Search results for: vertical displacement dynamic response
8558 The Impact on the Composition of Survey Refusals΄ Demographic Profile When Implementing Different Classifications
Authors: Eva Tsouparopoulou, Maria Symeonaki
Abstract:
The internationally documented declining survey response rates of the last two decades are mainly attributed to refusals. In fieldwork, a refusal may be obtained not only from the respondent himself/herself, but from other sources on the respondent’s behalf, such as other household members, apartment building residents or administrator(s), and neighborhood residents. In this paper, we investigate how the composition of the demographic profile of survey refusals changes when different classifications are implemented and the classification issues arising from that. The analysis is based on the 2002-2018 European Social Survey (ESS) datasets for Belgium, Germany, and United Kingdom. For these three countries, the size of selected sample units coded as a type of refusal for all nine under investigation rounds was large enough to meet the purposes of the analysis. The results indicate the existence of four different possible classifications that can be implemented and the significance of choosing the one that strengthens the contrasts of the different types of respondents' demographic profiles. Since the foundation of social quantitative research lies in the triptych of definition, classification, and measurement, this study aims to identify the multiplicity of the definition of survey refusals as a methodological tool for the continually growing research on non-response.Keywords: non-response, refusals, European social survey, classification
Procedia PDF Downloads 858557 Conceptual Synthesis as a Platform for Psychotherapy Integration: The Case of Transference and Overgeneralization
Authors: Merav Rabinovich
Abstract:
Background: Psychoanalytic and cognitive therapy attend problems from a different point of view. At the recent decade the integrating movement gaining momentum. However only little has been studied regarding the theoretical interrelationship among these therapy approaches. Method: 33 transference case-studies that were published in peer-reviewed academic journals were coded by Luborsky's Core Conflictual Relationship Theme (CCRT) method (components of wish, response from other – real or imaginal - and the response of self). CCRT analysis was conducted through tailor-made method, a valid tool to identify transference patterns. Rabinovich and Kacen's (2010, 2013) Relationship Between Categories (RBC) method was used to analyze the relationship among these transference patterns with cognitive and behavior components appearing at those psychoanalytic case-studies. Result: 30 of 33 cases (90%) were found to connect the transference themes with cognitive overgeneralization. In these cases, overgeneralizations were organized around Luborsky's transference themes of response from other and response of self. Additionally, overgeneralization was found to be an antithesis of the wish component, and the tension between them found to be linked with powerful behavioral and emotional reactions. Conclusion: The findings indicate that thinking distortions of overgeneralization (cognitive therapy) are the actual expressions of transference patterns. These findings point to a theoretical junction, a platform for clinical integration. Awareness to this junction can help therapists to promote well psychotherapy outcomes relying on the accumulative wisdom of the different therapies.Keywords: transference, overgeneralization, theoretical integration, case-study metasynthesis, CCRT method, RBC method
Procedia PDF Downloads 1428556 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis
Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan
Abstract:
This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis
Procedia PDF Downloads 2278555 Non Linear Dynamic Analysis of Cantilever Beam with Breathing Crack Using XFEM
Authors: K. Vigneshwaran, Manoj Pandey
Abstract:
In this paper, breathing crack is considered for the non linear dynamic analysis. The stiffness of the cracked beam is found out by using influence coefficients. The influence coefficients are calculated by using Castigliano’s theorem and strain energy release rate (SERR). The equation of motion of the beam was derived by using Hamilton’s principle. The stiffness and natural frequencies for the cracked beam has been calculated using XFEM and Eigen approach. It is seen that due to presence of cracks, the stiffness and natural frequency changes. The mode shapes and the FRF for the uncracked and breathing cracked cantilever beam also obtained and compared.Keywords: breathing crack, XFEM, mode shape, FRF, non linear analysis
Procedia PDF Downloads 3448554 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology
Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong
Abstract:
The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology
Procedia PDF Downloads 3868553 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network
Authors: Prateeksha Mahamallik, Anjali Pal
Abstract:
In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology
Procedia PDF Downloads 2548552 Vertical Structure and Frequencies of Deep Convection during Active Periods of the West African Monsoon Season
Authors: Balogun R. Ayodeji, Adefisan E. Adesanya, Adeyewa Z. Debo, E. C. Okogbue
Abstract:
Deep convective systems during active periods of the West African monsoon season have not been properly investigated over better temporal and spatial resolution in West Africa. Deep convective systems are investigated over seven climatic zones of the West African sub-region, which are; west-coast rainforest, dry rainforest, Nigeria-Cameroon rainforest, Nigeria savannah, Central African and South Sudan (CASS) Savannah, Sudano-Sahel, and Sahel, using data from Tropical Rainfall Measurement Mission (TRMM) Precipitation Feature (PF) database. The vertical structure of the convective systems indicated by the presence of at least one 40 dBZ and reaching (attaining) at least 1km in the atmosphere showed strong core (highest frequency (%)) of reflectivity values around 2 km which is below the freezing level (4-5km) for all the zones. Echoes are detected above the 15km altitude much more frequently in the rainforest and Savannah zones than the Sudano and Sahel zones during active periods in March-May (MAM), whereas during active periods in June-September (JJAS) the savannahs, Sudano and Sahel zones convections tend to reach higher altitude more frequently than the rainforest zones. The percentage frequencies of deep convection indicated that the occurrences of the systems are within the range of 2.3-2.8% during both March-May (MAM) and June-September (JJAS) active periods in the rainforest and savannah zones. On the contrary, the percentage frequencies were found to be less than 2% in the Sudano and Sahel zones, except during the active-JJAS period in the Sudano zone.Keywords: active periods, convective system, frequency, reflectivity
Procedia PDF Downloads 1528551 Nonlinear Pollution Modelling for Polymeric Outdoor Insulator
Authors: Rahisham Abd Rahman
Abstract:
In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions.Keywords: electric field distributions, pollution layer, dynamic model, polymeric outdoor insulators, finite element method (FEM)
Procedia PDF Downloads 4008550 Systematic Analysis of Immune Response to Biomaterial Surface Characteristics
Authors: Florian Billing, Soren Segan, Meike Jakobi, Elsa Arefaine, Aliki Jerch, Xin Xiong, Matthias Becker, Thomas Joos, Burkhard Schlosshauer, Ulrich Rothbauer, Nicole Schneiderhan-Marra, Hanna Hartmann, Christopher Shipp
Abstract:
The immune response plays a major role in implant biocompatibility, but an understanding of how to design biomaterials for specific immune responses is yet to be achieved. We aimed to better understand how changing certain material properties can drive immune responses. To this end, we tested immune response to experimental implant coatings that vary in specific characteristics. A layer-by-layer approach was employed to vary surface charge and wettability. Human-based in vitro models (THP-1 macrophages and primary peripheral blood mononuclear cells (PBMCS)) were used to assess immune responses using multiplex cytokine analysis, flow cytometry (CD molecule expression) and microscopy (cell morphology). We observed dramatic differences in immune response due to specific alterations in coating properties. For example altering the surface charge of coating A from anionic to cationic resulted in the substantial elevation of the pro-inflammatory molecules IL-1beta, IL-6, TNF-alpha and MIP-1beta, while the pro-wound healing factor VEGF was significantly down-regulated. We also observed changes in cell surface marker expression in relation to altered coating properties, such as CD16 on NK Cells and HLA-DR on monocytes. We furthermore observed changes in the morphology of THP-1 macrophages following cultivation on different coatings. A correlation between these morphological changes and the cytokine expression profile is ongoing. Targeted changes in biomaterial properties can produce vast differences in immune response. The properties of the coatings examined here may, therefore, be a method to direct specific biological responses in order to improve implant biocompatibility.Keywords: biomaterials, coatings, immune system, implants
Procedia PDF Downloads 1898549 Investigation of Unusually High Ultrasonic Signal Attenuation in Water Observed in Various Combinations of Pairs of Lead Zirconate Titanate Pb(ZrxTi1-x)O3 (PZT) Piezoelectric Ceramics Positioned Adjacent to One Another Separated by an Intermediate Gap
Authors: S. M. Mabandla, P. Loveday, C. Gomes, D. T. Maiga, T. T. Phadi
Abstract:
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used in ultrasonic applications due to their ability to effectively convert electrical energy into mechanical vibrations and vice versa. This paper presents a study on the behaviour of various combinations of pairs of PZT piezoelectric ceramic materials positioned adjacent to each other with an intermediate gap submerged in water, where one piezoelectric ceramic material is excited by a cyclic electric field with constant frequency and amplitude displacement. The transmitted ultrasonic sound propagates through the medium and is received by the PZT ceramic at the other end, the ultrasonic sound signal amplitude displacement experiences attenuation during propagation due to acoustic impedance. The investigation focuses on understanding the causes of extremely high amplitude displacement attenuation that have been observed in various combinations of piezoelectric ceramic pairs that are submerged in water arranged in a manner stipulated earlier. by examining various combinations of pairs of these piezoelectric ceramics, their physical, electrical, and acoustic properties, and behaviour and attributing them to the observed significant signal attenuation. The experimental setup involves exciting one piezoelectric ceramic material at one end with a burst square cyclic electric field signal of constant frequency, which generates a burst of ultrasonic sound that propagates through the water medium to the adjacent piezoelectric ceramic at the other end. Mechanical vibrations of a PZT piezoelectric ceramic are measured using a double-beam laser Doppler vibrometer to mimic the incident ultrasonic waves generated and received ultrasonic waves on the other end due to mechanical vibrations of a PZT. The measured ultrasonic sound wave signals are continuously compared to the applied cyclic electric field at both ends. The impedance matching networks are continuously tuned at both ends to eliminate electromechanical impedance mismatch to improve ultrasonic transmission and reception. The study delves into various physical, electrical, and acoustic properties of the PZT piezoelectric ceramics, such as the electromechanical coupling factor, acoustic coupling, and elasticity, among others. These properties are analyzed to identify potential factors contributing to the unusually high acoustic impedance in the water medium between the ceramics. Additionally, impedance-matching networks are investigated at both ends to offset the high signal attenuation and improve overall system performance. The findings will be reported in this paper.Keywords: acoustic impedance, impedance mismatch, piezoelectric ceramics, ultrasonic sound
Procedia PDF Downloads 788548 The Value of Dynamic Priorities in Motor Learning between Some Basic Skills in Beginner's Basketball, U14 Years
Authors: Guebli Abdelkader, Regiueg Madani, Sbaa Bouabdellah
Abstract:
The goals of this study are to find ways to determine the value of dynamic priorities in motor learning between some basic skills in beginner’s basketball (U14), based on skills of shooting and defense against the shooter. Our role is to expose the statistical results in compare & correlation between samples of study in tests skills for the shooting and defense against the shooter. In order to achieve this objective, we have chosen 40 boys in middle school represented in four groups, two controls group’s (CS1, CS2) ,and two experimental groups (ES1: training on skill of shooting, skill of defense against the shooter, ES2: experimental group training on skill of defense against the shooter, skill of shooting). For the statistical analysis, we have chosen (F & T) tests for the statistical differences, and test (R) for the correlation analysis. Based on the analyses statistics, we confirm the importance of classifying priorities of basketball basic skills during the motor learning process. Admit that the benefits of experimental group training are to economics in the time needed for acquiring new motor kinetic skills in basketball. In the priority of ES2 as successful dynamic motor learning method to enhance the basic skills among beginner’s basketball.Keywords: basic skills, basketball, motor learning, children
Procedia PDF Downloads 1708547 Analysis of the Dynamics of Transmission of Microsporidia MB Inside the Population of Anopheles Mosquitoes
Authors: Charlene N. T. Mfangnia, Henri Tonnang, Berge Tsanou, Jeremy Herren
Abstract:
The Microsporidia MB found in the populations of anopheles is a recently discovered symbiont responsible for the Plasmodium transmission blocking. From early studies, it was established that the symbiont can be transmitted vertically and horizontally. The present study uses compartmental mathematical modelling approach to investigate the dynamics of Microsporidia transmission in the mosquito population with the mindset of establishing a mechanism for use to control malaria. Data and information obtained from laboratory experiments are used to estimate the model parameters with and without temperature dependency of mosquito traits. We carry out the mathematical analysis focusing on the equilibria states and their stability for the autonomous model. Through the modelling experiments, we are able to assess and confirm the contribution of vertical and horizontal transmission in the proliferation of Microsporidia MB in the mosquito population. In addition, the basic and target reproductions are computed, and some long-term behaviours of the model, such as the local (and global) stability of equilibrium points, are rigorously analysed and illustrated numerically. We establish the conditions responsible for the low prevalence of the symbiont-infected mosquitoes observed in nature. Moreover, we identify the male death rate, the mating rate and the attractiveness of MB-positive mosquitoes as mosquito traits that significantly influence the spread of Microsporidia MB. Furthermore, we highlight the influence of temperature in the establishment and persistence of MB-infected mosquitoes in a given area.Keywords: microsporidia MB, vertical transmission, horizontal transmission, compartmental modelling approach, temperature-dependent mosquito traits, malaria, plasmodium-transmission blocking
Procedia PDF Downloads 1308546 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design
Authors: A. Thakur, P. S. Panesar, M. S. Saini
Abstract:
Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio (φ), and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs,, ψ, φ and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively.Keywords: emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology
Procedia PDF Downloads 3838545 Examination of the Reinforcement Forces Generated in Pseudo-Static and Dynamic Status in Retaining Walls
Authors: K. Passbakhsh
Abstract:
Determination of reinforcement forces is one of the most important and main discussions in designing retaining walls. By determining these forces we refrain from conservative planning. By numerically modeling the reinforced soil retaining walls under dynamic loading reinforcement forces can be calculated. In this study we try to approach the gained forces by pseudo-static method according to FHWA code and gained forces from numerical modeling by finite element method, by selecting seismic horizontal coefficient for different wall height. PLAXIS software was used for numerical analysis. Then the effect of reinforcement stiffness and soil type on reinforcement forces is examined.Keywords: reinforced soil, PLAXIS, reinforcement forces, retaining walls
Procedia PDF Downloads 3588544 Influence of Infinite Elements in Vibration Analysis of High-Speed Railway Track
Authors: Janaki Rama Raju Patchamatla, Emani Pavan Kumar
Abstract:
The idea of increasing the existing train speeds and introduction of the high-speed trains in India as a part of Vision-2020 is really challenging from both economic viability and technical feasibility. More than economic viability, technical feasibility has to be thoroughly checked for safe operation and execution. Trains moving at high speeds need a well-established firm and safe track thoroughly tested against vibration effects. With increased speeds of trains, the track structure and layered soil-structure interaction have to be critically assessed for vibration and displacements. Physical establishment of track, testing and experimentation is a costly and time taking process. Software-based modelling and simulation give relatively reliable, cost-effective means of testing effects of critical parameters like sleeper design and density, properties of track and sub-grade, etc. The present paper reports the applicability of infinite elements in reducing the unrealistic stress-wave reflections from so-called soil-structure interface. The influence of the infinite elements is quantified in terms of the displacement time histories of adjoining soil and the deformation pattern in general. In addition, the railhead response histories at various locations show that the numerical model is realistic without any aberrations at the boundaries. The numerical model is quite promising in its ability to simulate the critical parameters of track design.Keywords: high speed railway track, finite element method, Infinite elements, vibration analysis, soil-structure interface
Procedia PDF Downloads 2728543 Building Teacher Capacity: Including All Students in Mathematics Experiences
Authors: Jay-R M. Mendoza
Abstract:
In almost all mathematics classrooms, students demonstrated discrepancies in their knowledge, skills, and understanding. OECD reports predicted that this continued to aggravate as not all teachers were sufficiently trained to handle this concentration. In response, the paper explored the potential of reSolve’s professional learning module 3 (PLM3) as an affordable and accessible professional development (PD) resource. Participants’ hands-on experience and exposure to PLM3 were audio recorded. After it was transcribed and examined and their work samples were analysed, there were four issues emerged: (1) criticality of conducting preliminary data collections and increasing the validity of inferences about what students can and cannot do by addressing the probabilistic nature of their performance; (2) criticality of the conclusion: a > b and/or (a-b) ∈ Z⁺ among students’ algebraic reasoning; (3) enabling and extending prompts provided by reSolve were found useful; and (4) dynamic adaptation of reSolve PLM3 through developing transferable skills and collaboration among teachers. PLM3 provided valuable insights on assessment, teaching, and planning to include all students in mathematics experiences.Keywords: algebraic reasoning, building teacher capacity, including all students in mathematics experiences, professional development
Procedia PDF Downloads 1248542 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps
Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe
Abstract:
Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion
Procedia PDF Downloads 1668541 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology
Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn
Abstract:
Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes.Keywords: lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery
Procedia PDF Downloads 6548540 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 2928539 Short-Term Effects of an Open Monitoring Meditation on Cognitive Control and Information Processing
Authors: Sarah Ullrich, Juliane Rolle, Christian Beste, Nicole Wolff
Abstract:
Inhibition and cognitive flexibility are essential parts of executive functions in our daily lives, as they enable the avoidance of unwanted responses or selectively switch between mental processes to generate appropriate behavior. There is growing interest in improving inhibition and response selection through brief mindfulness-based meditations. Arguably, open-monitoring meditation (OMM) improves inhibitory and flexibility performance by optimizing cognitive control and information processing. Yet, the underlying neurophysiological processes have been poorly studied. Using the Simon-Go/Nogo paradigm, the present work examined the effect of a single 15-minute smartphone app-based OMM on inhibitory performance and response selection in meditation novices. We used both behavioral and neurophysiological measures (event-related potentials, ERPs) to investigate which subprocesses of response selection and inhibition are altered after OMM. The study was conducted in a randomized crossover design with N = 32 healthy adults. We thereby investigated Go and Nogo trials in the paradigm. The results show that as little as 15 minutes of OMM can improve response selection and inhibition at behavioral and neurophysiological levels. More specifically, OMM reduces the rate of false alarms, especially during Nogo trials regardless of congruency. It appears that OMM optimizes conflict processing and response inhibition compared to no meditation, also reflected in the ERP N2 and P3 time windows. The results may be explained by the meta control model, which argues in terms of a specific processing mode with increased flexibility and inclusive decision-making under OMM. Importantly, however, the effects of OMM were only evident when there was the prior experience with the task. It is likely that OMM provides more cognitive resources, as the amplitudes of these EKPs decreased. OMM novices seem to induce finer adjustments during conflict processing after familiarization with the task.Keywords: EEG, inhibition, meditation, Simon Nogo
Procedia PDF Downloads 2118538 Kinetic Analysis for Assessing Gait Disorders in Muscular Dystrophy Disease
Authors: Mehdi Razeghi
Abstract:
Background: The purpose of this case series was to quantify gait to study muscular dystrophy disease. In this research, the quantitative differences between normal and waddling gaits were assessed by force plate analysis. Methods: Nineteen myopathy patients and twenty normal subjects serving as the control group participated in this research. In this study, quantitative analyses of gait have been used to investigate the differences between the mobility of normal subjects and myopathy patients. This study was carried out at the Iranian Muscular Dystrophy Association in Boali Hospital, Tehran, Iran, from October 2015 to July 2020. Patient data were collected from Iranian Muscular Dystrophy Association members. individuals signed an informed consent form approved by the ethics committee of the Azad University. All of the gait tests were performed using a Kistler force platform. Participants walked at a self-selected speed, barefoot, independently, and without assistive devices. Results: Our findings indicate that there were no significant differences between the patients and the control group in the anterior-posterior components of the ground reaction forces; however, there were considerable differences in the force components between the groups in the medial-lateral and vertical directions of the ground reaction force. In addition, there were significant differences in the time parameters between the groups in the vertical and medial-lateral directions.Keywords: biomechanics, force plate analysis, gait disorder, ground reaction force, kinetic analysis, myopathy disease, rehabilitation engineering
Procedia PDF Downloads 828537 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL
Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani
Abstract:
In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.Keywords: islanding, under-frequency load shedding, frequency rate of change, static UFLS
Procedia PDF Downloads 4868536 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects
Authors: Lukas Vierus, Thomas Schuster
Abstract:
A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions
Procedia PDF Downloads 518535 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategiesKeywords: rotor, crack, rubbing, axial force, non linear
Procedia PDF Downloads 4018534 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage
Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour
Abstract:
This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage
Procedia PDF Downloads 4568533 Comparison of Mechanical Properties of Three Different Orthodontic Latex Elastic Bands Leached with NaOH Solution
Authors: Thipsupar Pureprasert, Niwat Anuwongnukroh, Surachai Dechkunakorn, Surapich Loykulanant, Chaveewan Kongkaew, Wassana Wichai
Abstract:
Objective: Orthodontic elastic bands made from natural rubber continue to be commonly used due to their favorable characteristics. However, there are concerns associated cytotoxicity due to harmful components released during conventional vulcanization (sulfur-based method). With the co-operation of The National Metal and Materials Technology Center (MTEC) and Faculty of Dentistry Mahidol University, a method was introduced to reduce toxic components by leaching the orthodontic elastic bands with NaOH solution. Objectives: To evaluate the mechanical properties of Thai and commercial orthodontic elastic brands (Ormco and W&H) leached with NaOH solution. Material and methods: Three elastic brands (N =30, size ¼ inch, 4.5 oz.) were tested for mechanical properties in terms of initial extension force, residual force, force loss, breaking strength and maximum displacement using a Universal Testing Machine. Results : Force loss significantly decreased in Thai-LEACH and W&H-LEACH, whereas the values increased in Ormco-LEACH (P < 0.05). The data exhibited a significantly decrease in breaking strength with Thai-LEACH and Ormco-LEACH, whereas all 3 brands revealed a significantly decrease in maximum displacement with the leaching process (P < 0.05). Conclusion: Leaching with NaOH solution is a new method, which can remove toxic components from orthodontic latex elastic bands. However, this process can affect their mechanical properties. Leached elastic bands from Thai had comparable properties with Ormco and have potential to be developed as a promising product.Keywords: leaching, orthodontic elastics, natural rubber latex, orthodontic
Procedia PDF Downloads 2718532 Gender Based of Sustainable Food Self-Resilience for Village Using Dynamic System Model
Authors: Kholil, Laksanto Utomo
Abstract:
The food needs of the Indonesian people will continue increase year to year due to the increase of population growth. For ensuring food securityand and resilience, the government has developed a program food self-resilience village since 2006. Food resilience is a complex system, consisting of subsystem availability, distribution and consumption of the sufficiency of food consumed both in quantity and quality. Low access, and limited assets to food sources is the dominant factor vulnerable of food. Women have a major role in supporting the productive activities of the family to meet food sufficiency and resilience. The purpose of this paper is to discuss the model of food self-resilience village wich gender responsive by using a dynamic system model. Model will be developed into 3 level: family, vilage, and regency in accordance with the concept of village food resilience model wich has been developed by ministry of agriculture. Model development based on the results of experts discussion and field study. By some scenarios and simulation models we will able to develop appropriate policy strategies for family food resilience. The result of study show that food resilience was influenced by many factors: goverment policies, technology, human resource, and in the same time it will be a feed back for goverment policies and number of poor family.Keywords: food availability, food sufficiency, gender, model dynamic, law enfrocement
Procedia PDF Downloads 5348531 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI
Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova
Abstract:
The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance
Procedia PDF Downloads 4338530 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space
Authors: Chao He, Shunhua Zhou, Peijun Guo
Abstract:
The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method
Procedia PDF Downloads 1198529 Individual Physiological and Psycho-Physical Response on Predicting Thermal Comfort in Transient Environments: A Literature Review
Authors: Fatemeh Deldarabdolmaleki, Nur Dalilah Dahlan, Farzad Hejazi
Abstract:
Human individual physiological and psycho-physical responses widely affect thermal comfort and preferences. They should be carefully researched to help improve the design and comfort of indoor environments. This paper aims to explore and test the degree and importance of individual physiological and psycho-physical differences, reviewing the most preferred, neutral, and comfortable temperature in previous studies conducted across the world. Basic individual physiological differences like gender, age, BMI and etc., have been the focus of this research. There is no unique consensus in the literature to date in regard to providing a universal thermal comfort formula that meets all individual physiological and psycho-physical needs. In order to achieve a balanced, thermally comfortable indoor environment, studying and evaluating individual needs in different parts of the world could be helpful. Even though personalized comfort systems in indoor environments sound promising, they might not be easily achieved in bigger office interiors, considering the cost and current open-plan office trends.Keywords: thermal comfort, indoor environments, occupants' physiological response, occupants psycho-physical response
Procedia PDF Downloads 73