Search results for: bio-sorption heavy metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2173

Search results for: bio-sorption heavy metals

463 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests

Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota

Abstract:

Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.

Keywords: liquefaction, shear modulus degradation, shaking table, earthquake

Procedia PDF Downloads 381
462 Dynamic Analysis of Mono-Pile: Spectral Element Method

Authors: Rishab Das, Arnab Banerjee, Bappaditya Manna

Abstract:

Mono-pile foundations are often used in soft soils in order to support heavy mega-structures, whereby often these deep footings may undergo dynamic excitation due to many causes like earthquake, wind or wave loads acting on the superstructure, blasting, and unbalanced machines, etc. A comprehensive analytical study is performed to study the dynamics of the mono-pile system embedded in cohesion-less soil. The soil is considered homogeneous and visco-elastic in nature and is analytically modeled using complex springs. Considering the N number of the elements of the pile, the final global stiffness matrix is obtained by using the theories of the spectral element matrix method. Further, statically condensing the intermediate internal nodes of the global stiffness matrix results to a smaller sub matrix containing the nodes experiencing the external translation and rotation, and the stiffness and damping functions (impedance functions) of the embedded piles are determined. Proper plots showing the variation of the real and imaginary parts of these impedance functions with the dimensionless frequency parameter are obtained. The plots obtained from this study are validated by that provided by Novak,1974. Further, the dynamic analysis of the resonator impregnated pile is proposed within this study. Moreover, with the aid of Wood's 1g laboratory scaling law, a proper scaled-down resonator-pile model is 3D printed using PLA material. Dynamic analysis of the scaled model is carried out in the time domain, whereby the lateral loads are imposed on the pile head. The response obtained from the sensors through the LabView software is compared with the proposed theoretical data.

Keywords: mono-pile, visco-elastic, impedance, LabView

Procedia PDF Downloads 106
461 Rainwater Harvesting for Household Consumption in Rural Demonstration Sites of Nong Khai Province, Thailand

Authors: Shotiros Protong

Abstract:

In recent years, Thailand has been affected by climate change phenomenon, which is clearly seen from the season change for different times. The occurrence of violent storms, heavy rains, floods, and drought were found in several areas. In a long dry period, the water supply is not adequate in drought areas. Nowadays, it is renowned that there is a significant decrease of rainwater use for household consumption in rural area of Thailand. Rainwater harvesting is the practice of collection and storage of rainwater in storage tanks before it is lost as surface run-off. Rooftop rainwater harvesting is used to provide drinking water, domestic water, and water for livestock. Rainwater harvesting in households is an alternative for people to readily prepare water resources for their own consumptions during the drought season, can help mitigate flooding of flooded plains, and also may reduce demand on the basin and well. It also helps in the availability of potable water, as rainwater is substantially free of salts. Application of rainwater harvesting in rural water system provide a substantial benefit for both water supply and wastewater subsystems by reducing the need for clean water in water distribution systems, less generated storm water in sewer systems, and a reduction in storm water runoff polluting freshwater bodies. The combination of rainwater quality and rainfall quantity is used to determine proper rainwater harvesting for household consumption to be safe and adequate for survivals. Rainwater quality analysis is compared with the drinking water standard. In terms of rainfall quantity, the observed rainfall data are interpolated by GIS 10.5 and showed by map during 1980 to 2020, used to assess the annual yield for household consumptions.

Keywords: rainwater harvesting, drinking water standard, annual yield, rainfall quantity

Procedia PDF Downloads 153
460 Potential Risks of Using Disconnected Composite Foundation Systems in Active Seismic Zones

Authors: Mohamed ElMasry, Ahmad Ragheb, Tareq AbdelAziz, Mohamed Ghazy

Abstract:

Choosing the suitable infrastructure system is becoming more challenging with the increase in demand for heavier structures contemporarily. This is the case where piled raft foundations have been widely used around the world to support heavy structures without extensive settlement. In the latter system, piles are rigidly connected to the raft, and most of the load goes to the soil layer on which the piles are bearing. In spite of that, when soil profiles contain thicker soft clay layers near the surface, or at relatively shallow depths, it is unfavorable to use the rigid piled raft foundation system. Consequently, the disconnected piled raft system was introduced as an alternative approach for the rigidly connected system. In this system, piles are disconnected from the raft using a cushion of soil, mostly of a granular interlayer. The cushion is used to redistribute the stresses among the piles and the subsoil. Piles are also used to stiffen the subsoil, and by this way reduce the settlement without being rigidly connected to the raft. However, the seismic loading effect on such disconnected foundation systems remains a problem, since the soil profiles may include thick clay layers which raise risks of amplification of the dynamic earthquake loads. In this paper, the effects of seismic behavior on the connected and disconnected piled raft systems are studied through a numerical model using Midas GTS NX Software. The study concerns the soil-structure interaction and the expected behavior of the systems. Advantages and disadvantages of each foundation approach are studied, and a comparison between the results are presented to show the effects of using disconnected piled raft systems in highly seismic zones. This was done by showing the excitation amplification in each of the foundation systems.

Keywords: soil-structure interaction, disconnected piled-raft, risks, seismic zones

Procedia PDF Downloads 261
459 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds

Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia

Abstract:

Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.

Keywords: α-Alumina, combustion, phase transformation, seeding

Procedia PDF Downloads 388
458 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System

Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh

Abstract:

A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.

Keywords: double perovskite, electrical conductivity, SEM, XRD

Procedia PDF Downloads 125
457 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test

Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri

Abstract:

Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.

Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity

Procedia PDF Downloads 106
456 The Application of Enzymes on Pharmaceutical Products and Process Development

Authors: Reginald Anyanwu

Abstract:

Enzymes are biological molecules that significantly regulate the rate of almost all of the chemical reactions that take place within cells, and have been widely used for products’ innovations. They are vital for life and serve a wide range of important functions in the body, such as aiding in digestion and metabolism. The present study was aimed at finding out the extent to which biological molecules have been utilized by pharmaceutical, food and beverage, and biofuel industries in commercial and scale up applications. Taking into account the escalating business opportunities in this vertical, biotech firms have also been penetrating enzymes industry especially that of food. The aim of the study therefore was to find out how biocatalysis can be successfully deployed; how enzyme application can improve industrial processes. To achieve the purpose of the study, the researcher focused on the analytical tools that are critical for the scale up implementation of enzyme immobilization to ascertain the extent of increased product yield at minimum logistical burden and maximum market profitability on the environment and user. The researcher collected data from four pharmaceutical companies located at Anambra state and Imo state of Nigeria. Questionnaire items were distributed to these companies. The researcher equally made a personal observation on the applicability of these biological molecules on innovative Products since there is now shifting trends toward the consumption of healthy and quality food. In conclusion, it was discovered that enzymes have been widely used for products’ innovations but there are however variations on their applications. It was also found out that pivotal contenders of enzymes market have lately been making heavy investments in the development of innovative product solutions. It was recommended that the applications of enzymes on innovative products should be widely practiced.

Keywords: enzymes, pharmaceuticals, process development, quality food consumption, scale-up applications

Procedia PDF Downloads 136
455 Practical Ways to Acquire the Arabic Language through Electronic Means

Authors: Hondozi Jahja

Abstract:

There is an obvious need to learn Arabic language and teach it to other speakers through the new curricula. The idea is to bridge the gap between theory and practice. To that end, we have sought to offer some means of help to master the Arabic language, in addition to our efforts to apply these means, enriching the culture of the student and develop his vocabulary. There is no doubt that taking care of the practical aspect of the grammar was our constant goal, and this particular aspect is what builds the student’s positive values and refine his taste and develop his language. In addressing these issues, we have adopted a school-based approach based primarily on the active and positive participation of the student. The theoretical linguistic issues - in our opinion - are not a primary goal, but the goal is to be used them by students through speaking and applying them. Among the objectives of this research is to establish the basic language skills of the students using new means that help the student to acquire these skills and apply them in various subjects of interest in his progress and development. Unfortunately, some of our students consider the grammar as ‘difficult’, ‘complex’ and ‘heavy’ in itself. This is one of the obstacles that stand in the way of their desired results. As a consequence, they end up talking – mumbling - about the difficulties they face in applying those rules. Therefore, some of our students finish their university studies and are unable to express what they feel using language correctly. For this purpose, we have sought in this research to follow a new integrated approach, which is to study the grammar of the language through modern means of the consolidation of the principle of functional language, and that the rule implies to control tongues and linguistic expressions properly. This research is a result of a practical experience as a teacher of Arabic language for non-native speakers at the ‘Hassan Pristina’ University, located in Pristina, the capital of Kosovo and at the Qatar Training Center since its establishment in 2012.

Keywords: arabic, applied methods, acquire, learning

Procedia PDF Downloads 149
454 From Ondoy to Habagat: Comparison of the Community Coping Strategies between Barangay Tumana and Provident Village, Marikina City

Authors: Dinnah Feye H. Andal, Ann Laurice V. Salonga

Abstract:

The paper investigates the flooding event that was experienced by Marikina City residents during the onslaught of Tropical Storm Ondoy on September 26, 2009 and during the heavy downpour caused by the southwest monsoon (Habagat) on August 1-8, 2012. Typhoon Ketsana, locally known as Tropical Storm Ondoy, devastated the whole of Marikina City, displacing a lot of people from their homes and damages properties as well, as flood rose at a very short period of time. Meanwhile, the massive amount of rain water brought by the southwest monsoon lasted for a week that also caused flooding to different parts of Metro Manila including Marikina City. This paper examines how the respondents’ experiences of the flooding caused by Tropical Storm Ondoy informed the coping strategies that the households in Barangay Tumana and Provident Village employed during the flooding brought by the southwest monsoon rains. Specifically, the research compares the coping strategies to flood hazards between residents of Barangay Tumana and Provident Village before, during and after the flooding caused by the southwest monsoon rains. Both study sites have relatively low elevation and are located along rivers and creeks which make them highly susceptible to flood. Interviews with affected residents were undertaken to understand how a household's coping strategies contribute to the development of community coping strategies at the respective neighborhood level. Based from the findings, income levels, local politics, religion and social relations between and among neighbors affect the way household and community coping strategies differ in the two case study sites.

Keywords: community coping strategies, Habagat, Marikina, Ondoy

Procedia PDF Downloads 313
453 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery

Authors: Thirupathi Thippani, Kothandaraman Ramanujam

Abstract:

Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.

Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery

Procedia PDF Downloads 226
452 Evaluation of Water Chemistry and Quality Characteristics of Işıklı Lake (Denizli, Türkiye)

Authors: Abdullah Ay, Şehnaz Şener

Abstract:

It is of great importance to reveal their current status and conduct research in this direction for the sustainable use and protection of lakes, which are among the most important water resources for meeting water needs and ensuring ecological balance. In this context, the purpose of this study is to determine the hydrogeochemical properties, as well as water quality and usability characteristics of Işıklı Lake within the Lakes Region of Turkey. Işıklı Lake is a tectonic lake located in the Aegean Region of Turkey. The lake has a surface area of approximately 36 km². Temperature (T), electrical conductivity (EC) and hydrogen ion concentration (pH), dissolved oxygen (%, mg/l), Oxidation Reduction Potential (ORP; mV), and amount of dissolved solids in water (TDS; mg/l) of water samples taken from the lake values were determined by in situ analysis. Major ion and heavy metal analyses were carried out under laboratory conditions. Additionally, the relationship between major ion concentrations and TDS values of Işıklı Lake water samples was determined by correlation analysis. According to the results obtained, it is seen that especially Mg, Ca and HCO₃ ions are dominant in the lake water, and it has been determined that the lake water is in the Ca-Mg-HCO₃ water facies. According to statistical analysis, a strong and positive relationship was found between the TDS value and bicarbonate and calcium (R² = 0.61 and 0.7, respectively). However, no significant relationship was detected between the TDS value and other chemical elements. Although the waters are generally in water quality class I, they are in class IV in terms of sulfur and aluminum. It is included in the water quality class. This situation is due to the rock-water interaction in the region. When the analysis results of the lake water were compared with the drinking water limit values specified by TSE-266 (2005) and WHO (2017), it was determined that it was not suitable for drinking water use in terms of Pb, Se, As, and Cr. When the waters were evaluated in terms of pollution, it was determined that 50% of the samples carried pollution loads in terms of Al, As, Fe, NO3, and Cu.

Keywords: Işıklı Lake, water chemistry, water quality, pollution, arsenic, Denizli

Procedia PDF Downloads 17
451 De Novo Design of Functional Metalloproteins for Biocatalytic Reactions

Authors: Ketaki D. Belsare, Nicholas F. Polizzi, Lior Shtayer, William F. DeGrado

Abstract:

Nature utilizes metalloproteins to perform chemical transformations with activities and selectivities that have long been the inspiration for design principles in synthetic and biological systems. The chemical reactivities of metalloproteins are directly linked to local environment effects produced by the protein matrix around the metal cofactor. A complete understanding of how the protein matrix provides these interactions would allow for the design of functional metalloproteins. The de novo computational design of proteins have been successfully used in design of active sites that bind metals like di-iron, zinc, copper containing cofactors; however, precisely designing active sites that can bind small molecule ligands (e.g., substrates) along with metal cofactors is still a challenge in the field. The de novo computational design of a functional metalloprotein that contains a purposefully designed substrate binding site would allow for precise control of chemical function and reactivity. Our research strategy seeks to elucidate the design features necessary to bind the cofactor protoporphyrin IX (hemin) in close proximity to a substrate binding pocket in a four helix bundle. First- and second-shell interactions are computationally designed to control orientation, electronic structure, and reaction pathway of the cofactor and substrate. The design began with a parameterized helical backbone that positioned a single histidine residue (as an axial ligand) to receive a second-shell H-bond from a Threonine on the neighboring helix. The metallo-cofactor, hemin was then manually placed in the binding site. A structural feature, pi-bulge was introduced to give substrate access to the protoporphyrin IX. These de novo metalloproteins are currently being tested for their activity towards hydroxylation and epoxidation. The de novo designed protein shows hydroxylation of aniline to 4-aminophenol. This study will help provide structural information of utmost importance in understanding de novo computational design variables impacting the functional activities of a protein.

Keywords: metalloproteins, protein design, de novo protein, biocatalysis

Procedia PDF Downloads 149
450 Rapid and Easy Fabrication of Collagen-Based Biocomposite Scaffolds for 3D Cell Culture

Authors: Esra Turker, Umit Hakan Yildiz, Ahu Arslan Yildiz

Abstract:

The key of regenerative medicine is mimicking natural three dimensional (3D) microenvironment of tissues by utilizing appropriate biomaterials. In this study, a synthetic biodegradable polymer; poly (L-lactide-co-ε-caprolactone) (PLLCL) and a natural polymer; collagen was used to mimic the biochemical structure of the natural extracellular matrix (ECM), and by means of electrospinning technique the real physical structure of ECM has mimicked. PLLCL/Collagen biocomposite scaffolds enables cell attachment, proliferation and nutrient transport through fabrication of micro to nanometer scale nanofibers. Biocomposite materials are commonly preferred due to limitations of physical and biocompatible properties of natural and synthetic materials. Combination of both materials improves the strength, degradation and biocompatibility of scaffold. Literature studies have shown that collagen is mostly solved with heavy chemicals, which is not suitable for cell culturing. To overcome this problem, a new approach has been developed in this study where polyvinylpyrrolidone (PVP) is used as co-electrospinning agent. PVP is preferred due to its water solubility, so PLLCL/collagen biocomposite scaffold can be easily and rapidly produced. Hydrolytic and enzymatic biodegradation as well as mechanical strength of scaffolds were examined in vitro. Cell adhesion, proliferation and cell morphology characterization studies have been performed as well. Further, on-chip drug screening analysis has been performed over 3D tumor models. Overall, the developed biocomposite scaffold was used for 3D tumor model formation and obtained results confirmed that developed model could be used for drug screening studies to predict clinical efficacy of a drug.

Keywords: biomaterials, 3D cell culture, drug screening, electrospinning, lab-on-a-chip, tissue engineering

Procedia PDF Downloads 306
449 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets

Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.

Keywords: cooling speed, gravity, homogenous cooling, jet impingement

Procedia PDF Downloads 119
448 Usefulness of Web Sites in Starting Up Wineries: A Comparative study of Canadian, Moroccan and American Small Firms

Authors: Jocelyn D. Perreault

Abstract:

An exploratory study has been launched in 2013-2014 in the province of Quebec, the state of Vermont (USA) and the region of Zaer in Morocco. We have realized three first case studies in order to better understand the marketing strategies of starting up vineries, which are defined as having a maximum of five years of operations. The methodology used consisted of visiting the vineyards; conducting semi-directed interviews with owner-managers; visiting points-of-sale of the wines and analysing the web sites using an assessment grid. The results indicate many differences between the three firms in their use of their web sites. More precisely, we have noticed that: -The Quebec vineyard uses its web site in collaboration with the touristic actors of its region and the association of the wine makers of the province of Quebec.Positioning is as a touristic attraction. -In comparison,the Moroccan firm limits the content of the web site to itself and its activities and somehow to the wine industry.Positioning is as a wine specialist. -The american firm associated its web site more to farm markets actors and activities of the region.Positioning is as an agricultural actor. -The positionings of the three vineyards are very different from each others and will be discussed more thoroughly during the presentation to better understand the use of web sites, thus contributing to the «brand image». -Improvements to the three web sites have been identified and suggested by more than a hundred of persons using the same grid and comprising students of bachelor and MBA degrees from our university. In general, the web sites have been considered satisfying but requiring several improvements at different levels. Changes or updates have been observed for the Quebec winery web site but practically no changes have been made to the others in the last months. The assessment grid will be presented in more details as well as the global and the partial scores given by the respondents. In conclusion, we have noticed that only one winery is considered as a «heavy and strategic user» of its web site and of Facebook and Twitter.

Keywords: web site, wineries, marketing, positioning, starting up strategies

Procedia PDF Downloads 297
447 Designing Nickel Coated Activated Carbon (Ni/AC) Based Electrode Material for Supercapacitor Applications

Authors: Zahid Ali Ghazi

Abstract:

Supercapacitors (SCs) have emerged as auspicious energy storage devices because of their fast charge-discharge characteristics and high power densities. In the current study, a simple approach is used to coat activated carbon (AC) with a thin layer of nickel (Ni) by an electroless deposition process to enhance the electrochemical performance of the SC. The synergistic combination of large surface area and high electrical conductivity of the AC, as well as the pseudocapacitive behavior of the metallic Ni, has shown great potential to overcome the limitations of traditional SC materials. First, the materials were characterized using X-ray diffraction (XRD) for crystallography, scanning electron microscopy (SEM) for surface morphology and energy dispersion X-ray (EDX) for elemental analysis. The electrochemical performance of the nickel-coated activated carbon (Ni-AC) is systematically evaluated through various techniques, including galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The GCD results revealed that Ni/AC has a higher specific capacitance (1559 F/g) than bare AC (222 F/g) at 1 A/g current density in a 2 M KOH electrolyte. Even at a higher current density of 20 A/g, the Ni/AC showed a high capacitance of 944 F/g as compared to 77 F/g by AC. The specific capacitance (1318 F/g) calculated from CV measurements for Ni-AC at 10mV/sec was in close agreement with GCD data. Furthermore, the bare AC exhibited a low energy of 15 Wh/kg at a power density of 356 W/kg whereas, an energy density of 111 Wh/kg at a power density of 360 W/kg was achieved by Ni/AC-850 electrode and demonstrated a long life cycle with 94% capacitance retention over 50000 charge/discharge cycles at 10 A/g. In addition, the EIS study disclosed that the Rs and Rct values of Ni/AC electrodes were much lower than those of bare AC. The superior performance of Ni/AC is mainly attributed to the presence of excessive redox active sites, large electroactive surface area and corrosive resistance properties of Ni. We believe that this study will provide new insights into the controlled coating of ACs and other porous materials with metals for developing high-performance SCs and other energy storage devices.

Keywords: supercapacitor, cyclic voltammetry, coating, energy density, activated carbon

Procedia PDF Downloads 57
446 Polystyrene Paste as a Substitute for a Portland Cement: A Solution to the Nigerian Dilemma

Authors: Lanre Oluwafemi Akinyemi

Abstract:

The reduction of limestone to cement in Nigeria is expensive and requires huge amounts of energy. This significantly affects the cost of cement. Concrete is heavy: a cubic foot of it weighs about 150 lbs. and a cubic yard is about 4000 lbs. Thus a ready-mix truck with 9 cubic yards is carrying 36,000 lbs excluding the weight of the truck itself, thereby accumulating cost for also manufacturers. Therein lies the need to find a substitute for cement by using the polystyrene paste that benefits both the manufactures and the consumers. Polystyrene Paste Constructional Cement (PPCC), a patented material obtained by dissolving Waste EPS in volatile organic solvent, has recently been identified as a suitable binder/cement for construction and building material production. This paper illustrates the procedures of a test experiment undertaken to determine the splitting tensile strength of PPCC mortar compared to that of OPC (Ordinary Portland Cement). Expanded polystyrene was dissolved in gasoline to form a paste referred to as Polystyrene Paste Constructional Cement (PPCC). Mortars of mix ratios 1:4, 1:5, 1:6, 1:7 (PPCC: fine aggregate) batched by volume were used to produce 50mm x 100mm cylindrical PPCC mortar splitting tensile strength specimens. The control experiment was done by creating another series of cylindrical OPC mortar splitting tensile strength specimens following the same mix ratio used earlier. The PPCC cylindrical splitting tensile strength specimens were left to air-set, and the ones made with Ordinary Portland Cement (OPC) were demoded after 24 hours and cured in water. The cylindrical PPCC splitting tensile strength specimens were tested at 28 days and compared with those of the Ordinary Portland cement splitting tensile strength specimens. The result shows that hence for this two mixes, PPCC exhibits a better binding property than the OPC. With this my new invention I recommend the use of PPCC as a substitute for a Portland cement.

Keywords: polystyrene paste, Portland cement, construction, mortar

Procedia PDF Downloads 152
445 The Acute Effects of Higher Versus Lower Load Duration and Intensity on Morphological and Mechanical Properties of the Healthy Achilles Tendon: A Randomized Crossover Trial

Authors: Eman Merza, Stephen Pearson, Glen Lichtwark, Peter Malliaras

Abstract:

The Achilles tendon (AT) exhibits volume changes related to fluid flow under acute load which may be linked to changes in stiffness. Fluid flow provides a mechanical signal for cellular activity and may be one mechanism that facilitates tendon adaptation. This study aimed to investigate whether isometric intervention involving a high level of load duration and intensity could maximize the immediate reduction in AT volume and stiffness compared to interventions involving a lower level of load duration and intensity. Sixteen healthy participants (12 males, 4 females; age= 24.4 ± 9.4 years; body mass= 70.9 ± 16.1 kg; height= 1.7 ± 0.1 m) performed three isometric interventions of varying levels of load duration (2 s and 8 s) and intensity (35% and 75% maximal voluntary isometric contraction) over a 3 week period. Freehand 3D ultrasound was used to measure free AT volume (at rest) and length (at 35%, 55%, and 75% of maximum plantarflexion force) pre- and post-interventions. The slope of the force-elongation curve over these force levels represented individual stiffness (N/mm). Large reductions in free AT volume and stiffness resulted in response to long-duration high-intensity loading whilst less reduction was produced with a lower load intensity. In contrast, no change in free AT volume and a small increase in AT stiffness occurred with lower load duration. These findings suggest that the applied load on the AT must be heavy and sustained for a long duration to maximize immediate volume reduction, which might be an acute response that enables optimal long-term tendon adaptation via mechanotransduction pathways.

Keywords: Achilles tendon, volume, stiffness, free tendon, 3d ultrasound

Procedia PDF Downloads 89
444 Decoding the Natural Hazards: The Data Paradox, Juggling Data Flows, Transparency and Secrets, Analysis of Khuzestan and Lorestan Floods of Iran

Authors: Kiyanoush Ghalavand

Abstract:

We have a complex paradox in the agriculture and environment sectors in the age of technology. In the one side, the achievements of the science and information ages are shaping to come that is very dangerous than ever last decades. The progress of the past decades is historic, connecting people, empowering individuals, groups, and states, and lifting a thousand people out of land and poverty in the process. Floods are the most frequent natural hazards damaging and recurring of all disasters in Iran. Additionally, floods are morphing into new and even more devastating forms in recent years. Khuzestan and Lorestan Provinces experienced heavy rains that began on March 28, 2019, and led to unprecedented widespread flooding and landslides across the provinces. The study was based on both secondary and primary data. For the present study, a questionnaire-based primary survey was conducted. Data were collected by using a specially designed questionnaire and other instruments, such as focus groups, interview schedules, inception workshops, and roundtable discussions with stakeholders at different levels. Farmers in Khuzestan and Lorestan provinces were the statistical population for this study. Data were analyzed with several software such as ATLASti, NVivo SPSS Win, ،E-Views. According to a factorial analysis conducted for the present study, 10 groups of factors were categorized climatic, economic, cultural, supportive, instructive, planning, military, policymaking, geographical, and human factors. They estimated 71.6 percent of explanatory factors of flood management obstacles in the agricultural sector in Lorestan and Khuzestan provinces. Several recommendations were finally made based on the study findings.

Keywords: chaos theory, natural hazards, risks, environmental risks, paradox

Procedia PDF Downloads 139
443 Characterization of Tailings From Traditional Panning of Alluvial Gold Ore (A Case Study of Ilesa - Southwestern Nigeria Goldfield Tailings Dumps)

Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke

Abstract:

Field observation revealed a lot of artisanal gold mining activities in Ilesa gold belt of southwestern Nigeria. The possibility of alluvial and lode gold deposits in commercial quantities around this location is very high, as there are many resident artisanal gold miners who have been mining and trading alluvial gold ore for decades and to date in the area. Their major process of solid gold recovery from its ore is by gravity concentration using the convectional panning method. This method is simple to learn and fast to recover gold from its alluvial ore, but its effectiveness is based on rules of thumb and the artisanal miners' experience in handling gold ore panning tool while processing the ore. Research samples from five alluvial gold ore tailings dumps were collected and studied. Samples were subjected to particle size analysis and mineralogical and elemental characterization using X-Ray Diffraction (XRD) and Particle-Induced X-ray Emission (PIXE) methods, respectively. The results showed that the tailings were of major quartz in association with albite, plagioclase, mica, gold, calcite and sulphide minerals. The elemental composition analysis revealed a 15ppm of gold concentration in particle size fraction of -90 microns in one of the tailings dumps investigated. These results are significant. It is recommended that heaps of panning tailings should be further reprocessed using other gold recovery methods such as shaking tables, flotation and controlled cyanidation that can efficiently recover fine gold particles that were previously lost into the gold panning tailings. The tailings site should also be well controlled and monitored so that these heavy minerals do not find their way into surrounding water streams and rivers, thereby causing health hazards.

Keywords: gold ore, panning, PIXE, tailings, XRD

Procedia PDF Downloads 84
442 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks

Authors: Bukunola K. Oguntade, Gareth M. Watkins

Abstract:

The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.

Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc

Procedia PDF Downloads 129
441 Insecticidal Effect of Nanoparticles against Helicoverpa armigera Infesting Chickpea

Authors: Shabistana Nisar, Parvez Qamar Rizvi, Sheeraz Malik

Abstract:

The potential advantage of nanotechnology is comparably marginal due to its unclear benefits in agriculture and insufficiency in public opinion. The nanotech products might solve the pesticide problems of societal concern fairly at acceptable or low risk for consumers and environmental applications. The deleterious effect of chemicals used on crops can be compacted either by reducing the existing active ingredient to nanosize or by plummeting the metals into nanoform. Considering the above facts, an attempt was made to determine the efficacy of nanoelements viz., Silver, Copper Manganese and Neem seed kernel extract (NSKE) for effective management of gram pod borer, Helicoverpa armigera infesting chickpea, being the most damaging pest of large number of crops, gram pod borer was selected as test insect to ascertain the impact of nanoparticles under controlled conditions (25-27 ˚C, 60-80% RH). The respective nanoformulations (0.01, 0.005, 0.003, 0.0025, 0.002, 0.001) were topically applied on 4th instar larvae of pod borer. In general, nanochemicals (silver, copper, manganese, NSKE) produced relatively high mortality at low dilutions (0.01, 0.005, 0.003). The least mortality was however recorded at 0.001 concentration. Nanosilver proved most efficient producing significantly highest (f₄,₂₄=129.56, p < 0.05) mortality 63.13±1.77, 83.21±2.02 and 96.10±1.25 % at 0.01 concentration after 2nd, 4th and 6th day, respectively. The least mortality was however recorded with nanoNSKE. The mortality values obtained at respective days were 21.25±1.50%, 25.20±2.00%, and 56.20±2.25%. Nanocopper and nanomanganese showed slow rate of killing on 2nd day of exposure, but increased (79.20±3.25 and 65.33±1.25) at 0.01 dilution on 3rd day, followed by 83.00±3.50% and 70.20±2.20% mortality on 6thday. The sluggishness coupled with antifeedancy was noticed at early stage of exposure. The change in body colour to brown due to additional melanisation in copper, manganese, and silver treated larvae and demalinization in nanoNSKE exposed larvae was observed at later stage of treatment. Thus, all the nanochemicals applied, produced the significant lethal impact on Helicoverpa armigera and can be used as valuable tool for its effective management.

Keywords: chickpea, helicoverpa armigera, management, nanoparticles

Procedia PDF Downloads 352
440 Thorium-Doped PbS Thin Films for Radiation Damage Studies

Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel

Abstract:

We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.

Keywords: thin films, doping, radiation damage, chemical bath deposition

Procedia PDF Downloads 388
439 Potential of Rice Husk Ash as a Partial Cement Replacement in Concrete for Highways Application

Authors: Ash Ahmed, Fraser Hyndman, Heni Fitriani, John Kamau

Abstract:

The highway pavement is the biggest structural asset a government can construct and maintain. Concrete rigid pavements are used to carry traffic in large volumes across countries safely and efficiently. Pavement quality concrete mixes have high levels of cement which contribute to up to 10% of global CO₂ emissions. Currently the UK specifies (ground granulated blastfurnace slag) GGBS and (pulverised fuel ash) PFA to reduce the quantity of cement used in pavement construction. GGBS and PFA come from heavy industry that should not be relied upon to improve the sustainability of construction materials. This report shows that cement in pavement quality concrete can be replaced with rice husk ash (RHA) without causing adverse effects to the mechanical properties required for highways. RHA comes from the food production industry and is vital for the growing global population. It is thus a socially responsible objective to use a pozzolan in highway pavement construction that is sourced from an environmentally friendly industry. The report investigates the properties of RHA mixes and compares them to existing pavement quality mixes already used and specified. The report found that sieving RHA and not grinding it gives the best performance. Due to the low density of RHA the investigation found that replacing cement by volume rather than weight provided the best results. Findings showed that CEM II mixed with 20% RHA meets the required specification for pavement quality concrete and mitigates using the comparative CEM I. The investigation also notes that RHA is observed to be more reactive with CEM II rather than CEM I and suits early strength gains required for pavement construction. The report concludes that RHA is a sustainable material that reduces the embodied CO₂ of pavement quality concrete, which is well suited for UK highway specifications and has the potential to improve the lives of people living in the developing countries.

Keywords: pavement, pozzolan, rice husk ash, sustainable concrete

Procedia PDF Downloads 166
438 Lake Bardawil Water Quality

Authors: Mohamed Elkashouty, Mohamed Elkammar, Mohamed Gomma, Menal Elminiami

Abstract:

Lake Bardawil is considered as one of the major morphological features of northern Sinai. It represents the largest fish production lake for export in Egypt. Nineteen and thirty one samples were collected from lake water during winter and summer (2005). TDS, cations, anions, Cd, Cu, Fe, Mn, Zn, Ni, Co and Pb concentrations were measured within winter and summer seasons. During summer, in the eastern sector of the lake, TDS concentration is decreased due northeastern part (38000 ppm), it is attributed to dilution from seawater through Boughaz II. The TDS concentration increased generally in the central and southern parts of the lake (44000 and 42000 ppm, respectively). It is caused by they are far from dilution from seawater, disconnected water body, shallow depth (mean 2 m), and high evaporation rate. In the western sector, the TDS content ranged from low (38000 ppm) in the northeastern part to high (50000 ppm) in the western part. Generally, the TDS concentration in the western sector is higher than those in the eastern. It is attributed to low volume of water body for the former, high evaporation rate, and therefore increase in TDS content in the lake water.During winter season, in the eastern sector, the wind velocity is high which enhance the water current to inflow into the lake through Boughaz I and II. The resultant water lake is diluted by seawater and rainfall in the winter season. The TDS concentration increased due southern part of the lake (42000 ppm) and declined in the northern part (36000 ppm). The concentration of Co, Ni, Pb, Fe, Cd, Zn, Cu, Mn and Pb within winter and summery seasons, in lake water are low, which considered as background concentrations with respect to seawater. Therefore, there are no industrial, agricultural and sanitary wastewaters dump into the lake. This confirms the statement that has been written at the entrance of Lake Bardawil at El-Telool area "Lake Bardawil, one of the purest lakes in the world". It indicate that the Lake Bardawil is excellent area for fish production for export (current state) and is the second main fish source in Egypt after the Mediterranean Sea after the illness of Lake Manzala.

Keywords: lake Bardawil, water quality, major ions, toxic metals

Procedia PDF Downloads 514
437 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics

Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou

Abstract:

Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle

Procedia PDF Downloads 320
436 Investigating Undrained Behavior of Noor Sand Using Triaxial Compression Test

Authors: Hossein Motaghedi, Siavash Salamatpoor, Abbas Mokhtari

Abstract:

Noor costal city which is located in Mazandaran province, Iran, regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. In this study, undrained triaxial tests under isotropic consolidation were conducted on the reconstituted samples of Noor sand, which underlies a densely populated, seismic region of southern bank of Caspian Sea. When the strain level is large enough, soil samples under shearing tend to be in a state of continuous deformation under constant shear and normal stresses. There exists a correlation between the void ratio and mean effective principal stress, which is referred to as the ultimate steady state line (USSL). Soil behavior can be achieved by expressing the state of effective confining stress and defining the location of this point relative to the steady state line. Therefore, one can say that sand behavior not only is dependent to relative density but also a description of stress state has to be defined. The current study tries to investigate behavior of this sand under different conditions such as confining effective stress and relative density using undrained monotonic triaxial compression tests. As expected, the analyzed results show that the sand behavior varies from dilative to contractive state while initial isotropic effective stress increases. Therefore, confining effective stress level will directly affect the overall behavior of sand. The observed behavior obtained from the conducted tests is then compared with some previously tested sands including Yamuna, Ganga, and Toyoura.

Keywords: noor sand, liquefaction, undrained test, steady state

Procedia PDF Downloads 424
435 Manganese Contamination Exacerbates Reproductive Stress in a Suicidally-Breeding Marsupial

Authors: Ami Fadhillah Amir Abdul Nasir, Amanda C. Niehaus, Skye F. Cameron, Frank A. Von Hippel, John Postlethwait​, Robbie S. Wilson

Abstract:

For suicidal breeders, the physiological stresses and energetic costs of breeding are fatal. Environmental stressors such as pollution should compound these costs, yet suicidal breeding is so rare among mammals that this is unknown. Here, we explored the consequences of metal contamination to the health, aging and performance of endangered, suicidally-breeding northern quolls (Dasyurus hallucatus) living near an active manganese mine on Groote Eylandt, Northern Territory, Australia. We found respirable manganese dust at levels exceeding international recommendations even 20km from mining sites and substantial accumulation of manganese within quolls’ hair, testes, and in two brain regions—the neocortex and cerebellum, responsible for sensory perception and motor function, respectively. Though quolls did not differ in sprint speeds, motor skill, or manoeuvrability, those with higher accumulation of manganese crashed at lower speeds during manoeuvrability tests, indicating a potential effect on sight or cognition. Immune function and telomere length declined over the breeding season, as expected with ageing, but manganese contamination exacerbated immune declines and suppressed cortisol. Unexpectedly, male quolls with higher levels of manganese had longer telomeres, supporting evidence of unusual telomere dynamics among Dasyurids—though whether this affects their lifespan is unknown. We posit that sublethal contamination via pollution, mining, or urbanisation imposes physiological costs on wildlife that may diminish reproductive success or survival.

Keywords: ecotoxicology, heavy metal, manganese, telomere length, cortisol, locomotor

Procedia PDF Downloads 307
434 The Influence of Different Technologies on the Infiltration Properties and Soil Surface Crusting Processing in the North Bohemia Region

Authors: Miroslav Dumbrovsky, Lucie Larisova

Abstract:

The infiltration characteristic of the soil surface is one of the major factors that determines the potential soil degradation risk. The physical, chemical and biological characteristic of soil is changed by the processing of soil. The infiltration soil ability has an important role in soil and water conservation. The subject of the contribution is the evaluation of the influence of the conventional tillage and reduced tillage technology on soil surface crusting processing and infiltration properties of the soil in the North Bohemia region. Field experimental work at the area was carried out in the years 2013-2016 on Cambisol district medium-heavy clayey soil. The research was conducted on sloping erosion-endangered blocks of compacted arable land. The areas were chosen each year in the way that one of the experimental areas was handled by conventional tillage technologies and the other by reduced tillage technologies. Intact soil samples were taken into Kopecký´s cylinders in the three landscape positions, at a depth of 10 cm (representing topsoil) and 30 cm (representing subsoil). The cumulative infiltration was measured using a mini-disc infiltrometer near the consumption points. The Zhang method (1997), which provides an estimate of the unsaturated hydraulic conductivity K(h), was used for the evaluation of the infiltration tests of the mini-disc infiltrometer. The soil profile processed by conventional tillage showed a higher degree of compaction and soil crusting processing. The bulk density was between 1.10–1.67 g.cm⁻³, compared to the land processed by the reduced tillage technology, where the values were between 0.80–1.29 g.cm⁻³. Unsaturated hydraulic conductivity values were about one-third higher within the reduced tillage technology soil processing.

Keywords: soil crusting processing, unsaturated hydraulic conductivity, cumulative infiltration, bulk density, porosity

Procedia PDF Downloads 240