Search results for: MATLAB reference model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19087

Search results for: MATLAB reference model

1777 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 88
1776 The Alliance for Grassland Renewal: A Model for Teaching Endophyte Technology

Authors: C. A. Roberts, J. G. Andrae, S. R. Smith, M. H. Poore, C. A. Young, D. W. Hancock, G. J. Pent

Abstract:

To the author’s best knowledge, there are no published reports of effective methods for teaching fescue toxicosis and grass endophyte technology in the USA. To address this need, a group of university scientists, industry representatives, government agents, and livestock producers formed an organization called the Alliance for Grassland Renewal. One goal of the Alliance was to develop a teaching method that could be employed across all regions in the USA and all sectors of the agricultural community. The first step in developing this method was identification of experts who were familiar with the science and management of fescue toxicosis. The second step was curriculum development. Experts wrote a curriculum that addressed all aspects of toxicosis and management, including toxicology, animal nutrition, pasture management, economics, and mycology. The curriculum was created for presentation in lectures, laboratories, and in the field. The curriculum was in that it could be delivered across state lines, regardless of peculiar, in-state recommendations. The curriculum was also unique as it was unanimously supported by private companies otherwise in competition with each other. The final step in developing this teaching method was formulating a delivery plan. All experts, including university, industry, government, and production, volunteered to travel from any state in the USA, converge in one location, teach a 1-day workshop, then travel to the next location. The results of this teaching method indicate widespread success. Since 2012, experts across the entire USA have converged to teach Alliance workshops in Kansas, Oklahoma, Missouri, Kentucky, Georgia, South Carolina, North Carolina, and Virginia, with ongoing workshops in Arkansas and Tennessee. Data from post-workshop surveys indicate that instruction has been effective, as at least 50% of the participants stated their intention to adopt the endophyte technology presented in these workshops. The teaching method developed by the Alliance for Grassland Renewal has proved to be effective, and the Alliance continues to expand across the USA.

Keywords: endophyte, Epichloe coenophiala, ergot alkaloids, fescue toxicosis, tall fescue

Procedia PDF Downloads 120
1775 Analysis of the Occurrence of Hydraulic Fracture Phenomena in Roudbar Lorestan Dam

Authors: Masoud Ghaemi, MohammadJafar Hedayati, Faezeh Yousefzadeh, Hoseinali Heydarzadeh

Abstract:

According to the statistics of the International Committee on Large Dams, internal erosion and piping (scour) are major causes of the destruction of earth-fill dams. If such dams are constructed in narrow valleys, the valley walls will increase the arching of the dam body due to the transfer of vertical and horizontal stresses, so the occurrence of hydraulic fracturing in these embankments is more likely. Roudbar Dam in Lorestan is a clay-core pebble earth-fill dam constructed in a relatively narrow valley in western Iran. Three years after the onset of impoundment, there has been a fall in dam behavior. Evaluation of the dam behavior based on the data recorded on the instruments installed inside the dam body and foundation confirms the occurrence of internal erosion in the lower and adjacent parts of the core on the left support (abutment). The phenomenon of hydraulic fracturing is one of the main causes of the onset of internal erosion in this dam. Accordingly, the main objective of this paper is to evaluate the validity of this hypothesis. To evaluate the validity of this hypothesis, the dam behavior during construction and impoundment has been first simulated with a three-dimensional numerical model. Then, using validated empirical equations, the safety factor of the occurrence of hydraulic fracturing phenomenon upstream of the dam score was calculated. Then, using the artificial neural network, the failure time of the given section was predicted based on the maximum stress trend created. The study results show that steep slopes of valley walls, sudden changes in coefficient, and differences in compressibility properties of dam body materials have caused considerable stress transfer from core to adjacent valley walls, especially at its lower levels. This has resulted in the coefficient of confidence of the occurrence of hydraulic fracturing in each of these areas being close to one in each of the empirical equations used.

Keywords: arching, artificial neural network, FLAC3D, hydraulic fracturing, internal erosion, pore water pressure

Procedia PDF Downloads 175
1774 The Impact of Environmental Corporate Social Responsibility (ECSR) and the Perceived Moral Intensity on the Intention of Ethical Investment

Authors: Chiung-Yao Huang, Yu-Cheng Lin, Chiung-Hui Chen

Abstract:

This study seeks to examine perceived environmental corporate social responsibility (ECSR) with a focus on negative environmental questions, related to intention of ethical investment intention after a environmental failure recovery. An empirical test was employed to test the hypotheses. We manipulated the information on negative ECSR activities of a hypothetical firm in a experimental design with a failure recovery treatment. The company’s negative ECSR recovery was depicted in a positive perspective (depicting a follow-up strong social action), whereas in the negative ECSR treatment it was described in a negative perspective (depicting a follow-up non social action). In both treatments, information about other key characteristics of the focal company were kept constant. Investors’ intentions to invest in the company’s stock were evaluated by multi-item scales. Results indicate that positive ECSR recovery information about a firm enhances investors’ intentions to invest in the company’s stock. In addition, perceived moral intensity has a significant impact on the intention of ethical investment and that perceived moral intensity also serves as a key moderating variable in the relationship between negative ECSR and the intention of ethical investment. Finally, theoretical and managerial implications of the findings are discussed. Practical implications: The results suggest that managers may need to be aware of perceived moral intensity as a key variable in restoring the intention of ethical investment. The results further suggest that perceived moral intensity has a direct, and it also has an moderating influence between ECSR and the intention of ethical investment. Originality/value: In an attempt to deepen the understanding of how investors perceptions of firm environmental CSR are connected with other investor‐related outcomes through ECSR recovery, the present research proposes a comprehensive model which encompasses ECSR and other key relationship constructs after a ECSR failure and recovery.

Keywords: ethical investment, Environmental Corporate Social Responsibility(ECSR), ECSR recovery, moral intensity

Procedia PDF Downloads 349
1773 The Promoting of Early Childhood Development in Local Government Child Center

Authors: Vorapoj Promasatayaprot, Sumattana Glangkarn

Abstract:

Background: Early childhood, the first five years of life, is a time of rapid cognitive, linguistic, social, emotional and motor development. This study was descriptive research which the main purpose of this research was to study early childhood development in Child Center of Local Government in order to emphasize the public citizen and communities participate in the Child Development Center. Method: The study designed was Action Research and divided into four steps consisted of (1) Planning (2) Acting (3) Observing and (4) Reflecting. This study was employed the areas and the subjects consisted of 10 committees of the Child Center in Thakhonyang municipality, Kantharawichai District, Maha Sarakham Province, Thailand and 50 representative parents by using the purposive sampling technique. The instrument used in this study were questionnaires. The data were analyzed using descriptive statistic; percentage, mean, standard deviation, maximum value, minimum, median. Qualitative data was collected using the observation and interview and was analysed by content analysis. Results: The results of this research were as follows: The promoting of early childhood development in child center at Thakhonyang Municipality, Kantharawichai District, Maha Sarakham Province, Thailand were 6 procedures ; (1) workshop participation (2) workshop in action plan (3) performing in action plan (4) following supervision (5) self – assessment (6) knowledge sharing seminar. The service model of the Local Fund Health Security in Thailand was passed the qualifications of local fund health security by 6 procedures to be the high potential local fund health security. Conclusion: The key success is that the commission will have to respond the performance at all process of plan to address the issue in the future. Factor of success is to community participate with transparent procedure. Coordination committee should manipulate the child center benefits among stake holders.

Keywords: child center, develop, early childhood development, local government, promote

Procedia PDF Downloads 191
1772 The Effect of Newspaper Reporting on COVID-19 Vaccine Hesitancy: A Randomised Controlled Trial

Authors: Anna Rinaldi, Pierfrancesco Dellino

Abstract:

COVID-19 vaccine hesitancy can be observed at different rates in different countries. In June 2021, 1,068 people were surveyed in France and Italy to inquire about individual potential acceptance, focusing on time preferences in a risk-return framework: having the vaccination today, in a month, and in 3 months; perceived risks of vaccination and COVID-19; and expected benefit of the vaccine. A randomized controlled trial was conducted to understand how everyday stimuli like fact-based news about vaccines impact an audience's acceptance of vaccination. The main experiment involved two groups of participants and two different articles about vaccine-related thrombosis taken from two Italian newspapers. One article used a more abstract description and language, and the other used a more anecdotal description and concrete language; each group read only one of these articles. Two other groups were assigned categorization tasks; one was asked to complete a concrete categorization task, and the other an abstract categorization task. Individual preferences for vaccination were found to be variable and unstable over time, and individual choices of accepting, refusing, or delaying could be affected by the way news is written. In order to understand these dynamic preferences, the present work proposes a new model based on seven categories of human behaviors that were validated by a neural network. A treatment effect was observed: participants who read the articles shifted to vaccine hesitancy categories more than participants assigned to other treatments and control. Furthermore, there was a significant gender effect, showing that the type of language leading to a lower hesitancy rate for men is correlated with a higher hesitancy rate for women and vice versa. This outcome should be taken into consideration for an appropriate gender-based communication campaign aimed at achieving herd immunity. The trial was registered at ClinicalTrials.gov NCT05582564 (17/10/2022).

Keywords: vaccine hesitancy, risk elicitation, neural network, covid19

Procedia PDF Downloads 82
1771 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 99
1770 The Use of Creativity to Nudge Students Into Heutagogy: An Implementation in Graduate Business Education

Authors: Ricardo Bragança, Tom Vinaimont

Abstract:

This paper discusses the introduction of processes of self-determined learning (heutagogy) into a graduate course on financial modeling, using elements of entangled pedagogy and Biggs’ constructive alignment. To encourage learners to take control of their own learning journey and develop critical thinking and problem-solving skills, each session in the course receives tailor-made media-enhanced pedagogical assets. The design of those assets specifically supports entangled pedagogy, which opposes technological or pedagogical determinism in support of the collaborative integration of pedagogy and technology. Media assets for each of the ten sessions in this course consist of three components. The first component in this three-pronged approach is a game-cut-like cinematographic representation that introduces the context of the session. The second component represents a character from an open-source-styled community that encourages self-determined learning. The third component consists of a character, which refers to the in-person instructor and also aligns learning outcomes and assessment tasks, using Biggs’ constructive alignment, to the cinematographic and open-source-styled component. In essence, the course's metamorphosis helps students apply the concepts they've studied to actual financial modeling issues. The audio-visual media assets create a storyline throughout the course based on gamified and real-world applications, thus encouraging student engagement and interaction. The structured entanglement of pedagogy and technology also guides the instructor in the design of the in-class interactions and directs the focus on outcomes and assessments. The transformation process of this graduate course in financial modeling led to an institutional teaching award in 2021. The transformation of this course may be used as a model for other courses and programs in many disciplines to help with intended learning outcomes integration, constructive alignment, and Assurance of Learning.

Keywords: innovative education, active learning, entangled pedagogy, heutagogy, constructive alignment, project based learning, financial modeling, graduate business education

Procedia PDF Downloads 70
1769 Summer STEM Institute in Environmental Science and Data Sciencefor Middle and High School Students at Pace University

Authors: Lauren B. Birney

Abstract:

Summer STEM Institute for Middle and High School Students at Pace University The STEM Collaboratory NYC® Summer Fellows Institute takes place on Pace University’s New York City campus during July and provides the following key features for all participants: (i) individual meetings with Pace faculty to discuss and refine future educational goals; (ii) mentorship, guidance, and new friendships with program leaders; and (iii) guest lectures from professionals in STEM disciplines and businesses. The Summer STEM Institute allows middle school and high school students to work in teams to conceptualize, develop, and build native mobile applications that teach and reinforce skills in the sciences and mathematics. These workshops enhance students’STEM problem solving techniques and teach advanced methods of computer science and engineering. Topics include: big data and analytics at the Big Data lab at Seidenberg, Data Science focused on social and environmental advancement and betterment; Natural Disasters and their Societal Influences; Algal Blooms and Environmental Impacts; Green CitiesNYC; STEM jobs and growth opportunities for the future; renew able energy and sustainable infrastructure; and climate and the economy. In order to better align the existing Summer STEM, Institute with the CCERS model and expand the overall network, Pace is actively recruiting new content area specialists from STEM industries and private sector enterprises to participate in an enhanced summer institute in order to1) nurture student progress and connect summer learning to school year curriculum, 2) increase peer-to-peer collaboration amongst STEM professionals and private sector technologists, and 3) develop long term funding and sponsorship opportunities for corporate sector partners to support CCERS schools and programs directly.

Keywords: environmental restoration science, citizen science, data science, STEM

Procedia PDF Downloads 85
1768 Optical Simulation of HfO₂ Film - Black Silicon Structures for Solar Cells Applications

Authors: Gagik Ayvazyan, Levon Hakhoyan, Surik Khudaverdyan, Laura Lakhoyan

Abstract:

Black Si (b-Si) is a nano-structured Si surface formed by a self-organized, maskless process with needle-like surfaces discernible by their black color. The combination of low reflectivity and the semi-conductive properties of Si found in b-Si make it a prime candidate for application in solar cells as an antireflection surface. However, surface recombination losses significantly reduce the efficiency of b-Si solar cells. Surface passivation using suitable dielectric films can minimize these losses. Nowadays some works have demonstrated that excellent passivation of b-Si nanostructures can be reached using Al₂O₃ films. However, the negative fixed charge present in Al₂O₃ films should provide good field effect passivation only for p- and p+-type Si surfaces. HfO2 thin films have not been practically tested for passivation of b-Si. HfO₂ could provide an alternative for n- and n+- type Si surface passivation since it has been shown to exhibit positive fixed charge. Using optical simulation by Finite-Difference Time Domain (FDTD) method, the possibility of b-Si passivation by HfO2 films has been analyzed. The FDTD modeling revealed that b-Si layers with HfO₂ films effectively suppress reflection in the wavelength range 400–1000 nm and across a wide range of incidence angles. The light-trapping performance primarily depends on geometry of the needles and film thickness. With the decrease of periodicity and increase of height of the needles, the reflectance decrease significantly, and the absorption increases significantly. Increase in thickness results in an even greater decrease in the calculated reflection coefficient of model structures and, consequently, to an improvement in the antireflection characteristics in the visible range. The excellent surface passivation and low reflectance results prove the potential of using the combination of the b-Si surface and the HfO₂ film for solar cells applications.

Keywords: antireflection, black silicon, HfO₂, passivation, simulation, solar cell

Procedia PDF Downloads 145
1767 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 220
1766 Digitalize or Die-Responsible Innovations in Healthcare and Welfare Sectors

Authors: T. Iakovleva

Abstract:

Present paper suggests a theoretical model that describes the process of the development of responsible innovations on the firm level in health and welfare sectors. There is a need to develop new firm strategies in these sectors. This paper suggests to look on the concept of responsible innovation that was originally developed on the social level and to apply this new concept to the new area of firm strategy. The rapid global diffusion of information and communication technologies has greatly improved access to knowledge. At the same time, communication is cheap, information is a commodity, and global trade increases technological diffusion. As a result, firms and users, including those outside of industrialized nations, get early exposure to the latest technologies and information. General-purpose technologies such as mobile phones and 3D printers enable individuals to solve local needs and customize products. The combined effect of these changes is having a profound impact on the innovation landscape. Meanwhile, the healthcare sector is facing unprecedented challenges, which are magnified by budgetary constraints, an aging population and the desire to provide care for all. On the other hand, patients themselves are changing. They are savvier about their diseases, they expect their relation with the healthcare professionals to be open and interactive, but above all they want to be part of the decision process. All of this is a reflection of what is already happening in other industries where customers have access to large amount of information and became educated buyers. This article addresses the question of how ICT research and innovation may contribute to developing solutions to grand societal challenges in a responsible way. A broad definition of the concept of responsibility in the context of innovation is adopted in this paper. Responsibility is thus seen as a collective, uncertain and future-oriented activity. This opens the questions of how responsibilities are perceived and distributed and how innovation and science can be governed and stewarded towards socially desirable and acceptable ends. This article addresses a central question confronting politicians, business leaders, and regional planners.

Keywords: responsible innovation, ICT, healthcare, welfare sector

Procedia PDF Downloads 196
1765 Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)

Authors: S. Reshma Reghu, Shiburaj Sugathan, T. G. Nandu, K. B. Ramesh Kumar, Mathew Dan

Abstract:

Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies.

Keywords: antibacterial, FtsZ, zingiberaceae, docking

Procedia PDF Downloads 471
1764 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages

Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova

Abstract:

Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.

Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages

Procedia PDF Downloads 166
1763 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718

Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou

Abstract:

Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.

Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718

Procedia PDF Downloads 143
1762 Clinical and Microbiologic Efficacy and Safety of Imipenem Cilastatin Relebactam in Complicated Infections: A Meta-analysis

Authors: Syeda Sahra, Abdullah Jahangir, Rachelle Hamadi, Ahmad Jahangir, Allison Glaser

Abstract:

Background: Antimicrobial resistance is on the rise. The use of redundant and inappropriate antibiotics is contributing to recurrent infections and resistance. Newer antibiotics with more robust coverage for gram-negative bacteria are in great demand for complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), hospital-acquired bacterial pneumonia (H.A.B.P.), and ventilator-associated bacterial pneumonia (V.A.B.P.). Objective: We performed this meta-analysis to evaluate the efficacy and safety profile of a new antibiotic, Imipenem/cilastatin/relebactam, compared to other broad-spectrum antibiotics for complicated infections. Search Strategy: We conducted a systemic review search on PubMed, Embase, and Central Cochrane Registry. Selection Criteria: We included randomized clinical trials (R.C.T.s) with the standard of care as comparator arm with Imipenem/cilastatin/relebactam as intervention arm. Analysis: For continuous variables, the mean difference was used. For discrete variables, we used the odds ratio. For effect sizes, we used a confidence interval of 95%. A p-value of less than 0.05 was used for statistical significance. Analysis was done using a random-effects model irrespective of heterogeneity. Heterogeneity was evaluated using the I2 statistic. Results: The authors observed similar efficacy at clinical and microbiologic response levels on early follow-up and late follow-up compared to the established standard of care. The incidence of drug-related adverse events, serious adverse events, and drug discontinuation due to adverse events were comparable across both groups. Conclusion: Imipenem/cilastatin/relebactam has a non-inferior safety and efficacy profile compared to peer antibiotics to treat severe bacterial infections (cUTIs, cIAIs, H.A.B.P., V.A.B.P.).

Keywords: bacterial pneumonia, complicated intra-abdominal infections, complicated urinary tract infection, Imipenem, cilastatin, relebactam

Procedia PDF Downloads 203
1761 Real World Cancer Pain Incidence and Treatment in Daily Hospital

Authors: Alexandru Grigorescu, Alexandra Protesanu

Abstract:

Background: Approximately 34-67 percent of cancer patients experience an episode of uncontrolled pain during the course of their disease, depending on the stage. The aim is to provide evidence-based data for pain prevalence, diagnosis and treatment recommendations on an integrative model of medical oncology and palliative care for patients with cancer diagnostic in a day hospital. Patients and method: Consultation registers and electronic records of 166 Patients (Pts) were studied from April 2022 to March 2023. Pts with pain syndrome were selected. The pain was objectified by the visual pain scale. To elucidate the causes of the pain, investigations were carried out: bone scintigraphy, CT scan, and PET-CT. The analgesic treatments were represented by weak and strong morphine, radiotherapy, and bisphosphonates. Result: During the mentioned period, 166 oncological patients (74 women and 92 men) were treated in the oncology day hospitalization service. There were 1,500 consultations, 40 of which were only for pain. The neoplastic locations were: gynecological, malignant melanoma, breast, gastric, bronchopulmonary, colorectal, liver, pancreatic, bladder, and kidney. 70 Pts presented pain syndrome. The causes of the pain were represented by bone metastases, compressive tumors, and post-surgical status. Drug treatment: Tramadol 47 Pts, of which 10 switched to a major opioid (Oxycodonum, Morphine sulfate), 20 Pts were treated with Oxycodonum as the first intention. In 5 patients ry to rotated morphine, 20 Pts received palliative radiotherapy, 10 Pts were treated with bisphosphonates. 2 Pts required neurosurgery consultation for an antalgic intervention. 5 Pts had important adverse reactions to morphine. All patients and their families were advised by a medical oncologist and psychologist for a lifestyle change. Conclusions: The prevalence of pain was similar to that described in the literature. In most cases, the pain could be managed in the day hospital. Weak and strong morphine represented the main pain therapy. Palliative radiotherapy was the second most effective therapy. Treatment with bisphosphonates was useful. Surgical interventions were rarely indicated. Discussions with patients and their families regarding the lifestyle change were important.

Keywords: cancer pain, opioids, medical oncology, palliative care

Procedia PDF Downloads 64
1760 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations

Authors: Rima A. Ajlouni

Abstract:

The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.

Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi

Procedia PDF Downloads 401
1759 Psychological Factors Predicting Social Distance during the COVID-19 Pandemic: An Empirical Investigation

Authors: Calogero Lo Destro

Abstract:

Numerous nations around the world are facing exceptional challenges in employing measures to stop the spread of COVID-19. Following the recommendations of the World Health Organization, a series of preventive measures have been adopted. However, individuals must comply with these rules and recommendations in order to make these measures effective. While COVID-19 was climaxing, it seemed of crucial importance to analyze which psychosocial factors contribute to the acceptance of such preventive behavior, thus favoring the management of COVID-19 worldwide health crisis. In particular, the identification of aspects related to obstacles and facilitation of adherence to social distancing has been considered crucial in the containment of the virus spread. Since the virus was firstly detected in China, Asian people could be considered a relevant outgroup targeted for exclusion. We also hypothesized social distance could be influenced by characteristics of the target, such as smiling or coughing. 260 participants participated in this research on a voluntary basis. They filled a survey designed to explore a series of COVID-19 measures (such as exposure to virus and fear of infection). We also assessed participants state and trait anxiety. The dependent variable was social distance, based on a measure of seating distance designed ad hoc for the present work. Our hypothesis that participants could report greater distance in response to Asian people was not confirmed. On the other hand, significantly lower distance in response to smiling compared to coughing targets was reported. Adopting a regression analysis model, we found that participants' social distance, in response to both coughing and smiling targets, was predicted by fear of infection and by the perception COVID-19 could become a pandemic. Social distance in response to the coughing target was also significantly and positively predicted by age and state anxiety. In summary, the present work has sought to identify a set of psychological variables, which may still be predictive of social distancing.

Keywords: COVID-19, social distancing, health, preventive behaviors, risk of infection

Procedia PDF Downloads 122
1758 Human-Automation Interaction in Law: Mapping Legal Decisions and Judgments, Cognitive Processes, and Automation Levels

Authors: Dovile Petkeviciute-Barysiene

Abstract:

Legal technologies not only create new ways for accessing and providing legal services but also transform the role of legal practitioners. Both lawyers and users of legal services expect automated solutions to outperform people with objectivity and impartiality. Although fairness of the automated decisions is crucial, research on assessing various characteristics of automated processes related to the perceived fairness has only begun. One of the major obstacles to this research is the lack of comprehensive understanding of what legal actions are automated and could be meaningfully automated, and to what extent. Neither public nor legal practitioners oftentimes cannot envision technological input due to the lack of general without illustrative examples. The aim of this study is to map decision making stages and automation levels which are and/or could be achieved in legal actions related to pre-trial and trial processes. Major legal decisions and judgments are identified during the consultations with legal practitioners. The dual-process model of information processing is used to describe cognitive processes taking place while making legal decisions and judgments during pre-trial and trial action. Some of the existing legal technologies are incorporated into the analysis as well. Several published automation level taxonomies are considered because none of them fit well into the legal context, as they were all created for avionics, teleoperation, unmanned aerial vehicles, etc. From the information processing perspective, analysis of the legal decisions and judgments expose situations that are most sensitive to cognitive bias, among others, also help to identify areas that would benefit from the automation the most. Automation level analysis, in turn, provides a systematic approach to interaction and cooperation between humans and algorithms. Moreover, an integrated map of legal decisions and judgments, information processing characteristics, and automation levels all together provide some groundwork for the research of legal technology perceived fairness and acceptance. Acknowledgment: This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0116) under grant agreement with the Research Council of Lithuania (LMTLT).

Keywords: automation levels, information processing, legal judgment and decision making, legal technology

Procedia PDF Downloads 141
1757 The Study of the Absorption and Translocation of Chromium by Lygeum spartum in the Mining Region of Djebel Hamimat and Soil-Plant Interaction

Authors: H. Khomri, A. Bentellis

Abstract:

Since century of the Development Activities extraction and a dispersed mineral processing Toxic metals and much more contaminated vast areas occupied by what they natural outcrops. New types of metalliferous habitats are so appeared. A species that is Lygeum spartum attracted our curiosity because apart from its valuable role in desertification, it is apparently able to exclude antimony and other metals can be. This species, green leaf blades which are provided as cattle feed, would be a good subject for phytoremediation of mineral soils. The study of absorption and translocation of chromium by the Lygeum spartum in the mining region of Djebel Hamimat and the interaction soil-plant, revealed that soils of this species living in this region are alkaline, calcareous majority in their fine texture medium and saline in their minority. They have normal levels of organic matter. They are moderately rich in nitrogen. They contain total chromium content reaches a maximum of 66,80 mg Kg^(-1) and a total absence of soluble chromium. The results of the analysis of variance of the difference between bare soils and soils appear Lygeum spartum made a significant difference only for the silt and organic matter. But for the other variables analyzed this difference is not significant. Thus, this plant has only one action on the amendment, only the levels of silt and organic matter in soils. The results of the multiple regression of the chromium content of the roots according to all soil variables studied did appear that among the studied variables included in the model, only the electrical conductivity and clay occur in the explanation of contents chromium in roots. The chromium content of the aerial parts analyzed by regression based on all studied soil variables allows us to see only the variables: electrical conductivity and content of chromium in the root portion involved in the explanation of the content chromium in the aerial part.

Keywords: absorption, translocation, analysis of variance, chrome, Lygeum spartum, multiple regression, the soil variables

Procedia PDF Downloads 266
1756 The Efficacy of Psychological Interventions for Psychosis: A Systematic Review and Network Meta-Analysis

Authors: Radu Soflau, Lia-Ecaterina Oltean

Abstract:

Background: Increasing evidence supports the efficacy of psychological interventions for psychosis. However, it is unclear which one of these interventions is most likely to address negative psychotic symptoms and related outcomes. We aimed to determine the relative efficacy of psychological and psychosocial interventions for negative symptoms, overall psychotic symptoms, and related outcomes. Methods: To attain this goal, we conducted a systematic review and network meta-analysis. We searched for potentially eligible trials in PubMed, EMBASE, PsycInfo, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases up until February 08, 2022. We included randomized controlled trials that investigated the efficacy of psychological for adults with psychosis. We excluded interventions for prodromal or “at risk” individuals, as well as patients with serious co-morbid medical or psychiatric conditions (others than depressive and/or anxiety disorders). Two researchers conducted study selection and performed data extraction independently. Analyses were run using STATA network and mvmeta packages, applying a random effect model under a frequentist framework in order to compute standardized mean differences or risk ratio. Findings: We identified 47844 records and screened 29466 records for eligibility. The majority of eligible interventions were delivered in addition to pharmacological treatment. Treatment as usual (TAU) was the most frequent common comparator. Theoretically driven psychological interventions generally outperformed TAU at post-test and follow-up, displaying small and small-to-medium effect sizes. A similar pattern of results emerged in sensitivity analyses focused on studies that employed an inclusion criterion for relevant negative symptom severity. Conclusion: While the efficacy of some psychological interventions is promising, there is a need for more high-quality studies, as well as more trials directly comparing psychological treatments for negative psychotic symptoms.

Keywords: psychosis, network meta-analysis, psychological interventions, efficacy, negative symptoms

Procedia PDF Downloads 101
1755 3D-Shape-Perception Studied Exemplarily with Tetrahedron and Icosahedron as Prototypes of the Polarities Sharp versus Round

Authors: Iris Sauerbrei, Jörg Trojan, Erich Lehner

Abstract:

Introduction and significance of the study: This study examines if three-dimensional shapes elicit distinct patterns of perceptions. If so, it is relevant for all fields of design, especially for the design of the built environment. Description of basic methodologies: The five platonic solids are the geometrical base for all other three-dimensional shapes, among which tetrahedron and icosahedron provide the clearest representation of the qualities sharp and round. The component pair of attributes ‘sharp versus round’ has already been examined in various surveys in a psychology of perception and in neuroscience by means of graphics, images of products of daily use, as well as by photographs and walk-through-videos of landscapes and architecture. To verify a transfer of outcomes of the existing surveys to the perception of three-dimensional shapes, walk-in models (total height 2.2m) of tetrahedron and icosahedron were set up in a public park in Frankfurt am Main, Germany. Preferences of park visitors were tested by questionnaire; also they were asked to write down associations in a free text. In summer 2015, the tetrahedron was assembled eight times, the icosahedron seven times. In total 288 participants took part in the study; 116 rated the tetrahedron, 172 rated the icosahedron. Findings: Preliminary analyses of the collected data using Wilcoxon Rank-Sum tests show that the perceptions of the two solids differ in respect to several attributes and that each of the tested model show significance for specific attributes. Conclusion: These findings confirm the assumptions and provide first evidence that the perception of three-dimensional shapes are associated to characteristic attributes and to which. In order to enable conscious choices for spatial arrangements in design processes for the built environment, future studies should examine attributes for the other three basic bodies - Octahedron, Cube, and Dodecahedron. Additionally, similarities and differences between the perceptions of two- and three-dimensional shapes as well as shapes that are more complex need further research.

Keywords: 3D shapes, architecture, geometrical features, space perception, walk-in models

Procedia PDF Downloads 228
1754 Heat Loss Control in Stave Cooled Blast Furnace by Optimizing Gas Flow Pattern through Burden Distribution

Authors: Basant Kumar Singh, S. Subhachandhar, Vineet Ranjan Tripathi, Amit Kumar Singh, Uttam Singh, Santosh Kumar Lal

Abstract:

Productivity of Blast Furnace is largely impacted by fuel efficiency and controlling heat loss is one of the enabling parameters for achieving lower fuel rate. 'I' Blast Furnace is the latest and largest Blast Furnace of Tata Steel Jamshedpur with working volume of 3230 m³ and with rated capacity of 3.055 million tons per annum. Optimizing heat losses in Belly and Bosh zone remained major challenge for blast furnace operators after its commissioning. 'I' Blast has installed Cast Iron & Copper Staves cooling members where copper staves are installed in Belly, Bosh & Lower Stack whereas cast iron staves are installed in upper stack area. Stave cooled Blast Furnaces are prone to higher heat losses in Belly and Bosh region with an increase in coal injection rate as Bosh gas volume increases. Under these conditions, managing gas flow pattern through proper burden distribution, casting techniques & by maintaining desired raw material qualities are of utmost importance for sustaining high injection rates. This study details, the burden distribution control by Ore & Coke ratio adjustment at wall and center of Blast Furnace as the coal injection rates increased from 140 kg/thm to 210 kg/thm. Control of blowing parameters, casting philosophy, specification for raw materials & devising operational practice for controlling heat losses is also elaborated with the model that is used to visualize heat loss pattern in different zones of Blast Furnace.

Keywords: blast furnace, staves, gas flow pattern, belly/bosh heat losses, ore/coke ratio, blowing parameters, casting, operation practice

Procedia PDF Downloads 370
1753 Children with Migration Backgrounds in Russian Elementary Schools: Teachers Attitudes and Practices

Authors: Chulpan Gromova, Rezeda Khairutdinova, Dina Birman

Abstract:

One of the most significant issues that schools all over the world face today is the ways teachers respond to increasing diversity. The study was informed by the tripartite model of multicultural competence, with awareness of personal biases a necessary component, together with knowledge of different cultures, and skills to work with students from diverse backgrounds. The paper presents the results of qualitative descriptive studies that help to understand how school teachers in Russia treat migrant children, how they solve the problems of adaptation of migrant children. The purpose of this study was to determine: a) educational practices used by primary school teachers when working with migrant children; b) relationship between practices and attitudes of teachers. Empirical data were collected through interviews. The participants were informed that a conversation was being recorded. They were also warned that the study was voluntary, absolutely anonymous, no personal data was disclosed. Consent was received from 20 teachers. The findings were analyzed using directive content analysis (Graneheim and Lundman, 2004). The analysis was deductive according to the categories of practices and attitudes identified in the literature review and enriched inductively to identify variation within these categories. Studying practices is an essential part of preparing future teachers for working in a multicultural classroom. For language and academic support, teachers mostly use individual work. In order to create a friendly classroom climate and environment teachers have productive conversations with students, organize multicultural events for the whole school or just for an individual class. The majority of teachers have positive attitudes toward migrant children. In most cases, positive attitudes lead to high expectations for their academic achievements. Conceptual orientation of teacher attitudes toward cultural diversity is mostly pluralistic. Positive attitudes, high academic expectations and conceptual orientation toward pluralism are favorably reflected in teachers’ practice.

Keywords: intercultural education, migrant children schooling, teachers attitudes, teaching practices

Procedia PDF Downloads 115
1752 Development of a Microfluidic Device for Low-Volume Sample Lysis

Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman

Abstract:

We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.

Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet

Procedia PDF Downloads 77
1751 Computational Assistance of the Research, Using Dynamic Vector Logistics of Processes for Critical Infrastructure Subjects Continuity

Authors: Urbánek Jiří J., Krahulec Josef, Urbánek Jiří F., Johanidesová Jitka

Abstract:

These Computational assistance for the research and modelling of critical infrastructure subjects continuity deal with this paper. It enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It serves for crisis situations investigation and modelling within the organizations of critical infrastructure. In the first part of the paper, it will be introduced entities, operators and actors of DYVELOP method. It uses just three operators of Boolean algebra and four types of the entities: the Environments, the Process Systems, the Cases and the Controlling. The Process Systems (PrS) have five “brothers”: Management PrS, Transformation PrS, Logistic PrS, Event PrS and Operation PrS. The Cases have three “sisters”: Process Cell Case, Use Case and Activity Case. They all need for the controlling of their functions special Ctrl actors, except ENV – it can do without Ctrl. Model´s maps are named the Blazons and they are able mathematically - graphically express the relationships among entities, actors and processes. In the second part of this paper, the rich blazons of DYVELOP method will be used for the discovering and modelling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission. The crisis management of energetic crisis infrastructure organization is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process bring for crisis management fruitfulness and it is a good indicator and controlling actor of organizational continuity and its sustainable development advanced possibilities. The research reliable rules are derived for the safety and reliable continuity of energetic critical infrastructure organization in the crisis situation.

Keywords: blazons, computational assistance, DYVELOP method, critical infrastructure

Procedia PDF Downloads 381
1750 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 72
1749 Military Leadership: Emotion Culture and Emotion Coping in Morally Stressful Situations

Authors: Sofia Nilsson, Alicia Ohlsson, Linda-Marie Lundqvist, Aida Alvinius, Peder Hyllengren, Gerry Larsson

Abstract:

In irregular warfare contexts, military personnel are often presented with morally ambiguous situations where they are aware of the morally correct choice but may feel prevented to follow through with it due to organizational demands. Moral stress and/or injury can be the outcome of the individual’s experienced dissonance. These types of challenges put a large demand on the individual to manage their own emotions and the emotions of others, particularly in the case of a leader. Both the ability and inability for emotional regulation can result in different combinations of short and long term reactions after morally stressful events, which can be either positive or negative. Our study analyzed the combination of these reactions based upon the types of morally challenging events that were described by the subjects. 1)What institutionalized norms concerning emotion regulation are favorable in short-and long-term perspectives after a morally stressful event? 2)What individual emotion-focused coping strategies are favorable in short-and long-perspectives after a morally stressful? To address these questions, we conducted a quantitative study in military contexts in Sweden and Norway on upcoming or current military officers (n=331). We tested a theoretical model built upon a recently developed qualitative study. The data was analyzed using factor analysis, multiple regression analysis and subgroup analyses. The results indicated that an individual’s restriction of emotion in order to achieve an organizational goal, which results in emotional dissonance, can be an effective short term strategy for both the individual and the organization; however, it appears to be unfavorable in a long-term perspective which can result in negative reactions. Our results are intriguing because they showed an increased percentage of reported negative long term reactions (13%), which indicated PTSD-related symptoms in comparison to previous Swedish studies which indicated lower PTSD symptomology.

Keywords: emotion culture, emotion coping, emotion management, military

Procedia PDF Downloads 596
1748 Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries

Authors: Amatulraheem Al-Abassi, K. Khanafer, Ibrahim Deiab

Abstract:

The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area.

Keywords: shape memory alloy, stent, coronary artery, finite element analysis

Procedia PDF Downloads 200