforcement, in comparison with traditional steel bars, and also as prestressing tendons instead of the traditional prestressing steel. The nonlinear finite element analysis has been utilized to carry out the current study. Numerical models have been developed to examine the behavior of concrete beams reinforced with FRP bars or tendons against similar models reinforced with either conventional steel or prestressing steel. These numerical models were verified by experimental test results available in the literature. The obtained results revealed that concrete beams reinforced with FRP bars, as passive reinforcement, exhibited less ductility and less stiffness than similar beams reinforced with steel bars. On the other hand, when FRP tendons are employed in prestressing concrete beams, the results show that the performance of these beams is similar to those beams prestressed by conventional active reinforcement but with a difference caused by the two tendon materials’ moduli of elasticity.

Keywords: reinforced concrete, prestressed concrete, nonlinear finite element analysis, fiber-reinforced polymer, ductility

Procedia PDF Downloads 13
6374 Annual Water Level Simulation Using Support Vector Machine

Authors: Maryam Khalilzadeh Poshtegal, Seyed Ahmad Mirbagheri, Mojtaba Noury

Abstract:

In this paper, by application of the input yearly data of rainfall, temperature and flow to the Urmia Lake, the simulation of water level fluctuation were applied by means of three models. According to the climate change investigation the fluctuation of lakes water level are of high interest. This study investigate data-driven models, support vector machines (SVM), SVM method which is a new regression procedure in water resources are applied to the yearly level data of Lake Urmia that is the biggest and the hyper saline lake in Iran. The evaluated lake levels are found to be in good correlation with the observed values. The results of SVM simulation show better accuracy and implementation. The mean square errors, mean absolute relative errors and determination coefficient statistics are used as comparison criteria.

Keywords: simulation, water level fluctuation, urmia lake, support vector machine

Procedia PDF Downloads 367
6373 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves

Authors: Yingchen Yang

Abstract:

Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.

Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction

Procedia PDF Downloads 172
6372 On the Road towards Effective Administrative Justice in Macedonia, Albania and Kosovo: Common Challenges and Problems

Authors: Arlinda Memetaj

Abstract:

A sound system of administrative justice represents a vital element of democratic governance. The proper control of public administration consists not only of a sound civil service framework and legislative oversight, but empowerment of the public and courts to hold public officials accountable for their decision-making through the application of fair administrative procedural rules and the use of appropriate administrative appeals processes and judicial review. The establishment of both effective public administration and administrative justice system has been for a long period of time among the most ‘important and urgent’ final strategic objectives of almost any country in the Balkans region, including Macedonia, Albania and Kosovo. Closely related to this is their common strategic goal to enter the membership in the European Union, which requires fulfilling of many criteria and standards as incorporated in EU acquis communautaire. The latter is presently done with the framework of the Stabilization and Association Agreement which each of these countries has concluded with the EU accordingly. To above aims, each of the three countries has so far adopted a huge series of legislative and strategic documents related to any aspects of their individual administrative justice system. ‘Changes and reforms’ in this field have been thus the most frequent terms being used in any of these countries. The three countries have already established their own national administrative judiciary, while permanently amending their laws on the general administrative procedure introducing thereby considerable innovations concerned. National administrative courts are expected to have crucial important role within the broader judiciary systems-related reforms of these countries; they are designed to check the legality of decisions of the state administration with the aim to guarantee an effective protection of human rights and legitimate interests of private persons through a regular, conform, fast and reasonable judicial administrative process. Further improvements in this field are presently an integral crucial part of all the relevant national strategic documents including the ones on judiciary reform and public administration reform, as adopted by each of the three countries; those strategic documents are designed among others to provide effective protection of their citizens` rights` of administrative justice. On the basis of the later, the paper finally is aimed at highlighting selective common challenges and problems of the three countries on their European road, while claiming (among others) that the current status quo situation in each of them may be overcome only if there is a proper implementation of the administrative courts decisions and a far stricter international monitoring process thereof. A new approach and strong political commitment from the highest political leadership is thus absolutely needed to ensure the principles of transparency, accountability and merit in public administration. The main methods used in this paper include the analytical and comparative ones due to the very character of the paper itself.

Keywords: administrative courts , administrative justice, administrative procedure, benefit, effective administrative justice, human rights, implementation, monitoring, reform

Procedia PDF Downloads 153
6371 A Critical Discourse Analysis of Jamaican and Trinidadian News Articles about D/Deafness

Authors: Melissa Angus Baboun

Abstract:

Utilizing a Critical Discourse Analysis (CDA) methodology and a theoretical framework based on disability studies, how Jamaican and Trinidadian newspapers discussed issues relating to the Deaf community were examined. The term deaf was inputted into the search engine tool of the online website for the Jamaica Observer and the Trinidad & Tobago Guardian. All 27 articles that contained the term deaf in its content and were written between August 1, 2017 and November 15, 2017 were chosen for the study. The data analysis was divided into three steps: (1) listing and analysis instances of metaphorical deafness (e.g. fall on deaf ears), (2) categorization of the content of the articles into the models of disability discourse (the medical, socio-cultural, and superscrip models of disability narratives), and (3) the analysis of any additional data found. A total of 42% of the articles pulled for this study did not deal with the Deaf community in any capacity, but rather instances of the use of idiomatic expressions that use deafness as a metaphor for a non-physical, undesirable trait. The most common idiomatic expression found was fall on deaf ears. Regarding the models of disability discourse, eight articles were found to follow the socio-cultural model, two were found to follow the medical model, and two were found to follow the superscrip model. The additional data found in these articles include two instances of the term deaf and mute, an overwhelming use of lower case d for the term deaf, and the misuse of the term translator (to mean interpreter).

Keywords: deafness, disability, news coverage, Caribbean newspapers

Procedia PDF Downloads 233
6370 LACGC: Business Sustainability Research Model for Generations Consumption, Creation, and Implementation of Knowledge: Academic and Non-Academic

Authors: Satpreet Singh

Abstract:

This paper introduces the new LACGC model to sustain the academic and non-academic business to future educational and organizational generations. The consumption of knowledge and the creation of new knowledge is a strength and focal interest of all academics and Non-academic organizations. Implementing newly created knowledge sustains the businesses to the next generation with growth without detriment. Existing models like the Scholar-practitioner model and Organization knowledge creation models focus specifically on academic or non-academic, not both. LACGC model can be used for both Academic and Non-academic at the domestic or international level. Researchers and scholars play a substantial role in finding literature and practice gaps in academic and non-academic disciplines. LACGC model has unrestricted the number of recurrences because the Consumption, Creation, and implementation of new ideas, disciplines, systems, and knowledge is a never-ending process and must continue from one generation to the next.

Keywords: academics, consumption, creation, generations, non-academics, research, sustainability

Procedia PDF Downloads 197
6369 The Combined Methodology To Detect Onboard Driver Fatigue

Authors: K. Senthil Nathan, P. Rajasekaran

Abstract:

Fatigue is a feeling of extreme physical or mental tiredness. Almost everyone becomes fatigued at some time, but driver’s fatigue is a serious problem that leads to thousands of automobile crashes each year. Fatigue process is often a change from the alertness and vigor state to the tiredness and weakness state. It is not only accompanied by drowsiness but also has a negative impact on mood. There have been studies to detect and quantify fatigue from the measurement of physiology variables such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG). This project involves a multimodal sensing of driver’s drowsiness. The first method is to count the eye blinking rate. In the second level, we authenticate the results of eye blink module with a grip sensor. The Flexiforce sensor is placed over the steering wheel. In the third level, the activities are sensed, the time elapsed from the driver’s last activity is counted here. The activities in the sense: Changing gear, applying brake, pressing sound horns, and turning the steering wheel. Absence of these activities is also an indicator of fatigue.

Keywords: eye blink sensor, Flexiforce sensor, EEG, EOG, EMG

Procedia PDF Downloads 483
6368 Soap Film Enneper Minimal Surface Model

Authors: Yee Hooi Min, Mohdnasir Abdul Hadi

Abstract:

Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer.

Keywords: Enneper, minimal surface, soap film, tensioned membrane structure

Procedia PDF Downloads 553
6367 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security

Authors: Shanshan Zhu, Mohammad Nasim

Abstract:

Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.

Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection

Procedia PDF Downloads 42
6366 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218