Search results for: agricultural process engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19124

Search results for: agricultural process engineering

17414 Applying the Fuzzy Analytic Network Process to Establish the Relative Importance of Knowledge Sharing Barriers

Authors: Van Dong Phung, Igor Hawryszkiewycz, Kyeong Kang, Muhammad Hatim Binsawad

Abstract:

Knowledge sharing (KS) is the key to creativity and innovation in any organizations. Overcoming the KS barriers has created new challenges for designing in dynamic and complex environment. There may be interrelations and interdependences among the barriers. The purpose of this paper is to present a review of literature of KS barriers and impute the relative importance of them through the fuzzy analytic network process that is a generalization of the analytical hierarchy process (AHP). It helps to prioritize the barriers to find ways to remove them to facilitate KS. The study begins with a brief description of KS barriers and the most critical ones. The FANP and its role in identifying the relative importance of KS barriers are explained. The paper, then, proposes the model for research and expected outcomes. The study suggests that the use of the FANP is appropriate to impute the relative importance of KS barriers which are intertwined and interdependent. Implications and future research are also proposed.

Keywords: FANP, ANP, knowledge sharing barriers, knowledge sharing, removing barriers, knowledge management

Procedia PDF Downloads 333
17413 From Bureaucracy to Organizational Learning Model: An Organizational Change Process Study

Authors: Vania Helena Tonussi Vidal, Ester Eliane Jeunon

Abstract:

This article aims to analyze the change processes of management related bureaucracy and learning organization model. The theoretical framework was based on Beer and Nohria (2001) model, identified as E and O Theory. Based on this theory the empirical research was conducted in connection with six key dimensions: goal, leadership, focus, process, reward systems and consulting. We used a case study of an educational Institution located in Barbacena, Minas Gerais. This traditional center of technical knowledge for long time adopted the bureaucratic way of management. After many changes in a business model, as the creation of graduate and undergraduate courses they decided to make a deep change in management model that is our research focus. The data were collected through semi-structured interviews with director, managers and courses supervisors. The analysis were processed by the procedures of Collective Subject Discourse (CSD) method, develop by Lefèvre & Lefèvre (2000), Results showed the incremental growing of management model toward a learning organization. Many impacts could be seeing. As negative factors we have: people resistance; poor information about the planning and implementation process; old politics inside the new model and so on. Positive impacts are: new procedures in human resources, mainly related to manager skills and empowerment; structure downsizing, open discussions channel; integrated information system. The process is still under construction and now great stimulus is done to managers and employee commitment in the process.

Keywords: bureaucracy, organizational learning, organizational change, E and O theory

Procedia PDF Downloads 434
17412 Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding

Authors: Ahmad K. Jassim, Raheem Kh. Al-Subar

Abstract:

Friction stir welding is a modern and an environmentally friendly solid state joining process used to joint relatively lighter family of materials. Recently, friction stir spot welding has been used instead of resistance spot welding which has received considerable attention from the automotive industry. It is environmentally friendly process that eliminated heat and pollution. In this research, friction stir spot welding has been used to study the possibility to weld AA1100 aluminum alloy sheet with 3 mm thickness by overlapping the edges of sheet as lap joint. The process was done using a drilling machine instead of milling machine. Different tool rotational speeds of 760, 1065, 1445, and 2000 RPM have been applied with manual and automatic compression to study their effect on the quality of welded joints. Heat generation, pressure applied, and depth of tool penetration have been measured during the welding process. The result shows that there is a possibility to weld AA1100 sheets; however, there is some surface defect that happened due to insufficient condition of welding. Moreover, the relationship between rotational speed, pressure, heat generation and tool depth penetration was created.

Keywords: friction, spot, stir, environmental, sustainable, AA1100 aluminum alloy

Procedia PDF Downloads 196
17411 [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: fuzzy logic, metal machining, process modeling, surface roughness

Procedia PDF Downloads 159
17410 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, E. Kate

Abstract:

Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.

Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying

Procedia PDF Downloads 313
17409 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production

Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen

Abstract:

In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.

Keywords: carrageenan, extraction, protein, seaweed

Procedia PDF Downloads 284
17408 The Constructivist Approach to Teaching Second Language Writing

Authors: Andreea Cervatiuc

Abstract:

This study focuses on teaching second language writing through a constructivist approach. Unlike traditional approaches to teaching second language writing, which were product-oriented and emphasized surface features of writing, such as spelling and grammar, the constructivist approach to teaching second language writing is process-oriented and fosters discovery of meaning, creativity, collaboration, and writing for an audience. Educators who take a constructivist approach to teaching second language writing create communities of writers in their classrooms, emphasize that the goal of writing is to share ideas with others, and engage their students in collaborative, creative, and authentic writing activities, such as writing conferences, group story writing, finish the story, and chain writing. The constructivist approach to teaching second language writing combines a focus on genres, scaffolding, and treating writing as a process. Through constructivist writing, students co-create knowledge and engage in meaningful dialogue with various texts and their peers. The findings of this study can have implications for applied linguists, teachers, and language learners.

Keywords: constructivist second language, writing genres, process writing, scaffolding

Procedia PDF Downloads 10
17407 Learning in the Virtual Laboratory via Design of Automation Process for Wooden Hammers Marking

Authors: A. Javorova, J. Oravcova, K. Velisek

Abstract:

The article summarizes the experience of technical subjects teaching methodologies using a number of software products to solve specific assigned tasks described in this paper. Task is about the problems of automation and mechanization in the industry. Specifically, it focuses on introducing automation in the wood industry. The article describes the design of the automation process for marking wooden hammers. Similar problems are solved by students in CA laboratory.

Keywords: CA system, education, simulation, subject

Procedia PDF Downloads 296
17406 A Mixed Integer Programming Model for Optimizing the Layout of an Emergency Department

Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee

Abstract:

During the recent years, demand for healthcare services has dramatically increased. As the demand for healthcare services increases, so does the necessity of constructing new healthcare buildings and redesigning and renovating existing ones. Increasing demands necessitate the use of optimization techniques to improve the overall service efficiency in healthcare settings. However, high complexity of care processes remains the major challenge to accomplish this goal. This study proposes a method based on process mining results to address the high complexity of care processes and to find the optimal layout of the various medical centers in an emergency department. ProM framework is used to discover clinical pathway patterns and relationship between activities. Sequence clustering plug-in is used to remove infrequent events and to derive the process model in the form of Markov chain. The process mining results served as an input for the next phase which consists of the development of the optimization model. Comparison of the current ED design with the one obtained from the proposed method indicated that a carefully designed layout can significantly decrease the distances that patients must travel.

Keywords: Mixed Integer programming, Facility layout problem, Process Mining, Healthcare Operation Management

Procedia PDF Downloads 339
17405 Carbon Footprint Assessment and Application in Urban Planning and Geography

Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim

Abstract:

Human life, activity, and culture depend on the wider environment. Cities offer economic opportunities for goods and services, but cannot exist in environments without food, energy, and water supply. Technological innovation in energy supply and transport speeds up the expansion of urban areas and the physical separation from agricultural land. As a result, division of urban agricultural areas causes more energy demand for food and goods transport between the regions. As the energy resources are leaking all over the world, the impact on the environment crossing the boundaries of cities is also growing. While advances in energy and other technologies can reduce the environmental impact of consumption, there is still a gap between energy supply and demand by current technology, even in technically advanced countries. Therefore, reducing energy demand is more realistic than relying solely on the development of technology for sustainable development. The purpose of this study is to introduce the application of carbon footprint assessment in fields of urban planning and geography. In urban studies, carbon footprint has been assessed at different geographical scales, such as nation, city, region, household, and individual. Carbon footprint assessment for a nation and a city is available by using national or city level statistics of energy consumption categories. By means of carbon footprint calculation, it is possible to compare the ecological capacity and deficit among nations and cities. Carbon footprint also offers great insight on the geographical distribution of carbon intensity at a regional level in the agricultural field. The study shows the background of carbon footprint applications in urban planning and geography by case studies such as figuring out sustainable land-use measures in urban planning and geography. For micro level, footprint quiz or survey can be adapted to measure household and individual carbon footprint. For example, first case study collected carbon footprint data from the survey measuring home energy use and travel behavior of 2,064 households in eight cities in Gyeonggi-do, Korea. Second case study analyzed the effects of the net and gross population densities on carbon footprint of residents at an intra-urban scale in the capital city of Seoul, Korea. In this study, the individual carbon footprint of residents was calculated by converting the carbon intensities of home and travel fossil fuel use of respondents to the unit of metric ton of carbon dioxide (tCO₂) by multiplying the conversion factors equivalent to the carbon intensities of each energy source, such as electricity, natural gas, and gasoline. Carbon footprint is an important concept not only for reducing climate change but also for sustainable development. As seen in case studies carbon footprint may be measured and applied in various spatial units, including but not limited to countries and regions. These examples may provide new perspectives on carbon footprint application in planning and geography. In addition, additional concerns for consumption of food, goods, and services can be included in carbon footprint calculation in the area of urban planning and geography.

Keywords: carbon footprint, case study, geography, urban planning

Procedia PDF Downloads 288
17404 Looking Elsewhere for Job: Relationship between Procedural Justice and Survivors’ Turnover Intent in Consolidated Nigeria Banks

Authors: Fasanmi Samuel Sunday

Abstract:

The study examines the relationship between procedural justice and turnover intent among survivors in a consolidated Nigeria bank. Opinions of eight hundred and eighty five staff of First City Monumental Bank and Finbank who survived the consolidated process were conveniently sampled using battery of tests. Two hypotheses were tested for this study. Results revealed that procedural justice and demographic variables (sex, age, previous banking job experience, and year of work experience) were significantly, independently and jointly influence turnover intent among survivors in consolidated banks in Nigeria. Also, there was a significant relationship between procedural justice and turnover intent among survivors in a consolidated bank in Nigeria. It was recommended that if the workers perceived the process of downsizing to be fair, they tend to reason with their management and coast along with the process rather than increasing in their turnover intent which will eventually drastically reduce the profitability matrix which the banks desired so desperately.

Keywords: bankers, procedural justice, sex, turnover intent

Procedia PDF Downloads 513
17403 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 197
17402 Promises versus Realities: A Critical Assessment of the Integrated Design Process

Authors: Firdous Nizar, Carmela Cucuzzella

Abstract:

This paper explores how the integrated design process (IDP) was adopted for an architectural project. The IDP is a relatively new approach to collaborative design in architectural design projects in Canada. It has gained much traction recently as the closest possible approach to the successful management of low energy building projects and has been advocated as a productive method for multi-disciplinary collaboration within complex projects. This study is based on the premise that there are explicit and implicit dimensions of power within the integrated design process (IDP) in the green building industry that may or may not lead to irreconcilable differences in a process that demands consensus. To gain insight on the potential gap between the theoretical promises and practical realities of the IDP, a review of existing IDP literature is compared with a case study analysis of a competition-based architectural project in Canada, a first to incorporate the IDP in its overall design format. This paper aims to address the undertheorized power relations of the IDP in a real project. It presents a critical assessment through the lens of the combined theories of deliberative democracy by Jürgen Habermas, with that of agonistic pluralism by political theorist Chantal Mouffe. These two theories are intended to more appropriately embrace the conflictual situations in collaborative environments, and shed light on the relationships of power, between engineers, city officials, architects, and designers in this conventional consensus-based model. In addition, propositions for a shift in approach that embraces conflictual differences among its participants are put forth based on concepts of critical spatial practice by Markus Meissen. As IDP is a relatively new design process, it requires much deliberation on its structure from the theoretical framework built in this paper in order to unlock its true potential.

Keywords: agonistic pluralism, critical spatial practice, deliberative democracy, integrated design process

Procedia PDF Downloads 173
17401 Basic Characteristics and Prospects of Synchronized Stir Welding

Authors: Shoji Matsumoto

Abstract:

Friction Stir Welding (FSW) has been widely used in the automotive, aerospace, and high-tech industries due to its superior mechanical properties after welding. However, when it becomes a matter to perform a high-quality joint using FSW, it is necessary to secure an advanced tilt angle (usually 1 to 5 degrees) using a dedicated FSW machine and to use a joint structure and a restraining jig that can withstand the tool pressure applied during the jointing process using a highly rigid processing machine. One issue that has become a challenge in this process is ‘productivity and versatility’. To solve this problem, we have conducted research and development of multi-functioning machines and robotics with FSW tools, which combine cutting/milling and FSW functions as one in recent years. However, the narrow process window makes it prone to welding defects and lacks repeatability, which makes a limitation for FSW its use in the fields where precisions required. Another reason why FSW machines are not widely used in the world is because of the matter of very high cost of ownership.

Keywords: synchronized, stir, welding, friction, traveling speed, synchronized stir welding, friction stir welding

Procedia PDF Downloads 53
17400 Fluidised Bed Gasification of Multiple Agricultural Biomass-Derived Briquettes

Authors: Rukayya Ibrahim Muazu, Aiduan Li Borrion, Julia A. Stegemann

Abstract:

Biomass briquette gasification is regarded as a promising route for efficient briquette use in energy generation, fuels and other useful chemicals, however, previous research work has focused on briquette gasification in fixed bed gasifiers such as updraft and downdraft gasifiers. Fluidised bed gasifier has the potential to be effectively sized for medium or large scale. This study investigated the use of fuel briquettes produced from blends of rice husks and corn cobs biomass residues, in a bubbling fluidised bed gasifier. The study adopted a combination of numerical equations and Aspen Plus simulation software to predict the product gas (syngas) composition based on briquette's density and biomass composition (blend ratio of rice husks to corn cobs). The Aspen Plus model was based on an experimentally validated model from the literature. The results based on a briquette size of 32 mm diameter and relaxed density range of 500 to 650 kg/m3 indicated that fluidisation air required in the gasifier increased with an increase in briquette density, and the fluidisation air showed to be the controlling factor compared with the actual air required for gasification of the biomass briquettes. The mass flowrate of CO2 in the predicted syngas composition, increased with an increase in the air flow rate, while CO production decreased and H2 was almost constant. The H2/CO ratio for various blends of rice husks and corn cobs did not significantly change at the designed process air, but a significant difference of 1.0 for H2/CO ratio was observed at higher air flow rate, and between 10/90 to 90/10 blend ratio of rice husks to corn cobs. This implies the need for further understanding of biomass variability and hydrodynamic parameters on syngas composition in biomass briquette gasification.

Keywords: aspen plus, briquettes, fluidised bed, gasification, syngas

Procedia PDF Downloads 457
17399 Purity Monitor Studies in Medium Liquid Argon TPC

Authors: I. Badhrees

Abstract:

This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of laser in the Liquid Argon Time Projection Chamber. The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432 pb. The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.

Keywords: ATLAS, CERN, KACST, LArTPC, particle physics

Procedia PDF Downloads 346
17398 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 178
17397 Growth Studies and Leaf Mineral Composition of Amaranthus hybridus L. in Soil Medium Supplemended with Palm Bunch Ash Extract from Elaeis Guineensis jacq. in Abak Agricultural Zone of Akwa Ibom State, Nigeria

Authors: Etukudo, M. Mbosowo, Nyananyo, L. Bio, Negbenebor, A. Charles

Abstract:

An aqueous extract of palm bunch ash from Elaeis guineensis Jacq., equilibrated with water was used to assess the growth and minerals composition of Amaranthus hybridus L. in agricultural soil of Abak, Akwa Ibom State, nigeria. Various concentrations, 0 (control), 10, 20, 30, 40, and 50% of palm bunch extract per 4kg of sandy-loam soil were used for the study. Chemical characteristics of the extract, Growth parameters (Plant height, root length, fresh weight, dry weight and moisture content), leaf minerals composition (Nitrogen, phosphorus, potassium, calcium and magnesium) of the crop and soil chemical composition before and after harvest (pH, organic matter, nitrogen, phosphorus, potassium, calcium and magnesium) were examined. The results showed that palm bunch ash extract significantly (P < 0.05) increased the soil pH at all levels of treatments compared to the control. Similarly, the soil and leaf minerals component (N, P, K. Ca, and Mg) of the crop increased with increase in the concentration of palm bunch extract, except at 40 and 50% for leaf minerals composition, Soil organic matter, nitrogen and phosphorus J(before and after harvest). In addition, The plant height, Root length, fresh weight, dry weight and moisture content of the crop increased significantly (P < 0.05) with increase in the concentration of the extract, Except at 30, 40 and 50% where these growth parameters decreased in relation to the control treatment. Therefore, this study suggests that palm bunch ash extract could be utilized at lower concentration as a nutrient supplement for both Amaranthus hubridus L. and soil medium, most especially in the tropical soils of the Niger Delta region of Nigeria.

Keywords: Amaranthus hybridus L., growth, leaf minerals composition, palm bunch ash extract

Procedia PDF Downloads 446
17396 Simulation Study on Particle Fluidization and Drying in a Spray Fluidized Bed

Authors: Jinnan Guo, Daoyin Liu

Abstract:

The quality of final products in the coating process significantly depends on particle fluidization and drying in the spray-fluidized bed. In this study, fluidizing gas temperature and velocity are changed, and their effects on particle flow, moisture content, and heat transfer in a spray fluidized bed are investigated by the CFD – Discrete Element Model (DEM). The gas flow velocity distribution of the fluidized bed is symmetrical, with high velocity in the middle and low velocity on both sides. During the heating process, the particles inside the central tube and at the bottom of the bed are rapidly heated. The particle circulation in the annular area is heated slowly and the temperature is low. The inconsistency of particle circulation results in two peaks in the probability density distribution of the particle temperature during the heating process, and the overall temperature of the particles increases uniformly. During the drying process, the distribution of particle moisture transitions from initial uniform moisture to two peaks, and then the number of completely dried (moisture content of 0) particles gradually increases. Increasing the fluidizing gas temperature and velocity improves particle circulation, drying and heat transfer in the bed. The current study provides an effective method for studying the hydrodynamics of spray fluidized beds with simultaneous processes of heating and particle fluidization.

Keywords: heat transfer, CFD-DEM, spray fluidized bed, drying

Procedia PDF Downloads 71
17395 Algae for Wastewater Treatment and CO₂ Sequestration along with Recovery of Bio-Oil and Value Added Products

Authors: P. Kiran Kumar, S. Vijaya Krishna, Kavita Verma1, V. Himabindu

Abstract:

Concern about global warming and energy security has led to increased biomass utilization as an alternative feedstock to fossil fuels. Biomass is a promising feedstock since it is abundant and cheap and can be transformed into fuels and chemical products. Microalgae biofuels are likely to have a much lower impact on the environment. Microalgae cultivation using sewage with industrial flue gases is a promising concept for integrated biodiesel production, CO₂ sequestration, and nutrients recovery. Autotrophic, Mixotrophic, and Heterotrophic are the three modes of cultivation for microalgae biomass. Several mechanical and chemical processes are available for the extraction of lipids/oily components from microalgae biomass. In organic solvent extraction methods, a prior drying of biomass and recovery of the solvent is required, which are energy-intensive. Thus, the hydrothermal process overcomes the drawbacks of conventional solvent extraction methods. In the hydrothermal process, the biomass is converted into oily components by processing in a hot, pressurized water environment. In this process, in addition to the lipid fraction of microalgae, other value-added products such as proteins, carbohydrates, and nutrients can also be recovered. In the present study was (Scenedesmus quadricauda) was isolated and cultivated in autotrophic, heterotrophic, and mixotrophically using sewage wastewater and industrial flue gas in batch and continuous mode. The harvested algae biomass from S. quadricauda was used for the recovery of lipids and bio-oil. The lipids were extracted from the algal biomass using sonication as a cell disruption method followed by solvent (Hexane) extraction, and the lipid yield obtained was 8.3 wt% with Palmitic acid, Oleic acid, and Octadeonoic acid as fatty acids. The hydrothermal process was also carried out for extraction of bio-oil, and the yield obtained was 18wt%. The bio-oil compounds such as nitrogenous compounds, organic acids, and esters, phenolics, hydrocarbons, and alkanes were obtained by the hydrothermal process of algal biomass. Nutrients such as NO₃⁻ (68%) and PO₄⁻ (15%) were also recovered along with bio-oil in the hydrothermal process.

Keywords: flue gas, hydrothermal process, microalgae, sewage wastewater, sonication

Procedia PDF Downloads 140
17394 Changes in Textural Properties of Zucchini Slices Under Effects of Partial Predrying and Deep-Fat-Frying

Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner

Abstract:

Changes in textural properties of any food material during processing is significant for further consumer’s evaluation and directly affects their decisions. Thus any food material should be considered in terms of textural properties after any process. In the present study zucchini slices were partially predried to control and reduce the product’s final oil content. A conventional oven was used for partially dehydration of zucchini slices. Following frying was carried in an industrial fryer having temperature controller. This study was based on the effect of this predrying process on textural properties of fried zucchini slices. Texture profile analysis was performed. Hardness, elasticity, chewiness, cohesiveness were studied texture parameters of fried zucchini slices. Temperature and weight loss were monitored parameters of predrying process, whereas, in frying, oil temperature and process time were controlled. Optimization of two successive processes was done by response surface methodology being one of the common used statistical process optimization tools. Models developed for each texture parameters displayed high success to predict their values as a function of studied processes’ conditions. Process optimization was performed according to target values for each property determined for directly fried zucchini slices taking the highest score from sensory evaluation. Results indicated that textural properties of predried and then fried zucchini slices could be controlled by well-established equations. This is thought to be significant for fried stuff related food industry, where controlling of sensorial properties are crucial to lead consumer’s perception and texture related ones are leaders. This project (113R015) has been supported by TUBITAK.

Keywords: optimization, response surface methodology, texture profile analysis, conventional oven, modelling

Procedia PDF Downloads 433
17393 Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry

Authors: Chukwuemeka Daniel Ezeliora, Chukwuebuka Lawrence Ezeliora

Abstract:

The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study.

Keywords: mild steel, impact strength, response surface, bead geometry, welding

Procedia PDF Downloads 119
17392 Government Responses to the Survivors of Trafficking in Human Beings: A Study of Albania

Authors: Irida Agolli Nasufi, Anxhela Bruci

Abstract:

This paper presents Albanian government policies regarding the reintegration process for returning Albanian survivors of trafficking in human beings. Focusing on an in-depth analysis of governmental, non-governmental documents and semi-structured qualitative interviews conducted with service providers and trafficking survivors. Furthermore, this paper will especially focus on the governmental efforts to provide support to the survivors, focusing on their needs and challenges. This study explores the conditions and actual services provided to the survivors of trafficking in human beings that are in the reintegration process in Albania. Moreover, it examines the responsible mechanisms accountable for the reintegration process, by analysing synergies between governmental and non-governmental organisations. Also, this paper explores the governmental approach towards trafficking survivors and apprises policymakers to undertake changes and reforms in their future actions.

Keywords: policies, social services, service user, trafficking in human beings, government

Procedia PDF Downloads 132
17391 Wastewater from the Food Industry: Characteristics and Possibilities of Sediments on the Basis of the Dairy Industry

Authors: Monika Gałwa-Widera, Anna Kwarciak–Kozłowska, Lucyna Sławik-Dembiczak

Abstract:

Issues relating to management of sewage sludge from small and medium-sized wastewater treatment plants is a vital issue, which deal with such scholars as well as those directly involved in the issue of wastewater treatment and management of sedimentary. According to the Law on Waste generating waste is responsible for such processing to the product obtained impacted on the environment minimally. In small and medium-sized wastewater treatment plants have to deal with the technology of sludge management technology is far from drying and incineration of sewage sludge. So here you can use other technologies. One of them is the composting of sewage sludge. It is a process of processing and disposal of sewage sludge that effectively their disposal. By composting, we can obtain a product that contains significant amounts of organic matter to assess the fertilizing qualities. Modifications to the ongoing process in biological reactors allow for more rapid receipt of a wholesome product. The research presented and discussed in this publication relate to assist the composting process of sewage sludge and biomass structural material in the shares of rates: 35% biomass, 55% sludge, 10% structural material using a method which involves the re-spawning batch composting physical methods leachate from the composting process.

Keywords: biomass, composting, industry, sewage sludge

Procedia PDF Downloads 440
17390 'Light up for All': Building Knowledge on Universal Design through Direct User Contact in Design Workshops

Authors: E. Ielegems, J. Herssens, J. Vanrie

Abstract:

Designers require knowledge and data about a diversity of users throughout the design process to create inclusive design solutions which are usable, understandable and desirable by everyone. Besides understanding users’ needs and expectations, the ways in which users perceive and experience the built environment contain valuable knowledge for architects. Since users’ perceptions and experiences are mainly tacit by nature, they are much more difficult to express in words and therefore more difficult to externalise. Nevertheless, literature confirms the importance of articulating embodied knowledge from users throughout the design process. Hence, more insight is needed into the ways architects can build knowledge on Universal Design through direct user contact. In a project called ‘light up for all’ architecture students are asked to design a light switch and socket, elegant, usable and understandable to the greatest extent possible by everyone. Two workshops with user/experts are organised in the first stages of the design process in which students could gain insight into users’ experiences through direct contact. Three data collection techniques are used to analyse the teams’ design processes. First, students were asked to keep a design diary, reporting design activities, personal experiences, and thoughts about users throughout the design process. Second, one of the authors observed workshops taking field notes. Finally, focus groups are conducted with the design teams after the design process was finished. By means of analysing collected qualitative data, we first identify different design aspects that make the teams’ proposals more inclusive than standard design solutions. For this paper, we specifically focus on aspects that externalise embodied user knowledge from users’ experiences. Subsequently, we look at designers’ approaches to learn about these specific aspects throughout the design process. Results show that in some situations, designers perceive contradicting knowledge between observations and verbal conversations, which shows the value of direct user contact. Additionally, findings give indications on values and limitations of working with selected prototypes as ‘boundary objects’ when externalising users’ experiences. These insights may help researchers to better understand designers’ process of eliciting embodied user knowledge. This way, research can offer more effective support to architects, which may result in better incorporating users’ experiences so that the built environment gradually can become more inclusive for all.

Keywords: universal design, architecture, design process, embodied user knowledge

Procedia PDF Downloads 144
17389 Optimization of Hemp Fiber Reinforced Concrete for Various Environmental Conditions

Authors: Zoe Chang, Max Williams, Gautham Das

Abstract:

The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. Hemp fibers were obtained from the manufacturer and hand-processed to ensure uniformity in width and length. The fibers were added to the concrete as both wet and dry mixes to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375, indicating a variation in the mixing process. While completing the dry mix, the addition of plain hemp fibers caused them to intertwine, creating lumps and inconsistency. However, during the wet mixing process, combining water and hemp fibers before incorporation allows the fibers to uniformly disperse within the mix; hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes; however, more research surrounding its characteristics needs to be conducted.

Keywords: hemp fibers, hemp reinforced concrete, wet & dry, freeze thaw testing, compressive strength

Procedia PDF Downloads 200
17388 Design of Knowledge Management System with Geographic Information System

Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan

Abstract:

Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.

Keywords: 5C4C, data, information, knowledge

Procedia PDF Downloads 462
17387 Decoding the Natural Hazards: The Data Paradox, Juggling Data Flows, Transparency and Secrets, Analysis of Khuzestan and Lorestan Floods of Iran

Authors: Kiyanoush Ghalavand

Abstract:

We have a complex paradox in the agriculture and environment sectors in the age of technology. In the one side, the achievements of the science and information ages are shaping to come that is very dangerous than ever last decades. The progress of the past decades is historic, connecting people, empowering individuals, groups, and states, and lifting a thousand people out of land and poverty in the process. Floods are the most frequent natural hazards damaging and recurring of all disasters in Iran. Additionally, floods are morphing into new and even more devastating forms in recent years. Khuzestan and Lorestan Provinces experienced heavy rains that began on March 28, 2019, and led to unprecedented widespread flooding and landslides across the provinces. The study was based on both secondary and primary data. For the present study, a questionnaire-based primary survey was conducted. Data were collected by using a specially designed questionnaire and other instruments, such as focus groups, interview schedules, inception workshops, and roundtable discussions with stakeholders at different levels. Farmers in Khuzestan and Lorestan provinces were the statistical population for this study. Data were analyzed with several software such as ATLASti, NVivo SPSS Win, ،E-Views. According to a factorial analysis conducted for the present study, 10 groups of factors were categorized climatic, economic, cultural, supportive, instructive, planning, military, policymaking, geographical, and human factors. They estimated 71.6 percent of explanatory factors of flood management obstacles in the agricultural sector in Lorestan and Khuzestan provinces. Several recommendations were finally made based on the study findings.

Keywords: chaos theory, natural hazards, risks, environmental risks, paradox

Procedia PDF Downloads 145
17386 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar

Abstract:

The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.

Keywords: sowing, irrigation, yield, heat stress

Procedia PDF Downloads 97
17385 Investigation of the Factors Influencing the Construction Planning Process Using Participant Observation Method

Authors: Ashokkumar Subbiah

Abstract:

This study investigates the impact of factors that influenced the success of construction planning for a major construction project in Qatar. An approach of participant observation is adopted which is informed by the principles of ethnography: one that reports the participants’ view of their world rather than imposing an artificial theoretical framework upon it. As participant observant, key factors were observed and identified that had an impact on the management and execution of the construction planning. It is found that a ‘shadow culture’ exists between the project participants which, it is argued, is only observable from the perspective of an embedded participant observer. The shadow culture acts to enable the management of the planning process, and its efficacy relates to the ‘quality’ of human inter-relationships amongst immediate stakeholders. Whilst this study uses the concept of shadow culture, it is treated as both a methodological stance and one of the findings of this research in the context of the major construction project in Qatar. The concept of shadow culture is not imposed upon the findings, but instead is used as a research tool: respondents report their own worldview and this is reported from the view of a participant observant in a manner that is understandable and useful to those who are not part of the construction project. The findings of this study identify similar factors influencing the planning process of the Qatar project, but the shadow culture predominantly influences these factors towards the failure of planning process. The research concludes by questioning the assumption that construction planning is a mechanistic process that has to be conducted solely by the planning team. Instead, it is a highly social phenomenon in which the seemingly mechanistic process is made workable by the quality of relationships that exist in the project. Drawing on this the final section provides a series of recommendations that may be helpful in enhancing the efficacy of project planning; these include better training/education at the pre-construction phase; recognition of the importance of shadow processes at management levels, and better appreciation of the impact of contract type and chosen procurement route.

Keywords: construction planning, participant observation, project participants, shadow culture

Procedia PDF Downloads 298