Search results for: equivalent circuit models
6497 Experiences on the Application of WIKI Based Coursework in a Fourth-Year Engineering Module
Authors: D. Hassell, D. De Focatiis
Abstract:
This paper presents work on the application of wiki based coursework for a fourth-year engineering module delivered as part of both a MEng and MSc programme in Chemical Engineering. The module was taught with an equivalent structure simultaneously on two separate campuses, one in the United Kingdom (UK) and one in Malaysia, and the subsequent results were compared. Student feedback was sought via questionnaires, with 45 respondents from the UK and 49 from Malaysia. Results include discussion on; perceived difficulty; student enjoyment and experiences; differences between MEng and MSc students; differences between cohorts on different campuses. The response of students to the use of wiki-based coursework was found to vary based on their experiences and background, with UK students being generally more positive on its application than those in Malaysia.Keywords: engineering education, student differences, student learning, web based coursework
Procedia PDF Downloads 2966496 Housing Delivery in Nigeria: Repackaging for Sustainable Development
Authors: Funmilayo L. Amao, Amos O. Amao
Abstract:
It has been observed that majority of the people are living in poor housing quality or totally homeless in urban center despite all governmental policies to provide housing to the public. On the supply side, various government policies in the past have been formulated towards overcoming the huge shortage through several Housing Reform Programmes. Despite these past efforts, housing continues to be a mirage to ordinary Nigerian. Currently, there are various mass housing delivery programmes such as the affordable housing scheme that utilize the Public Private Partnership effort and several Private Finance Initiative models could only provide for about 3% of the required stock. This suggests the need for a holistic solution in approaching the problem. The aim of this research is to find out the problems hindering the delivery of housing in Nigeria and its effects on housing affordability. The specific objectives are to identify the causes of housing delivery problems, to examine different housing policies over years and to suggest a way out for sustainable housing delivery. This paper also reviews the past and current housing delivery programmes in Nigeria and analyses the demand and supply side issues. It identifies the various housing delivery mechanisms in current practice. The objective of this paper, therefore, is to give you an insight into the delivery option for the sustainability of housing in Nigeria, given the existing delivery structures and the framework specified in the New National Housing Policy. The secondary data were obtained from books, journals and seminar papers. The conclusion is that we cannot copy models from other nations, but should rather evolve workable models based on our socio-cultural background to address the huge housing shortage in Nigeria. Recommendations are made in this regard.Keywords: housing, sustainability, housing delivery, housing policy, housing affordability
Procedia PDF Downloads 2966495 Real-Time Measurement Approach for Tracking the ΔV10 Estimate Value of DC EAF
Authors: Jin-Lung Guan, Jyh-Cherng Gu, Chun-Wei Huang, Hsin-Hung Chang
Abstract:
This investigation develops a revisable method for estimating the estimate value of equivalent 10 Hz voltage flicker (DV10) of a DC Electric Arc Furnace (EAF). This study also discusses three 161kV DC EAFs by field measurement, with those results indicating that the estimated DV10 value is significantly smaller than the survey value. The key point is that the conventional means of estimating DV10 is inappropriate. There is a main cause as the assumed Qmax is too small. Although DC EAF is regularly operated in a constant MVA mode, the reactive power variation in the Main Transformer (MT) is more significant than that in the Furnace Transformer (FT). A substantial difference exists between estimated maximum reactive power fluctuation (DQmax) and the survey value from actual DC EAF operations. However, this study proposes a revisable method that can obtain a more accurate DV10 estimate than the conventional method.Keywords: voltage flicker, dc EAF, estimate value, DV10
Procedia PDF Downloads 4496494 Implementation of Lean Production in Business Enterprises: A Literature-Based Content Analysis of Implementation Procedures
Authors: P. Pötters, A. Marquet, B. Leyendecker
Abstract:
The objective of this paper is to investigate different implementation approaches for the implementation of Lean production in companies. Furthermore, a structured overview of those different approaches is to be made. Therefore, the present work is intended to answer the following research question: What differences and similarities exist between the various systematic approaches and phase models for the implementation of Lean Production? To present various approaches for the implementation of Lean Production discussed in the literature, a qualitative content analysis was conducted. Within the framework of a qualitative survey, a selection of texts dealing with lean production and its introduction was examined. The analysis presents different implementation approaches from the literature, covering the descriptive aspect of the study. The study also provides insights into similarities and differences among the implementation approaches, which are drawn from the analysis of latent text contents and author interpretations. In this study, the focus is on identifying differences and similarities among systemic approaches for implementing Lean Production. The research question takes into account the main object of consideration, objectives pursued, starting point, procedure, and endpoint of the implementation approach. The study defines the concept of Lean Production and presents various approaches described in literature that companies can use to implement Lean Production successfully. The study distinguishes between five systemic implementation approaches and seven phase models to help companies choose the most suitable approach for their implementation project. The findings of this study can contribute to enhancing transparency regarding the existing approaches for implementing Lean Production. This can enable companies to compare and contrast the available implementation approaches and choose the most suitable one for their specific project.Keywords: implementation, lean production, phase models, systematic approaches
Procedia PDF Downloads 1046493 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions
Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju
Abstract:
Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.Keywords: distributed generation, electrical distribution systems, fault resistance
Procedia PDF Downloads 5166492 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges
Authors: Dianelys Vega, Carlos Magluta, Ney Roitman
Abstract:
The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction
Procedia PDF Downloads 1326491 Research on Residential Block Fabric: A Case Study of Hangzhou West Area
Abstract:
Residential block construction of big cities in China began in the 1950s, and four models had far-reaching influence on modern residential block in its development process, including unit compound and residential district in 1950s to 1980s, and gated community and open community in 1990s to now. Based on analysis of the four models’ fabric, the article takes residential blocks in Hangzhou west area as an example and carries on the studies from urban structure level and block special level, mainly including urban road network, land use, community function, road organization, public space and building fabric. At last, the article puts forward semi-open sub-community strategy to improve the current fabric.Keywords: Hangzhou west area, residential block model, residential block fabric, semi-open sub-community strategy
Procedia PDF Downloads 4176490 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 456489 Debriefing Practices and Models: An Integrative Review
Authors: Judson P. LaGrone
Abstract:
Simulation-based education in curricula was once a luxurious component of nursing programs but now serves as a vital element of an individual’s learning experience. A debriefing occurs after the simulation scenario or clinical experience is completed to allow the instructor(s) or trained professional(s) to act as a debriefer to guide a reflection with a purpose of acknowledging, assessing, and synthesizing the thought process, decision-making process, and actions/behaviors performed during the scenario or clinical experience. Debriefing is a vital component of the simulation process and educational experience to allow the learner(s) to progressively build upon past experiences and current scenarios within a safe and welcoming environment with a guided dialog to enhance future practice. The aim of this integrative review was to assess current practices of debriefing models in simulation-based education for health care professionals and students. The following databases were utilized for the search: CINAHL Plus, Cochrane Database of Systemic Reviews, EBSCO (ERIC), PsycINFO (Ovid), and Google Scholar. The advanced search option was useful to narrow down the search of articles (full text, Boolean operators, English language, peer-reviewed, published in the past five years). Key terms included debrief, debriefing, debriefing model, debriefing intervention, psychological debriefing, simulation, simulation-based education, simulation pedagogy, health care professional, nursing student, and learning process. Included studies focus on debriefing after clinical scenarios of nursing students, medical students, and interprofessional teams conducted between 2015 and 2020. Common themes were identified after the analysis of articles matching the search criteria. Several debriefing models are addressed in the literature with similarities of effectiveness for participants in clinical simulation-based pedagogy. Themes identified included (a) importance of debriefing in simulation-based pedagogy, (b) environment for which debriefing takes place is an important consideration, (c) individuals who should conduct the debrief, (d) length of debrief, and (e) methodology of the debrief. Debriefing models supported by theoretical frameworks and facilitated by trained staff are vital for a successful debriefing experience. Models differed from self-debriefing, facilitator-led debriefing, video-assisted debriefing, rapid cycle deliberate practice, and reflective debriefing. A reoccurring finding was centered around the emphasis of continued research for systematic tool development and analysis of the validity and effectiveness of current debriefing practices. There is a lack of consistency of debriefing models among nursing curriculum with an increasing rate of ill-prepared faculty to facilitate the debriefing phase of the simulation.Keywords: debriefing model, debriefing intervention, health care professional, simulation-based education
Procedia PDF Downloads 1426488 Blood Clot Emulsification via Ultrasonic Thrombolysis Device
Authors: Sun Tao, Lou Liang, Tan Xing Haw Marvin, Gu Yuandong Alex
Abstract:
Patients with blood clots in their brains can experience problems with their vision or speech, seizures and general weakness. To treat blood clots, clinicians presently have two options. The first involves drug therapy to thin the blood and thus reduce the clot. The second choice is to invasively remove the clot using a plastic tube called a catheter. Both approaches carry a high risk of bleeding, and invasive procedures, such as catheter intervention, can also damage the blood vessel wall and cause infection. Ultrasonic treatment as a potential alternative therapy to break down clots is attracting growing interests due to the reduced adverse effects. To demonstrate the concept, in this investigation a microfabricated ultrasonic device was electrically packaged with printed circuit board to treat healthy human blood. The red blood cells could be broken down after 3-hour ultrasonic treatment.Keywords: microfabrication, blood clot, ultrasonic thrombolysis device, ultrasonic device
Procedia PDF Downloads 4506487 Electroforming of 3D Digital Light Processing Printed Sculptures Used as a Low Cost Option for Microcasting
Authors: Cecile Meier, Drago Diaz Aleman, Itahisa Perez Conesa, Jose Luis Saorin Perez, Jorge De La Torre Cantero
Abstract:
In this work, two ways of creating small-sized metal sculptures are proposed: the first by means of microcasting and the second by electroforming from models printed in 3D using an FDM (Fused Deposition Modeling) printer or using a DLP (Digital Light Processing) printer. It is viable to replace the wax in the processes of the artistic foundry with 3D printed objects. In this technique, the digital models are manufactured with resin using a low-cost 3D FDM printer in polylactic acid (PLA). This material is used, because its properties make it a viable substitute to wax, within the processes of artistic casting with the technique of lost wax through Ceramic Shell casting. This technique consists of covering a sculpture of wax or in this case PLA with several layers of thermoresistant material. This material is heated to melt the PLA, obtaining an empty mold that is later filled with the molten metal. It is verified that the PLA models reduce the cost and time compared with the hand modeling of the wax. In addition, one can manufacture parts with 3D printing that are not possible to create with manual techniques. However, the sculptures created with this technique have a size limit. The problem is that when printed pieces with PLA are very small, they lose detail, and the laminar texture hides the shape of the piece. DLP type printer allows obtaining more detailed and smaller pieces than the FDM. Such small models are quite difficult and complex to melt using the lost wax technique of Ceramic Shell casting. But, as an alternative, there are microcasting and electroforming, which are specialized in creating small metal pieces such as jewelry ones. The microcasting is a variant of the lost wax that consists of introducing the model in a cylinder in which the refractory material is also poured. The molds are heated in an oven to melt the model and cook them. Finally, the metal is poured into the still hot cylinders that rotate in a machine at high speed to properly distribute all the metal. Because microcasting requires expensive material and machinery to melt a piece of metal, electroforming is an alternative for this process. The electroforming uses models in different materials; for this study, micro-sculptures printed in 3D are used. These are subjected to an electroforming bath that covers the pieces with a very thin layer of metal. This work will investigate the recommended size to use 3D printers, both with PLA and resin and first tests are being done to validate use the electroforming process of microsculptures, which are printed in resin using a DLP printer.Keywords: sculptures, DLP 3D printer, microcasting, electroforming, fused deposition modeling
Procedia PDF Downloads 1356486 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 166485 A Low-Power, Low-Noise and High Linearity 60 GHz LNA for WPAN Applications
Authors: Noha Al Majid, Said Mazer, Moulhime El Bekkali, Catherine Algani, Mahmoud Mehdi
Abstract:
A low noise figure (NF) and high linearity V-band Low Noise Amplifier (LNA) is reported in this article. The LNA compromises a three-stage cascode configuration. This LNA will be used as a part of a WPAN (Wireless Personal Area Network) receiver in the millimeter-wave band at 60 GHz. It is designed according to the MMIC technology (Monolithic Microwave Integrated Circuit) in PH 15 process from UMS foundry and uses a 0.15 μm GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor). The particularity of this LNA compared to other LNAs in literature is its very low noise figure which is equal to 1 dB and its high linearity (IIP3 is about 22 dB). The LNA consumes 0.24 Watts, achieving a high gain which is about 23 dB, an input return loss better than -10 dB and an output return loss better than -8 dB.Keywords: low noise amplifier, V-band, MMIC technology, LNA, amplifier, cascode, pseudomorphic high electron mobility transistor (PHEMT), high linearity
Procedia PDF Downloads 5156484 Bio-Equivalence of Doxycycline in Two Preparations in Broiler Chickens
Authors: Abdelrazzag Elmajdoub
Abstract:
The present study was designed to investigate the bio-equivalence of doxycycline in Dolistin® and Colidox® at a dose rate of 10 mg doxycycline/kg of body weight in 48 clinically normal broiler chickens. After oral administration, plasma levels of doxycycline peaked after 2 hours post-dosing without significant differences between the two products and it could be detected therapeutically and exceeded the minimum inhibitory concentration (MIC) for most micro-organisms sensitive to doxycycline for 12 hours. The disposition kinetics of doxycycline in the two products following oral administration revealed that the maximum plasma concentrations (Cmax.) were 22.65 and 21.80 µg/ml and attained at (Tmax.) 2.10 and 2.20 hours, respectively. Doxycycline in both of the products was eliminated with half- lives (t0.5α) equal to 7.70 and 6.93 hours, respectively. The mean systemic bio availabilities of doxycycline in both of the products after oral administration in chickens were 80.60 and 79.70%, respectively. It was concluded that doxycycline in the form of Dolistin® and Colidox® needs a dose equivalent to 20 mg doxycycline/kg of body weight a day is better to keep the plasma concentration higher than the MIC.Keywords: tetracyclines, doxycycline, bioavailability, broilers, chickens
Procedia PDF Downloads 5066483 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1106482 A Conversation about Inclusive Education: Revelations from Namibian Primary School Teachers
Authors: M. D. Nghiteke, A. Mji, G. T. Molepo
Abstract:
Inclusive education stems from a philosophy and vision, which argues that all children should learn together at school. It is not only about treating all pupils in the same way. It is also about allowing all children to attend school without any restrictions. Ten primary school teachers in a circuit in Namibia volunteered to participate in face-to-face interviews about inclusive education. The teachers responded to three questions about their (i) understanding of inclusive education; (ii) whether inclusive education was implemented in primary schools; and (iii) whether they were able to work with learners with special needs. Findings indicated that teachers understood what inclusive education entailed; felt that inclusive education was not implemented in their primary schools, and they were unable to work with learners with special needs in their classrooms. Further, the teachers identified training and resources as important components of inclusive education. It is recommended that education authorities should perhaps verify the findings reported here as well as ensure that the concerns raised by the teachers are addressed.Keywords: classrooms and schools, inclusive education, resources, training
Procedia PDF Downloads 1766481 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 1846480 Towards the Reverse Engineering of UML Sequence Diagrams Using Petri Nets
Authors: C. Baidada, M. H. Abidi, A. Jakimi, E. H. El Kinani
Abstract:
Reverse engineering has become a viable method to measure an existing system and reconstruct the necessary model from tis original. The reverse engineering of behavioral models consists in extracting high-level models that help understand the behavior of existing software systems. In this paper, we propose an approach for the reverse engineering of sequence diagrams from the analysis of execution traces produced dynamically by an object-oriented application using petri nets. Our methods show that this approach can produce state diagrams in reasonable time and suggest that these diagrams are helpful in understanding the behavior of the underlying application. Finally we will discuss approachs and tools that are needed in the process of reverse engineering UML behavior. This work is a substantial step towards providing high-quality methodology for effectiveand efficient reverse engineering of sequence diagram.Keywords: reverse engineering, UML behavior, sequence diagram, execution traces, petri nets
Procedia PDF Downloads 4466479 Analysis on the Converged Method of Korean Scientific and Mathematical Fields and Liberal Arts Programme: Focusing on the Intervention Patterns in Liberal Arts
Authors: Jinhui Bak, Bumjin Kim
Abstract:
The purpose of this study is to analyze how the scientific and mathematical fields (STEM) and liberal arts (A) work together in the STEAM program. In the future STEAM programs that have been designed and developed, the humanities will act not just as a 'tool' for science technology and mathematics, but as a 'core' content to have an equivalent status. STEAM was first introduced to the Republic of Korea in 2011 when the Ministry of Education emphasized fostering creative convergence talent. Many programs have since been developed under the name STEAM, but with the majority of programs focusing on technology education, arts and humanities are considered secondary. As a result, arts is most likely to be accepted as an option that can be excluded from the teachers who run the STEAM program. If what we ultimately pursue through STEAM education is in fostering STEAM literacy, we should no longer turn arts into a tooling area for STEM. Based on this consciousness, this study analyzed over 160 STEAM programs in middle and high schools, which were produced and distributed by the Ministry of Education and the Korea Science and Technology Foundation from 2012 to 2017. The framework of analyses referenced two criteria presented in the related prior studies: normative convergence and technological convergence. In addition, we divide Arts into fine arts and liberal arts and focused on Korean Language Course which is in liberal arts and analyzed what kind of curriculum standards were selected, and what kind of process the Korean language department participated in teaching and learning. In this study, to ensure the reliability of the analysis results, we have chosen to cross-check the individual analysis results of the two researchers and only if they are consistent. We also conducted a reliability check on the analysis results of three middle and high school teachers involved in the STEAM education program. Analyzing 10 programs selected randomly from the analyzed programs, Cronbach's α .853 showed a reliable level. The results of this study are summarized as follows. First, the convergence ratio of the liberal arts was lowest in the department of moral at 14.58%. Second, the normative convergence is 28.19%, which is lower than that of the technological convergence. Third, the language and achievement criteria selected for the program were limited to functional areas such as listening, talking, reading and writing. This means that the convergence of Korean language departments is made only by the necessary tools to communicate opinions or promote scientific products. In this study, we intend to compare these results with the STEAM programs in the United States and abroad to explore what elements or key concepts are required for the achievement criteria for Korean language and curriculum. This is meaningful in that the humanities field (A), including Korean, provides basic data that can be fused into 'equivalent qualifications' with science (S), technical engineering (TE) and mathematics (M).Keywords: Korean STEAM Programme, liberal arts, STEAM curriculum, STEAM Literacy, STEM
Procedia PDF Downloads 1586478 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 736477 Genetic Algorithm Optimization of Microcantilever Based Resonator
Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti
Abstract:
Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization
Procedia PDF Downloads 5506476 A Control Model for the Dismantling of Industrial Plants
Authors: Florian Mach, Eric Hund, Malte Stonis
Abstract:
The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, the paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.Keywords: dismantling management, logistics planning and control models, nuclear power plant dismantling, reverse logistics
Procedia PDF Downloads 3046475 Drying Characteristics of Shrimp by Using the Traditional Method of Oven
Authors: I. A. Simsek, S. N. Dogan, A. S. Kipcak, E. Morodor Derun, N. Tugrul
Abstract:
In this study, the drying characteristics of shrimp are studied by using the traditional drying method of oven. Drying temperatures are selected between 60-80°C. Obtained experimental drying results are applied to eleven mathematical models of Alibas, Aghbashlo et al., Henderson and Pabis, Jena and Das, Lewis, Logaritmic, Midilli and Kucuk, Page, Parabolic, Wang and Singh and Weibull. The best model was selected as parabolic based on the highest coefficient of determination (R²) (0.999990 at 80°C) and the lowest χ² (0.000002 at 80°C), and the lowest root mean square error (RMSE) (0.000976 at 80°C) values are compared to other models. The effective moisture diffusivity (Deff) values were calculated using the Fick’s second law’s cylindrical coordinate approximation and are found between 6.61×10⁻⁸ and 6.66×10⁻⁷ m²/s. The activation energy (Ea) was calculated using modified form of Arrhenius equation and is found as 18.315 kW/kg.Keywords: activation energy, drying, effective moisture diffusivity, modelling, oven, shrimp
Procedia PDF Downloads 1886474 Modelling the Art Historical Canon: The Use of Dynamic Computer Models in Deconstructing the Canon
Authors: Laura M. F. Bertens
Abstract:
There is a long tradition of visually representing the art historical canon, in schematic overviews and diagrams. This is indicative of the desire for scientific, ‘objective’ knowledge of the kind (seemingly) produced in the natural sciences. These diagrams will, however, always retain an element of subjectivity and the modelling methods colour our perception of the represented information. In recent decades visualisations of art historical data, such as hand-drawn diagrams in textbooks, have been extended to include digital, computational tools. These tools significantly increase modelling strength and functionality. As such, they might be used to deconstruct and amend the very problem caused by traditional visualisations of the canon. In this paper, the use of digital tools for modelling the art historical canon is studied, in order to draw attention to the artificial nature of the static models that art historians are presented with in textbooks and lectures, as well as to explore the potential of digital, dynamic tools in creating new models. To study the way diagrams of the canon mediate the represented information, two modelling methods have been used on two case studies of existing diagrams. The tree diagram Stammbaum der neudeutschen Kunst (1823) by Ferdinand Olivier has been translated to a social network using the program Visone, and the famous flow chart Cubism and Abstract Art (1936) by Alfred Barr has been translated to an ontological model using Protégé Ontology Editor. The implications of the modelling decisions have been analysed in an art historical context. The aim of this project has been twofold. On the one hand the translation process makes explicit the design choices in the original diagrams, which reflect hidden assumptions about the Western canon. Ways of organizing data (for instance ordering art according to artist) have come to feel natural and neutral and implicit biases and the historically uneven distribution of power have resulted in underrepresentation of groups of artists. Over the last decades, scholars from fields such as Feminist Studies, Postcolonial Studies and Gender Studies have considered this problem and tried to remedy it. The translation presented here adds to this deconstruction by defamiliarizing the traditional models and analysing the process of reconstructing new models, step by step, taking into account theoretical critiques of the canon, such as the feminist perspective discussed by Griselda Pollock, amongst others. On the other hand, the project has served as a pilot study for the use of digital modelling tools in creating dynamic visualisations of the canon for education and museum purposes. Dynamic computer models introduce functionalities that allow new ways of ordering and visualising the artworks in the canon. As such, they could form a powerful tool in the training of new art historians, introducing a broader and more diverse view on the traditional canon. Although modelling will always imply a simplification and therefore a distortion of reality, new modelling techniques can help us get a better sense of the limitations of earlier models and can provide new perspectives on already established knowledge.Keywords: canon, ontological modelling, Protege Ontology Editor, social network modelling, Visone
Procedia PDF Downloads 1276473 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran
Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi
Abstract:
This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean
Procedia PDF Downloads 3346472 Performance of Fiber-Reinforced Polymer as an Alternative Reinforcement
Authors: Salah E. El-Metwally, Marwan Abdo, Basem Abdel Wahed
Abstract:
Fiber-reinforced polymer (FRP) bars have been proposed as an alternative to conventional steel bars; hence, the use of these non-corrosive and nonmetallic reinforcing bars has increased in various concrete projects. This concrete material is lightweight, has a long lifespan, and needs minor maintenance; however, its non-ductile nature and weak bond with the surrounding concrete create a significant challenge. The behavior of concrete elements reinforced with FRP bars has been the subject of several experimental investigations, even with their high cost. This study aims to numerically assess the viability of using FRP bars, as longitudinal reinforcement, in comparison with traditional steel bars, and also as prestressing tendons instead of the traditional prestressing steel. The nonlinear finite element analysis has been utilized to carry out the current study. Numerical models have been developed to examine the behavior of concrete beams reinforced with FRP bars or tendons against similar models reinforced with either conventional steel or prestressing steel. These numerical models were verified by experimental test results available in the literature. The obtained results revealed that concrete beams reinforced with FRP bars, as passive reinforcement, exhibited less ductility and less stiffness than similar beams reinforced with steel bars. On the other hand, when FRP tendons are employed in prestressing concrete beams, the results show that the performance of these beams is similar to those beams prestressed by conventional active reinforcement but with a difference caused by the two tendon materials’ moduli of elasticity.Keywords: reinforced concrete, prestressed concrete, nonlinear finite element analysis, fiber-reinforced polymer, ductility
Procedia PDF Downloads 146471 Annual Water Level Simulation Using Support Vector Machine
Authors: Maryam Khalilzadeh Poshtegal, Seyed Ahmad Mirbagheri, Mojtaba Noury
Abstract:
In this paper, by application of the input yearly data of rainfall, temperature and flow to the Urmia Lake, the simulation of water level fluctuation were applied by means of three models. According to the climate change investigation the fluctuation of lakes water level are of high interest. This study investigate data-driven models, support vector machines (SVM), SVM method which is a new regression procedure in water resources are applied to the yearly level data of Lake Urmia that is the biggest and the hyper saline lake in Iran. The evaluated lake levels are found to be in good correlation with the observed values. The results of SVM simulation show better accuracy and implementation. The mean square errors, mean absolute relative errors and determination coefficient statistics are used as comparison criteria.Keywords: simulation, water level fluctuation, urmia lake, support vector machine
Procedia PDF Downloads 3676470 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles
Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh
Abstract:
This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs
Procedia PDF Downloads 2136469 Numerical Solution Speedup of the Laplace Equation Using FPGA Hardware
Authors: Abbas Ebrahimi, Mohammad Zandsalimy
Abstract:
The main purpose of this study is to investigate the feasibility of using FPGA (Field Programmable Gate Arrays) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the Laplace equation. FPGA is an integrated circuit that contains an array of logic blocks, and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in this paper is an SoC (System on a Chip) FPGA type that integrates both microprocessor and FPGA architectures into a single device. In the present study the Laplace equation is implemented and solved numerically on both reconfigurable hardware and CPU. The precision of results and speedups of the calculations are compared together. The computational process on FPGA, is up to 20 times faster than a conventional CPU, with the same data precision. An analytical solution is used to validate the results.Keywords: accelerating numerical solutions, CFD, FPGA, hardware definition language, numerical solutions, reconfigurable hardware
Procedia PDF Downloads 3836468 A Critical Discourse Analysis of Jamaican and Trinidadian News Articles about D/Deafness
Authors: Melissa Angus Baboun
Abstract:
Utilizing a Critical Discourse Analysis (CDA) methodology and a theoretical framework based on disability studies, how Jamaican and Trinidadian newspapers discussed issues relating to the Deaf community were examined. The term deaf was inputted into the search engine tool of the online website for the Jamaica Observer and the Trinidad & Tobago Guardian. All 27 articles that contained the term deaf in its content and were written between August 1, 2017 and November 15, 2017 were chosen for the study. The data analysis was divided into three steps: (1) listing and analysis instances of metaphorical deafness (e.g. fall on deaf ears), (2) categorization of the content of the articles into the models of disability discourse (the medical, socio-cultural, and superscrip models of disability narratives), and (3) the analysis of any additional data found. A total of 42% of the articles pulled for this study did not deal with the Deaf community in any capacity, but rather instances of the use of idiomatic expressions that use deafness as a metaphor for a non-physical, undesirable trait. The most common idiomatic expression found was fall on deaf ears. Regarding the models of disability discourse, eight articles were found to follow the socio-cultural model, two were found to follow the medical model, and two were found to follow the superscrip model. The additional data found in these articles include two instances of the term deaf and mute, an overwhelming use of lower case d for the term deaf, and the misuse of the term translator (to mean interpreter).Keywords: deafness, disability, news coverage, Caribbean newspapers
Procedia PDF Downloads 233