Search results for: twitter trends
66 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 8965 Indigenous Pre-Service Teacher Education: Developing, Facilitating, and Maintaining Opportunities for Retention and Graduation
Authors: Karen Trimmer, Raelene Ward, Linda Wondunna-Foley
Abstract:
Within Australian tertiary institutions, the subject of Aboriginal and Torres Strait Islander education has been a major concern for many years. Aboriginal and Torres Strait Islander teachers are significantly under-represented in Australian schools and universities. High attrition rates in teacher education and in the teaching industry have contributed to a minimal growth rate in the numbers of Aboriginal and Torres Strait Islander teachers in previous years. There was an increase of 500 Indigenous teachers between 2001 and 2008 but these numbers still only account for one percent of teaching staff in government schools who identified as Aboriginal and Torres Strait Islander Australians (Ministerial Council for Education, Early Childhood Development and Youth Affairs 2010). Aboriginal and Torres Strait Islander teachers are paramount in fostering student engagement and improving educational outcomes for Indigenous students. Increasing the numbers of Aboriginal and Torres Strait Islander teachers is also a key factor in enabling all students to develop understanding of and respect for Aboriginal and Torres Strait Islander histories, cultures, and language. An ambitious reform agenda to improve the recruitment and retention of Aboriginal and Torres Strait Islander teachers will be effective only through national collaborative action and co-investment by schools and school authorities, university schools of education, professional associations, and Indigenous leaders and community networks. Whilst the University of Southern Queensland currently attracts Indigenous students to its teacher education programs (61 students in 2013 with an average of 48 enrollments each year since 2010) there is significant attrition during pre-service training. The annual rate of exiting before graduation remains high at 22% in 2012 and was 39% for the previous two years. These participation and retention rates are consistent with other universities across Australia. Whilst aspirations for a growing number of Indigenous people to be trained as teachers is present, there is a significant loss of students during their pre-service training and within the first five years of employment as a teacher. These trends also reflect the situation where Aboriginal and Torres Strait Islander teachers are significantly under-represented, making up less than 1% of teachers in schools across Australia. Through a project conducted as part the nationally funded More Aboriginal and Torres Strait Islander Teachers Initiative (MATSITI) we aim to gain an insight into the reasons that impact Aboriginal and Torres Strait Islander student’s decisions to exit their program. Through the conduct of focus groups and interviews with two graduating cohorts of self-identified Aboriginal and Torres Strait Islander students, rich data has been gathered to gain an understanding of the barriers and enhancers to the completion of pre-service qualification and transition to teaching. Having a greater understanding of these reasons then allows the development of collaborative processes and procedures to increase retention and completion rates of new Indigenous teachers. Analysis of factors impacting on exit decisions and transitions has provided evidence to support change of practice, redesign and enhancement of relevant courses and development of policy/procedures to address identified issues.Keywords: graduation, indigenous, pre-service teacher education, retention
Procedia PDF Downloads 47164 Membrane Technologies for Obtaining Bioactive Fractions from Blood Main Protein: An Exploratory Study for Industrial Application
Authors: Fatima Arrutia, Francisco Amador Riera
Abstract:
The meat industry generates large volumes of blood as a result of meat processing. Several industrial procedures have been implemented in order to treat this by-product, but are focused on the production of low-value products, and in many cases, blood is simply discarded as waste. Besides, in addition to economic interests, there is an environmental concern due to bloodborne pathogens and other chemical contaminants found in blood. Consequently, there is a dire need to find extensive uses for blood that can be both applicable to industrial scale and able to yield high value-added products. Blood has been recognized as an important source of protein. The main blood serum protein in mammals is serum albumin. One of the top trends in food market is functional foods. Among them, bioactive peptides can be obtained from protein sources by microbiological fermentation or enzymatic and chemical hydrolysis. Bioactive peptides are short amino acid sequences that can have a positive impact on health when administered. The main drawback for bioactive peptide production is the high cost of the isolation, purification and characterization techniques (such as chromatography and mass spectrometry) that make unaffordable the scale-up. On the other hand, membrane technologies are very suitable to apply to the industry because they offer a very easy scale-up and are low-cost technologies, compared to other traditional separation methods. In this work, the possibility of obtaining bioactive peptide fractions from serum albumin by means of a simple procedure of only 2 steps (hydrolysis and membrane filtration) was evaluated, as an exploratory study for possible industrial application. The methodology used in this work was, firstly, a tryptic hydrolysis of serum albumin in order to release the peptides from the protein. The protein was previously subjected to a thermal treatment in order to enhance the enzyme cleavage and thus the peptide yield. Then, the obtained hydrolysate was filtered through a nanofiltration/ultrafiltration flat rig at three different pH values with two different membrane materials, so as to compare membrane performance. The corresponding permeates were analyzed by liquid chromatography-tandem mass spectrometry technology in order to obtain the peptide sequences present in each permeate. Finally, different concentrations of every permeate were evaluated for their in vitro antihypertensive and antioxidant activities though ACE-inhibition and DPPH radical scavenging tests. The hydrolysis process with the previous thermal treatment allowed achieving a degree of hydrolysis of the 49.66% of the maximum possible. It was found that peptides were best transmitted to the permeate stream at pH values that corresponded to their isoelectric points. Best selectivity between peptide groups was achieved at basic pH values. Differences in peptide content were found between membranes and also between pH values for the same membrane. The antioxidant activity of all permeates was high compared with the control only for the highest dose. However, antihypertensive activity was best for intermediate concentrations, rather than higher or lower doses. Therefore, although differences between them, all permeates were promising regarding antihypertensive and antioxidant properties.Keywords: bioactive peptides, bovine serum albumin, hydrolysis, membrane filtration
Procedia PDF Downloads 20063 Acceleration and Deceleration Behavior in the Vicinity of a Speed Camera, and Speed Section Control
Authors: Jean Felix Tuyisingize
Abstract:
Speeding or inappropriate speed is a major problem worldwide, contributing to 10-15% of road crashes and 30% of fatal injury crashes. The consequences of speeding put the driver's life at risk and the lives of other road users like motorists, cyclists, and pedestrians. To control vehicle speeds, governments, and traffic authorities enforced speed regulations through speed cameras and speed section control, which monitor all vehicle speeds and detect plate numbers to levy penalties. However, speed limit violations are prevalent, even on motorways with speed cameras. The problem with speed cameras is that they alter driver behaviors, and their effect declines with increasing distance from the speed camera location. Drivers decelerate short distances before the camera and vigorously accelerate above the speed limit just after passing by the camera. The sudden decelerating near cameras causes the drivers to try to make up for lost time after passing it, and they do this by speeding up, resulting in a phenomenon known as the "Kangaroo jump" or "V-profile" around camera/ASSC areas. This study investigated the impact of speed enforcement devices, specifically Average Speed Section Control (ASSCs) and fixed cameras, on acceleration and deceleration events within their vicinity. The research employed advanced statistical and Geographic Information System (GIS) analysis on naturalistic driving data, to uncover speeding patterns near the speed enforcement systems. The study revealed a notable concentration of events within a 600-meter radius of enforcement devices, suggesting their influence on driver behaviors within a specific range. However, most of these events are of low severity, suggesting that drivers may not significantly alter their speed upon encountering these devices. This behavior could be attributed to several reasons, such as consistently maintaining safe speeds or using real-time in-vehicle intervention systems. The complexity of driver behavior is also highlighted, indicating the potential influence of factors like traffic density, road conditions, weather, time of day, and driver characteristics. Further, the study highlighted that high-severity events often occurred outside speed enforcement zones, particularly around intersections, indicating these as potential hotspots for drastic speed changes. These findings call for a broader perspective on traffic safety interventions beyond reliance on speed enforcement devices. However, the study acknowledges certain limitations, such as its reliance on a specific geographical focus, which may impact the broad applicability of the findings. Additionally, the severity of speed modification events was categorized into low, medium, and high, which could oversimplify the continuum of speed changes and potentially mask trends within each category. This research contributes valuable insights to traffic safety and driver behavior literature, illuminating the complexity of driver behavior and the potential influence of factors beyond the presence of speed enforcement devices. Future research directions may employ various categories of event severity. They may also explore the role of in-vehicle technologies, driver characteristics, and a broader set of environmental variables in driving behavior and traffic safety.Keywords: acceleration, deceleration, speeding, inappropriate speed, speed enforcement cameras
Procedia PDF Downloads 3262 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP
Procedia PDF Downloads 9161 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis
Authors: Serhat Tüzün, Tufan Demirel
Abstract:
Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review
Procedia PDF Downloads 27960 Challenging Convections: Rethinking Literature Review Beyond Citations
Authors: Hassan Younis
Abstract:
Purpose: The objective of this study is to review influential papers in the sustainability and supply chain studies domain, leveraging insights from this review to develop a structured framework for academics and researchers. This framework aims to assist scholars in identifying the most impactful publications for their scholarly pursuits. Subsequently, the study will apply and trial the developed framework on selected scholarly articles within the sustainability and supply chain studies domain to evaluate its efficacy, practicality, and reliability. Design/Methodology/Approach: Utilizing the "Publish or Perish" tool, a search was conducted to locate papers incorporating "sustainability" and "supply chain" in their titles. After rigorous filtering steps, a panel of university professors identified five crucial criteria for evaluating research robustness: average yearly citation counts (25%), scholarly contribution (25%), alignment of findings with objectives (15%), methodological rigor (20%), and journal impact factor (15%). These five evaluation criteria are abbreviated as “ACMAJ" framework. Each paper then received a tiered score (1-3) for each criterion, normalized within its category, and summed using weighted averages to calculate a Final Normalized Score (FNS). This systematic approach allows for objective comparison and ranking of the research based on its impact, novelty, rigor, and publication venue. Findings: The study's findings highlight the lack of structured frameworks for assessing influential sustainability research in supply chain management, which often results in a dependence on citation counts. A complete model that incorporates five essential criteria has been suggested as a response. By conducting a methodical trial on specific academic articles in the field of sustainability and supply chain studies, the model demonstrated its effectiveness as a tool for identifying and selecting influential research papers that warrant additional attention. This work aims to fill a significant deficiency in existing techniques by providing a more comprehensive approach to identifying and ranking influential papers in the field. Practical Implications: The developed framework helps scholars identify the most influential sustainability and supply chain publications. Its validation serves the academic community by offering a credible tool and helping researchers, students, and practitioners find and choose influential papers. This approach aids field literature reviews and study suggestions. Analysis of major trends and topics deepens our grasp of this critical study area's changing terrain. Originality/Value: The framework stands as a unique contribution to academia, offering scholars an important and new tool to identify and validate influential publications. Its distinctive capacity to efficiently guide scholars, learners, and professionals in selecting noteworthy publications, coupled with the examination of key patterns and themes, adds depth to our understanding of the evolving landscape in this critical field of study.Keywords: supply chain management, sustainability, framework, model
Procedia PDF Downloads 5259 Improving Contributions to the Strengthening of the Legislation Regarding Road Infrastructure Safety Management in Romania, Case Study: Comparison Between the Initial Regulations and the Clarity of the Current Regulations - Trends Regarding the Efficiency
Authors: Corneliu-Ioan Dimitriu, Gheorghe Frățilă
Abstract:
Romania and Bulgaria have high rates of road deaths per million inhabitants. Directive (EU) 2019/1936, known as the RISM Directive, has been transposed into national law by each Member State. The research focuses on the amendments made to Romanian legislation through Government Ordinance no. 3/2022, which aims to improve road safety management on infrastructure. The aim of the research is two-fold: to sensitize the Romanian Government and decision-making entities to develop an integrated and competitive management system and to establish a safe and proactive mobility system that ensures efficient and safe roads. The research includes a critical analysis of European and Romanian legislation, as well as subsequent normative acts related to road infrastructure safety management. Public data from European Union and national authorities, as well as data from the Romanian Road Authority-ARR and Traffic Police database, are utilized. The research methodology involves comparative analysis, criterion analysis, SWOT analysis, and the use of GANTT and WBS diagrams. The Excel tool is employed to process the road accident databases of Romania and Bulgaria. Collaboration with Bulgarian specialists is established to identify common road infrastructure safety issues. The research concludes that the legislative changes have resulted in a relaxation of road safety management in Romania, leading to decreased control over certain management procedures. The amendments to primary and secondary legislation do not meet the current safety requirements for road infrastructure. The research highlights the need for legislative changes and strengthened administrative capacity to enhance road safety. Regional cooperation and the exchange of best practices are emphasized for effective road infrastructure safety management. The research contributes to the theoretical understanding of road infrastructure safety management by analyzing legislative changes and their impact on safety measures. It highlights the importance of an integrated and proactive approach in reducing road accidents and achieving the "zero deaths" objective set by the European Union. Data collection involves accessing public data from relevant authorities and using information from the Romanian Road Authority-ARR and Traffic Police database. Analysis procedures include critical analysis of legislation, comparative analysis of transpositions, criterion analysis, and the use of various diagrams and tools such as SWOT, GANTT, WBS, and Excel. The research addresses the effectiveness of legislative changes in road infrastructure safety management in Romania and the impact on control over management procedures. It also explores the need for strengthened administrative capacity and regional cooperation in addressing road safety issues. The research concludes that the legislative changes made in Romania have not strengthened road safety management and emphasize the need for immediate action, legislative amendments, and enhanced administrative capacity. Collaboration with Bulgarian specialists and the exchange of best practices are recommended for effective road infrastructure safety management. The research contributes to the theoretical understanding of road safety management and provides valuable insights for policymakers and decision-makers in Romania.Keywords: management, road infrastructure safety, legislation, amendments, collaboration
Procedia PDF Downloads 8458 A Proposal of a Strategic Framework for the Development of Smart Cities: The Argentinian Case
Authors: Luis Castiella, Mariano Rueda, Catalina Palacio
Abstract:
The world’s rapid urbanisation represents an excellent opportunity to implement initiatives that are oriented towards a country’s general development. However, this phenomenon has created considerable pressure on current urban models, pushing them nearer to a crisis. As a result, several factors usually associated with underdevelopment have been steadily rising. Moreover, actions taken by public authorities have not been able to keep up with the speed of urbanisation, which has impeded them from meeting the demands of society, responding with reactionary policies instead of with coordinated, organised efforts. In contrast, the concept of a Smart City which emerged around two decades ago, in principle, represents a city that utilises innovative technologies to remedy the everyday issues of the citizen, empowering them with the newest available technology and information. This concept has come to adopt a wider meaning, including human and social capital, as well as productivity, economic growth, quality of life, environment and participative governance. These developments have also disrupted the management of institutions such as academia, which have become key in generating scientific advancements that can solve pressing problems, and in forming a specialised class that is able to follow up on these breakthroughs. In this light, the Ministry of Modernisation of the Argentinian Nation has created a model that is rooted in the concept of a ‘Smart City’. This effort considered all the dimensions that are at play in an urban environment, with careful monitoring of each sub-dimensions in order to establish the government’s priorities and improving the effectiveness of its operations. In an attempt to ameliorate the overall efficiency of the country’s economic and social development, these focused initiatives have also encouraged citizen participation and the cooperation of the private sector: replacing short-sighted policies with some that are coherent and organised. This process was developed gradually. The first stage consisted in building the model’s structure; the second, at applying the method created on specific case studies and verifying that the mechanisms used respected the desired technical and social aspects. Finally, the third stage consists in the repetition and subsequent comparison of this experiment in order to measure the effects on the ‘treatment group’ over time. The first trial was conducted on 717 municipalities and evaluated the dimension of Governance. Results showed that levels of governmental maturity varied sharply with relation to size: cities with less than 150.000 people had a strikingly lower level of governmental maturity than cities with more than 150.000 people. With the help of this analysis, some important trends and target population were made apparent, which enabled the public administration to focus its efforts and increase its probability of being successful. It also permitted to cut costs, time, and create a dynamic framework in tune with the population’s demands, improving quality of life with sustained efforts to develop social and economic conditions within the territorial structure.Keywords: composite index, comprehensive model, smart cities, strategic framework
Procedia PDF Downloads 17657 Professional Working Conditions, Mental Health And Mobility In The Hungarian Social Sector Preliminary Findings From A Multi-method Study
Authors: Ágnes Győri, Éva Perpék, Zsófia Bauer, Zsuzsanna Elek
Abstract:
The aim of the research (funded by Hungarian national grant, NFKI- FK 138315) is to examine the professional mobility, mental health and work environment of social workers with a complex approach. Previous international and Hungarian research has pointed out that those working in the helping professions are strongly exposed to the risk of emotional-mental-physical exhaustion due to stress. Mental and physical strain, as well as lack of coping (can) cause health problems, but its role in career change and high labor turnover has also been proven. Even though satisfaction with working conditions of those employed in the human service sector in the context of the stress burden has been researched extensively, there is a lack of large-sample international and Hungarian domestic studies exploring the effects of profession-specific conditions. Nor has it been examined how the specific features of the social profession and mental health affect the career mobility of the professionals concerned. In our research, these factors and their correlations are analyzed by means of mixed methodology, utilizing the benefits of netnographic big data analysis and a sector-specific quantitative survey. The netnographic analysis of open web content generated inside and outside the social profession offers a holistic overview of the influencing factors related to mental health and the work environment of social workers. On the one hand, the topics and topoi emerging in the external discourse concerning the sector are examined, and on the other hand, focus on mentions and streams of comments regarding the profession, burnout, stress, coping, as well as labor turnover and career changes among social professionals. The analysis focuses on new trends and changes in discourse that have emerged during and after the pandemic. In addition to the online conversation analysis, a survey of social professionals with a specific focus has been conducted. The questionnaire is based on input from the first two research phases. The applied approach underlines that the mobility paths of social professionals can only be understood if, apart from the general working conditions, the specific features of social work and the effects of certain aspects of mental health (emotional-mental-physical strain, resilience) are taken into account as well. In this paper, the preliminary results from this innovative methodological mix are presented, with the aim of highlighting new opportunities and dimensions in the research on social work. A gap in existing research is aimed to be filled both on a methodological and empirical level, and the Hungarian domestic findings can create a feasible and relevant framework for a further international investigation and cross-cultural comparative analysis. Said results can contribute to the foundation of organizational and policy-level interventions, targeted programs whereby the risk of burnout and the rate of career abandonment can be reduced. Exploring different aspects of resilience and mapping personality strengths can be a starting point for stress-management, motivation-building, and personality-development training for social professionals.Keywords: burnout, mixed methods, netnography, professional mobility, social work
Procedia PDF Downloads 14356 Measuring Green Growth Indicators: Implication for Policy
Authors: Hanee Ryu
Abstract:
The former president Lee Myung-bak's administration of Korea presented “green growth” as a catchphrase from 2008. He declared “low-carbon, green growth” the nation's vision for the next decade according to United Nation Framework on Climate Change. The government designed omnidirectional policy for low-carbon and green growth with concentrating all effort of departments. The structural change was expected because this slogan is the identity of the government, which is strongly driven with the whole department. After his administration ends, the purpose of this paper is to quantify the policy effect and to compare with the value of the other OECD countries. The major target values under direct policy objectives were suggested, but it could not capture the entire landscape on which the policy makes changes. This paper figures out the policy impacts through comparing the value of ex-ante between the one of ex-post. Furthermore, each index level of Korea’s low-carbon and green growth comparing with the value of the other OECD countries. To measure the policy effect, indicators international organizations have developed are considered. Environmental Sustainable Index (ESI) and Environmental Performance Index (EPI) have been developed by Yale University’s Center for Environmental Law and Policy and Columbia University’s Center for International Earth Science Information Network in collaboration with the World Economic Forum and Joint Research Center of European Commission. It has been widely used to assess the level of natural resource endowments, pollution level, environmental management efforts and society’s capacity to improve its environmental performance over time. Recently OCED publish the Green Growth Indicator for monitoring progress towards green growth based on internationally comparable data. They build up the conceptual framework and select indicators according to well specified criteria: economic activities, natural asset base, environmental dimension of quality of life and economic opportunities and policy response. It considers the socio-economic context and reflects the characteristic of growth. Some selected indicators are used for measuring the level of changes the green growth policies have induced in this paper. As results, the CO2 productivity and energy productivity show trends of declination. It means that policy intended industry structure shift for achieving carbon emission target affects weakly in the short-term. Increasing green technologies patents might result from the investment of previous period. The increasing of official development aids which can be immediately embarked by political decision with no time lag present only in 2008-2009. It means international collaboration and investment to developing countries via ODA has not succeeded since the initial stage of his administration. The green growth framework makes the public expect structural change, but it shows sporadic effect. It needs organization to manage it in terms of the long-range perspectives. Energy, climate change and green growth are not the issue to be handled in the one period of the administration. The policy mechanism to transfer cost problem to value creation should be developed consistently.Keywords: comparing ex-ante between ex-post indicator, green growth indicator, implication for green growth policy, measuring policy effect
Procedia PDF Downloads 44855 Navigating the Future: Evaluating the Market Potential and Drivers for High-Definition Mapping in the Autonomous Vehicle Era
Authors: Loha Hashimy, Isabella Castillo
Abstract:
In today's rapidly evolving technological landscape, the importance of precise navigation and mapping systems cannot be understated. As various sectors undergo transformative changes, the market potential for Advanced Mapping and Management Systems (AMMS) emerges as a critical focus area. The Galileo/GNSS-Based Autonomous Mobile Mapping System (GAMMS) project, specifically targeted toward high-definition mapping (HDM), endeavours to provide insights into this market within the broader context of the geomatics and navigation fields. With the growing integration of Autonomous Vehicles (AVs) into our transportation systems, the relevance and demand for sophisticated mapping solutions like HDM have become increasingly pertinent. The research employed a meticulous, lean, stepwise, and interconnected methodology to ensure a comprehensive assessment. Beginning with the identification of pivotal project results, the study progressed into a systematic market screening. This was complemented by an exhaustive desk research phase that delved into existing literature, data, and trends. To ensure the holistic validity of the findings, extensive consultations were conducted. Academia and industry experts provided invaluable insights through interviews, questionnaires, and surveys. This multi-faceted approach facilitated a layered analysis, juxtaposing secondary data with primary inputs, ensuring that the conclusions were both accurate and actionable. Our investigation unearthed a plethora of drivers steering the HD maps landscape. These ranged from technological leaps, nuanced market demands, and influential economic factors to overarching socio-political shifts. The meteoric rise of Autonomous Vehicles (AVs) and the shift towards app-based transportation solutions, such as Uber, stood out as significant market pull factors. A nuanced PESTEL analysis further enriched our understanding, shedding light on political, economic, social, technological, environmental, and legal facets influencing the HD maps market trajectory. Simultaneously, potential roadblocks were identified. Notable among these were barriers related to high initial costs, concerns around data quality, and the challenges posed by a fragmented and evolving regulatory landscape. The GAMMS project serves as a beacon, illuminating the vast opportunities that lie ahead for the HD mapping sector. It underscores the indispensable role of HDM in enhancing navigation, ensuring safety, and providing pinpoint, accurate location services. As our world becomes more interconnected and reliant on technology, HD maps emerge as a linchpin, bridging gaps and enabling seamless experiences. The research findings accentuate the imperative for stakeholders across industries to recognize and harness the potential of HD mapping, especially as we stand on the cusp of a transportation revolution heralded by Autonomous Vehicles and advanced geomatic solutions.Keywords: high-definition mapping (HDM), autonomous vehicles, PESTEL analysis, market drivers
Procedia PDF Downloads 8454 A Community Solution to Address Extensive Nitrate Contamination in the Lower Yakima Valley Aquifer
Authors: Melanie Redding
Abstract:
Historic widespread nitrate contamination of the Lower Yakima Valley aquifer in Washington State initiated a community-based effort to reduce nitrate concentrations to below-drinking water standards. This group commissioned studies on characterizing local nitrogen sources, deep soil assessments, drinking water, and assessing nitrate concentrations at the water table. Nitrate is the most prevalent groundwater contaminant with common sources from animal and human waste, fertilizers, plants and precipitation. It is challenging to address groundwater contamination when common sources, such as agriculture, on-site sewage systems, and animal production, are widespread. Remediation is not possible, so mitigation is essential. The Lower Yakima Valley is located over 175,000 acres, with a population of 56,000 residents. Approximately 25% of the population do not have access to safe, clean drinking water, and 20% of the population is at or below the poverty level. Agriculture is the primary economic land-use activity. Irrigated agriculture and livestock production make up the largest percentage of acreage and nitrogen load. Commodities include apples, grapes, hops, dairy, silage corn, triticale, alfalfa and cherries. These commodities are important to the economic viability of the residents of the Lower Yakima Valley, as well as Washington State. Mitigation of nitrate in groundwater is challenging. The goal is to ensure everyone has safe drinking water. There are no easy remedies due to the extensive and pervasiveness of the contamination. Monitoring at the water table indicates that 45% of the 30 spatially distributed monitoring wells exceeded the drinking water standard. This indicates that there are multiple sources that are impacting water quality. Washington State has several areas which have extensive groundwater nitrate contamination. The groundwater in these areas continues to degrade over time. However, the Lower Yakima Valley is being successful in addressing this health issue because of the following reasons: the community is engaged and committed; there is one common goal; there has been extensive public education and outreach to citizens; and generating credible data using sound scientific methods. Work in this area is continuing as an ambient groundwater monitoring network is established to assess the condition of the aquifer over time. Nitrate samples are being collected from 170 wells, spatially distributed across the aquifer. This research entails quarterly sampling for two years to characterize seasonal variability and then continue annually afterward. This assessment will provide the data to statistically determine trends in nitrate concentrations across the aquifer, over time. Thirty-three of these wells are monitoring wells that are screened across the aquifer. The water quality from these wells are indicative of activities at the land surface. Additional work is being conducted to identify land use management practices that are effective in limiting nitrate migration through the soil column. Tracking nitrate in the soil column every season is an important component of bridging land-use practices with the fate and transport of nitrate through the subsurface. Patience, tenacity, and the ability to think outside the box are essential for dealing with widespread nitrate contamination of groundwater.Keywords: community, groundwater, monitoring, nitrate
Procedia PDF Downloads 17753 Analysis of the Interest of High School Students in Tirana for Physical Activity, Sports and Foreign Languages
Authors: Zylfi Shehu, Shpetim Madani, Bashkim Delia
Abstract:
Context: The study focuses on the interest and engagement of high school students in Tirana, Albania, in physical activity, sports, and foreign languages. It acknowledges the numerous physiological benefits of physical activity, such as cardiovascular health and improved mood. It also recognizes the importance of physical activity in childhood and adolescence for proper skeletal development and long-term health. Research Aim: The main purpose of the study is to investigate and analyze the preferences and interests of male and female high school students in Tirana regarding their functional development, physical activity, sports participation, and choice of foreign languages. The aim is to provide insights for the students and teachers to guide future objectives and improve the quality of physical education. Methodology: The study employed a survey-based approach, targeting both male and female students in public high schools in Tirana. A total of 410 students aged 15 to 19 years old, participated in the study. The data collected from the survey were processed using Excel and presented through tables and graphs. Findings: The results revealed that team sports were more favored by the students, with football being the preferred choice among males, while basketball and volleyball were more popular among females. Additionally, English was found to be the most preferred foreign language, selected by a higher percentage of females (38.57%) compared to males (16.90%). German followed as the second preferred language. Theoretical Importance: This study contributes to the understanding of students' interests in physical activity, sports, and foreign languages in Tirana's high schools. The findings highlight the need to focus on specific sports and languages to cater to students' preferences and guide future educational objectives. It also emphasizes the importance of physical education in promoting students' overall well-being and highlights potential areas for policy and program improvement. Data Collection and Analysis Procedures: The study collected data through surveys administered to high school students in Tirana. The survey responses were processed and analyzed using Excel, and the findings were presented through tables and graphs. The data analysis allowed for the identification of preferences and trends among male and female students, providing valuable insights for future decision-making. Question Addressed: The study aimed to address the question of high school students' interest in physical activity, sports, and foreign languages. It sought to understand the preferences and choices made by students in Tirana and investigate factors such as gender, family income, and accessibility to extracurricular sports activities. Conclusion: The study revealed that high school students in Tirana show a preference for team sports, with football being the most favored among males and basketball and volleyball among females. English was found to be the most preferred foreign language. The findings provide important insights for educators and policymakers to enhance physical education programs and consider students' preferences and interests to foster a more effective learning environment. The study also emphasizes the importance of physical activity and sports in promoting students' physical and mental well-being.Keywords: female, male, foreign languages, sports, physical education, high school students
Procedia PDF Downloads 9452 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 5051 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality
Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan
Abstract:
Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application
Procedia PDF Downloads 7450 Effect of the Incorporation of Modified Starch on the Physicochemical Properties and Consumer Acceptance of Puff Pastry
Authors: Alejandra Castillo-Arias, Santiago Amézquita-Murcia, Golber Carvajal-Lavi, Carlos M. Zuluaga-Domínguez
Abstract:
The intricate relationship between health and nutrition has driven the food industry to seek healthier and more sustainable alternatives. A key strategy currently employed is the reduction of saturated fats and the incorporation of ingredients that align with new consumer trends. Modified starch, a polysaccharide widely used in baking, also serves as a functional ingredient to boost dietary fiber content. However, its use in puff pastry remains challenging due to the technological difficulties in achieving a buttery pastry with the necessary strength to create thin, flaky layers. This study explored the potential of incorporating modified starch into puff pastry formulations. To evaluate the physicochemical properties of wheat flour mixed with modified starch, five different flour samples were prepared: T1, T2, T3, and T4, containing 10g, 20g, 30g, and 40g of modified starch per 100 g mixture, respectively, alongside a control sample (C) with no added starch. The analysis focused on various physicochemical indices, including the Water Absorption Index (WAI), Water Solubility Index (WSI), Swelling Power (SP), and Water Retention Capacity (WRC). The puff pastry was further characterized by color measurement and sensory analysis. For the preparation of the puff pastry dough, the flour, modified starch, and salt were mixed, followed by the addition of water until a homogenous dough was achieved. The margarine was later incorporated into the dough, which was folded and rolled multiple times to create the characteristic layers of puff pastry. The dough was then cut into equal pieces, baked at 170°C, and allowed to cool. The results indicated that the addition of modified starch did not significantly alter the specific volume or texture of the puff pastries, as reflected by the stable WAI and SP values across the samples. However, the WRC increased with higher starch content, highlighting the hydrophilic nature of the modified starch, which necessitated additional water during dough preparation. Color analysis revealed significant variations in the L* (lightness) and a* (red-green) parameters, with no consistent relationship between the modified starch treatments and the control. However, the b* (yellow-blue) parameter showed a strong correlation across most samples, except for treatment T3. Thus, modified starch affected the a* component of the CIELAB color spectrum, influencing the reddish hue of the puff pastries. Variations in baking time due to increased water content in the dough likely contributed to differences in lightness among the samples. Sensory analysis revealed that consumers preferred the sample with a 20% starch substitution (T2), which was rated similarly to the control in terms of texture. However, treatment T3 exhibited unusual behavior in texture analysis, and the color analysis showed that treatment T1 most closely resembled the control, indicating that starch addition is most noticeable to consumers in the visual aspect of the product. In conclusion, while the modified starch successfully maintained the desired texture and internal structure of puff pastry, its impact on water retention and color requires careful consideration in product formulation. This study underscores the importance of balancing product quality with consumer expectations when incorporating modified starches in baked goods.Keywords: consumer preferences, modified starch, physicochemical properties, puff pastry
Procedia PDF Downloads 2749 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence
Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti
Abstract:
In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.Keywords: collective intelligence, data framework, destination management, smart tourism
Procedia PDF Downloads 12148 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate
Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad
Abstract:
Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.Keywords: land abandonment, land use, nutrient's depletion, soil erosion
Procedia PDF Downloads 34647 Absenteeism in Polytechnical University Studies: Quantification and Identification of the Causes at Universitat Politècnica de Catalunya
Authors: E. Mas de les Valls, M. Castells-Sanabra, R. Capdevila, N. Pla, Rosa M. Fernandez-Canti, V. de Medina, A. Mujal, C. Barahona, E. Velo, M. Vigo, M. A. Santos, T. Soto
Abstract:
Absenteeism in universities, including polytechnical universities, is influenced by a variety of factors. Some factors overlap with those causing absenteeism in schools, while others are specific to the university and work-related environments. Indeed, these factors may stem from various sources, including students, educators, the institution itself, or even the alignment of degree curricula with professional requirements. In Spain, there has been an increase in absenteeism in polytechnical university studies, especially after the Covid crisis, posing a significant challenge for institutions to address. This study focuses on Universitat Politècnica de Catalunya• BarcelonaTech (UPC) and aims to quantify the current level of absenteeism and identify its main causes. The study is part of the teaching innovation project ASAP-UPC, which aims to minimize absenteeism through the redesign of teaching methodologies. By understanding the factors contributing to absenteeism, the study seeks to inform the subsequent phases of the ASAP-UPC project, which involve implementing methodologies to minimize absenteeism and evaluating their effectiveness. The study utilizes surveys conducted among students and polytechnical companies. Students' perspectives are gathered through both online surveys and in-person interviews. The surveys inquire about students' interest in attending classes, skill development throughout their UPC experience, and their perception of the skills required for a career in a polytechnical field. Additionally, polytechnical companies are surveyed regarding the skills they seek in prospective employees. The collected data is then analyzed to identify patterns and trends. This analysis involves organizing and categorizing the data, identifying common themes, and drawing conclusions based on the findings. This mixed-method approach has revealed that higher levels of absenteeism are observed in large student groups at both the Bachelor's and Master's degree levels. However, the main causes of absenteeism differ between these two levels. At the Bachelor's level, many students express dissatisfaction with in-person classes, perceiving them as overly theoretical and lacking a balance between theory, experimental practice, and problem-solving components. They also find a lack of relevance to professional needs. Consequently, they resort to using online available materials developed during the Covid crisis and attending private academies for exam preparation instead. On the other hand, at the Master's level, absenteeism primarily arises from schedule incompatibility between university and professional work. There is a discrepancy between the skills highly valued by companies and the skills emphasized during the studies, aligning partially with students' perceptions. These findings are of theoretical importance as they shed light on areas that can be improved to offer a more beneficial educational experience to students at UPC. The study also has potential applicability to other polytechnic universities, allowing them to adapt the surveys and apply the findings to their specific contexts. By addressing the identified causes of absenteeism, universities can enhance the educational experience and better prepare students for successful careers in polytechnical fields.Keywords: absenteeism, polytechnical studies, professional skills, university challenges
Procedia PDF Downloads 6846 Mobile App versus Website: A Comparative Eye-Tracking Case Study of Topshop
Authors: Zofija Tupikovskaja-Omovie, David Tyler, Sam Dhanapala, Steve Hayes
Abstract:
The UK is leading in online retail and mobile adoption. However, there is a dearth of information relating to mobile apparel retail, and developing an understanding about consumer browsing and purchase behavior in m-retail channel would provide apparel marketers, mobile website and app developers with the necessary understanding of consumers’ needs. Despite the rapid growth of mobile retail businesses, no published study has examined shopping behaviour on fashion mobile websites and apps. A mixed method approach helped to understand why fashion consumers prefer websites on mobile devices, when mobile apps are also available. The following research methods were employed: survey, eye-tracking experiments, observation, and interview with retrospective think aloud. The mobile gaze tracking device by SensoMotoric Instruments was used to understand frustrations in navigation and other issues facing consumers in mobile channel. This method helped to validate and compliment other traditional user-testing approaches in order to optimize user experience and enhance the development of mobile retail channel. The study involved eight participants - females aged 18 to 35 years old, who are existing mobile shoppers. The participants used the Topshop mobile app and website on a smart phone to complete a task according to a specified scenario leading to a purchase. The comparative study was based on: duration and time spent at different stages of the shopping journey, number of steps involved and product pages visited, search approaches used, layout and visual clues, as well as consumer perceptions and expectations. The results from the data analysis show significant differences in consumer behaviour when using a mobile app or website on a smart phone. Moreover, two types of problems were identified, namely technical issues and human errors. Having a mobile app does not guarantee success in satisfying mobile fashion consumers. The differences in the layout and visual clues seem to influence the overall shopping experience on a smart phone. The layout of search results on the website was different from the mobile app. Therefore, participants, in most cases, behaved differently on different platforms. The number of product pages visited on the mobile app was triple the number visited on the website due to a limited visibility of products in the search results. Although, the data on traffic trends held by retailers to date, including retail sector breakdowns for visits and views, data on device splits and duration, might seem a valuable source of information, it cannot explain why consumers visit many product pages, stay longer on the website or mobile app, or abandon the basket. A comprehensive list of pros and cons was developed by highlighting issues for website and mobile app, and recommendations provided. The findings suggest that fashion retailers need to be aware of actual consumers’ behaviour on the mobile channel and their expectations in order to offer a seamless shopping experience. Added to which is the challenge of retaining existing and acquiring new customers. There seem to be differences in the way fashion consumers search and shop on mobile, which need to be explored in further studies.Keywords: consumer behavior, eye-tracking technology, fashion retail, mobile app, m-retail, smart phones, topshop, user experience, website
Procedia PDF Downloads 45945 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India
Authors: N. K. Ambujam, V. Sudha
Abstract:
Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.Keywords: NPS pollution, nutrients, hyper-eutrophication, krishnagiri reservoir
Procedia PDF Downloads 32444 Stroke Prevention in Patients with Atrial Fibrillation and Co-Morbid Physical and Mental Health Problems
Authors: Dina Farran, Mark Ashworth, Fiona Gaughran
Abstract:
Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, is associated with an increased risk of stroke, contributing to heart failure and death. In this project, we aim to improve patient safety by screening for stroke risk among people with AF and co-morbid mental illness. To do so, we started by conducting a systematic review and meta-analysis on prevalence, management, and outcomes of AF in people with Serious Mental Illness (SMI) versus the general population. We then evaluated oral anticoagulation (OAC) prescription trends in people with AF and co-morbid SMI in King’s College Hospital. We also evaluated the association between mental illness severity and OAC prescription in eligible patients in South London and Maudsley (SLaM) NHS Foundation Trust. Next, we implemented an electronic clinical decision support system (eCDSS) consisting of a visual prompt on patient electronic Personal Health Records to screen for AF-related stroke risk in three Mental Health of Older Adults wards at SLaM. Finally, we assessed the feasibility and acceptability of the eCDSS by qualitatively investigating clinicians’ perspectives of the potential usefulness of the eCDSS (pre-intervention) and their experiences and their views regarding its impact on clinicians and patients (post-intervention). The systematic review showed that people with SMI had low reported rates of AF. AF patients with SMI were less likely to receive OAC than the general population. When receiving warfarin, people with SMI, particularly bipolar disorder, experienced poor anticoagulation control compared to the general population. Meta-analysis showed that SMI was not significantly associated with an increased risk of stroke or major bleeding when adjusting for underlying risk factors. The main findings of the first observational study were that among AF patients having a high stroke risk, those with co-morbid SMI were less likely than non-SMI to be prescribed any OAC, particularly warfarin. After 2019, there was no significant difference between the two groups. In the second observational study, patients with AF and co-morbid SMI were less likely to be prescribed any OAC compared to those with dementia, substance use disorders, or common mental disorders, adjusting for age, sex, stroke, and bleeding risk scores. Among AF patients with co-morbid SMI, warfarin was less likely to be prescribed to those having alcohol or substance dependency, serious self-injury, hallucinations or delusions, and activities of daily living impairment. In the intervention, clinicians were asked to confirm the presence of AF, clinically assess stroke and bleeding risks, record risk scores in clinical notes, and refer patients at high risk of stroke to OAC clinics. Clinicians reported many potential benefits for the eCDSS, including improving clinical effectiveness, better identification of patients at risk, safer and more comprehensive care, consistency in decision making and saving time. Identified potential risks included rigidity in decision-making, overreliance, reduced critical thinking, false positive recommendations, annoyance, and increased workload. This study presents a unique opportunity to quantify AF patients with mental illness who are at high risk of severe outcomes using electronic health records. This has the potential to improve health outcomes and, therefore patients' quality of life.Keywords: atrial fibrillation, stroke, mental health conditions, electronic clinical decision support systems
Procedia PDF Downloads 4943 A Scoping Review of Technology-Facilitated Gender-Based Violence: Findings from Asia
Authors: Vaiddehi Bansal, Laura Hinson, Mayumi Rezwan, Erin Leasure, Mithila Iyer, Connor Roth, Poulomi Pal, Kareem Kysia
Abstract:
As digital usage becomes increasingly ubiquitous worldwide, technology-facilitated gender-based violence (GBV) has garnered increasing attention in the recent years, especially during the COVID-19 pandemic. This form of violence is defined as “action by one or more people that harms others based on their sexual or gender identity or by enforcing harmful gender norms. This action is carried out using the internet and/or mobile technology that harms others based on their sexual or gender identity or by enforcing harmful gender norms”.Common forms of technology-facilitated GBV include cyberstalking, cyberbullying, sexual harassment, image-based abuse, doxing, hacking, gendertrolling, hate speech, and impersonation. Most literature on this pervasive yet complex issue has emerged from high-income countries, and few studies comprehensively summarize its prevalence, manifestations, and implications. This rigorous scoping review examines the evidence base of this phenomenon in low and middle-income countries across Asia, summarizing trends and gaps to inform actionable recommendations. The research team developed search terms to conduct a comprehensive search of peer-reviewed and grey literature. Query results were eligible for inclusion if they were published in English between 2006-2021 and with an explicit emphasis on technology-facilitated violence, gender, and the countries of interest in the Asia region. Title, abstracts, and full-texts were independently screened by two reviewers based on inclusion criteria, and data was extracted through deductive coding. Of 2,042 articles screened, 97 met inclusion criteria. The review revealed a gap in the evidence-base in Central Asia and the Pacific Islands. Findings across South and Southeast Asia indicate that technology-facilitated GBV comprises various forms of abuse, violence, and harassment that are largely shaped by country-specific societal norms and technological landscapes. The literature confirms that women, girls, and sexual minorities, especially those with intersecting marginalized identities, are often more vulnerable to experiencing online violence. Cultural norms and patriarchal structures tend to stigmatize survivors, limiting their ability to seek social and legal support. Survivors are also less likely to report their experience due to barriers such as lack of awareness of reporting mechanisms, the perception that digital platforms will not address their complaints, and cumbersome reporting systems. The COVID-19 pandemic has further exacerbated perpetration and strained support mechanisms. Prevalence varies by the form of violence but is difficult to estimate accurately due to underreporting and disjointed, outdated, or non-existent legal definitions. Addressing technology-facilitated GBV in Asia requires collective action from multiple actors, including government authorities, technology companies, digital and feminist movements, NGOs, and researchers.Keywords: gender-based violence, technology, online sexual harassment, image-based abuse
Procedia PDF Downloads 13242 Influence of Dryer Autumn Conditions on Weed Control Based on Soil Active Herbicides
Authors: Juergen Junk, Franz Ronellenfitsch, Michael Eickermann
Abstract:
An appropriate weed management in autumn is a prerequisite for an economically successful harvest in the following year. In Luxembourg oilseed rape, wheat and barley is sown from August until October, accompanied by a chemical weed control with soil active herbicides, depending on the state of the weeds and the meteorological conditions. Based on regular ground and surface water-analysis, high levels of contamination by transformation products of respective herbicide compounds have been found in Luxembourg. The most ideal conditions for incorporating soil active herbicides are single rain events. Weed control may be reduced if application is made when weeds are under drought stress or if repeated light rain events followed by dry spells, because the herbicides tend to bind tightly to the soil particles. These effects have been frequently reported for Luxembourg throughout the last years. In the framework of a multisite long-term field experiment (EFFO) weed monitoring, plants observations and corresponding meteorological measurements were conducted. Long-term time series (1947-2016) from the SYNOP station Findel-Airport (WMO ID = 06590) showed a decrease in the number of days with precipitation. As the total precipitation amount has not significantly changed, this indicates a trend towards rain events with higher intensity. All analyses are based on decades (10-day periods) for September and October of each individual year. To assess the future meteorological conditions for Luxembourg, two different approaches were applied. First, multi-model ensembles from the CORDEX experiments (spatial resolution ~12.5 km; transient projections until 2100) were analysed for two different Representative Concentration Pathways (RCP8.5 and RCP4.5), covering the time span from 2005 until 2100. The multi-model ensemble approach allows for the quantification of the uncertainties and also to assess the differences between the two emission scenarios. Second, to assess smaller scale differences within the country a high resolution model projection using the COSMO-LM model was used (spatial resolution 1.3 km). To account for the higher computational demands, caused by the increased spatial resolution, only 10-year time slices have been simulated (reference period 1991-2000; near future 2041-2050 and far future 2091-2100). Statistically significant trends towards higher air temperatures, +1.6 K for September (+5.3 K far future) and +1.3 K for October (+4.3 K), were predicted for the near future compared to the reference period. Precipitation simultaneously decreased by 9.4 mm (September) and 5.0 mm (October) for the near future and -49 mm (September) and -10 mm (October) in the far future. Beside the monthly values also decades were analyzed for the two future time periods of the CLM model. For all decades of September and October the number of days with precipitation decreased for the projected near and far future. Changes in meteorological variables such as air temperature and precipitation did already induce transformations in weed societies (composition, late-emerging etc.) of arable ecosystems in Europe. Therefore, adaptations of agronomic practices as well as effective weed control strategies must be developed to maintain crop yield.Keywords: CORDEX projections, dry spells, ensembles, weed management
Procedia PDF Downloads 23541 Regional Response of Crop Productivity to Global Warming - A Case Study of the Heat Stress and Cold Stress on UK Rapeseed Crop Over 1961-2020
Authors: Biao Hu, Mark E. J. Cutler, Alexandra C. Morel
Abstract:
Global climate change introduces both opportunities and challenges for crop productivity, with differences in temperature stress across latitudes and crop types, one of the most important meteorological factors impacting crop productivity. The development and productivity of crops are particularly impacted when temperatures occur outwith their preferred ranges, which has implications for global agri-food sector. This study investigated the spatiotemporal dynamics of heat stress and cold stress on UK arable lands for rapeseed cropping between 1961 and 2020, using a 1 km spatial resolution temperature dataset. Stress indices, including heat stress index (fHS) defined as the ratio of “Tmax - Tcrit_h” to “Tlimit_h - Tcrit_h” where Tmax, Tcrit_h and Tlimit_h represent the daily maximum temperature (°C), critical high temperature threshold (°C) and limiting high temperature threshold (°C) of rapeseed crop respectively; cold degree days (CDD) as the difference between daily Tmin (minimum temperature) and Tcrit_l (critical low temperature threshold); and a normalized rapeseed production loss index (fRPL) as the product of fHS and attainable rapeseed yield in the same land pixel were established. The values of fHS and CDD, percentages of days experiencing each stress and fRPL were investigated. Results found increasing fHS and the areas impacted by heat stress during flowering (from April to May) and reproductive (from April to July) stages over time, with the mean fHS being negatively correlated with latitude. This pattern of increased heat stress agrees with previous research on rapeseed cropping, which have been noted at global scale in response to changes in climate. The decreasing number of CDD and frequency of cold stress suggest cold stress decreased during flowering, vegetative (from September to March next year) and reproductive stages, and the magnitude of cold stress in the south of the UK was smaller to that compared to northern regions over the studied periods. The decreasing CDD matches observed declining cold stress of global rapeseed and of other crops such as rice in the northern hemisphere. Notably, compared with previous studies which mainly tracked the trends of heat stress and cold stress individually, this study conducted a comparative analysis of the rate of their changes and found heat stress of rapeseed crops in the UK was increasing at a faster rate than cold stress, which was seen to decrease during flowering. The increasing values of fRPL, with statistically significant differences (p < 0.05) between regions of the UK, suggested an increasing loss in rapeseed due to heat stress in the studied period. The largest increasing trend in heat stress was observed in South-eastern England, where a decreasing cold stress was taking place. While the present study observed a relatively slowly increasing heat stress, there is a worrying trend of increasing heat stress for rapeseed cropping into the future, as the cases of other main rapeseed cropping systems in the northern hemisphere including China, European counties, the US, and Canada. This study demonstrates the negative impact of global warming on rapeseed cropping, highlighting the adaptation and mitigations strategies for sustainable rapeseed cultivation across the globe.Keywords: rapeseed, UK, heat stress, cold stress, global climate change, spatiotemporal analysis, production loss index
Procedia PDF Downloads 6140 International Indigenous Employment Empirical Research: A Community-Based Participatory Research Content Analysis
Authors: Melanie Grier, Adam Murry
Abstract:
Objective: Worldwide, Indigenous Peoples experience underemployment and poverty at disproportionately higher rates than non-Indigenous people, despite similar rates of employment seeking. Euro-colonial conquest and genocidal assimilation policies are implicated as perpetuating poverty, which research consistently links to health and wellbeing disparities. Many of the contributors to poverty, such as inadequate income and lack of access to medical care, can be directly or indirectly linked to underemployment. Calls have been made to prioritize Indigenous perspectives in Industrial-Organizational (I/O) psychology research, yet the literature on Indigenous employment remains scarce. What does exist is disciplinarily diverse, topically scattered, and lacking evidence of community-based participatory research (CBPR) practices, a research project approach which prioritizes community leadership, partnership, and betterment and reduces the potential for harm. Due to the harmful colonial legacy of extractive scientific inquiry "on" rather than "with" Indigenous groups, Indigenous leaders and research funding agencies advocate for academic researchers to adopt reparative research methodologies such as CBPR to be used when studying issues pertaining to Indigenous Peoples or individuals. However, the frequency and consistency of CBPR implementation within scholarly discourse are unknown. Therefore, this project’s goal is two-fold: (1) to understand what comprises CBPR in Indigenous research and (2) to determine if CBPR has been historically used in Indigenous employment research. Method: Using a systematic literature review process, sixteen articles about CBPR use with Indigenous groups were selected, and content was analyzed to identify key components comprising CBPR usage. An Indigenous CBPR components framework was constructed and subsequently utilized to analyze the Indigenous employment empirical literature. A similar systematic literature review process was followed to search for relevant empirical articles on Indigenous employment. A total of 120 articles were identified in six global regions: Australia, New Zealand, Canada, America, the Pacific Islands, and Greenland/Norway. Each empirical study was procedurally examined and coded for criteria inclusion using content analysis directives. Results: Analysis revealed that, in total, CBPR elements were used 14% of the time in Indigenous employment research. Most studies (n=69; 58%) neglected to mention using any CBPR components, while just two studies discussed implementing all sixteen (2%). The most significant determinant of overall CBPR use was community member partnership (CP) in the research process. Studies from New Zealand were most likely to use CBPR components, followed by Canada, Australia, and America. While CBPR use did increase slowly over time, meaningful temporal trends were not found. Further, CBPR use did not directly correspond with the total number of topical articles published that year. Conclusions: Community-initiated and engaged research approaches must be better utilized in employment studies involving Indigenous Peoples. Future research efforts must be particularly attentive to community-driven objectives and research protocols, emphasizing specific areas of concern relevant to the field of I/O psychology, such as organizational support, recruitment, and selection.Keywords: community-based participatory research, content analysis, employment, indigenous research, international, reconciliation, recruitment, reparative research, selection, systematic literature review
Procedia PDF Downloads 7439 Socio-Economic Determinants of Physical Activity of Non-Manual Workers, Including the Early Senior Group, from the City of Wroclaw in Poland
Authors: Daniel Puciato, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Michał Rozpara, Władysław Mynarski, Agnieszka Gawlik, Małgorzata Dębska, Soňa Jandová
Abstract:
Physical activity as a part of people’s everyday life reduces the risk of many diseases, including those induced by lifestyle, e.g. obesity, type 2 diabetes, osteoporosis, coronary heart disease, degenerative arthritis, and certain types of cancer. That refers particularly to professionally active people, including the early senior group working on non-manual positions. The aim of the study is to evaluate the relationship between physical activity and the socio-economic status of non-manual workers from Wroclaw—one of the biggest cities in Poland, a model setting for such investigations in this part of Europe. The crucial problem in the research is to find out the percentage of respondents who meet the health-related recommendations of the World Health Organization (WHO) concerning the volume, frequency, and intensity of physical activity, as well as to establish if the most important socio-economic factors, such as gender, age, education, marital status, per capita income, savings and debt, determine the compliance with the WHO physical activity recommendations. During the research, conducted in 2013, 1,170 people (611 women and 559 men) aged 21–60 years were examined. A diagnostic poll method was applied to collect the data. Physical activity was measured with the use of the short form of the International Physical Activity Questionnaire with extended socio-demographic questions, i.e. concerning gender, age, education, marital status, income, savings or debts. To evaluate the relationship between physical activity and selected socio-economic factors, logistic regression was used (odds ratio statistics). Statistical inference was conducted on the adopted ex ante probability level of p<0.05. The majority of respondents met the volume of physical effort recommended for health benefits. It was particularly noticeable in the case of the examined men. The probability of compliance with the WHO physical activity recommendations was highest for workers aged 21–30 years with secondary or higher education who were single, received highest incomes and had savings. The results indicate the relations between physical activity and socio-economic status in the examined women and men. People with lower socio-economic status (e.g. manual workers) are physically active primarily at work, whereas those better educated and wealthier implement physical effort primarily in their leisure time. Among the investigated subjects, the youngest group of non-manual workers have the best chances to meet the WHO standards of physical activity. The study also confirms that secondary education has a positive effect on the public awareness on the role of physical activity in human life. In general, the analysis of the research indicates that there is a relationship between physical activity and some socio-economic factors of the respondents, such as gender, age, education, marital status, income per capita, and the possession of savings. Although the obtained results cannot be applied for the general population, they show some important trends that will be verified in subsequent studies conducted by the authors of the paper.Keywords: IPAQ, nonmanual workers, physical activity, socioeconomic factors, WHO
Procedia PDF Downloads 53538 Isolation of Bacterial Species with Potential Capacity for Siloxane Removal in Biogas Upgrading
Authors: Ellana Boada, Eric Santos-Clotas, Alba Cabrera-Codony, Maria Martin, Lluis Baneras, Frederic Gich
Abstract:
Volatile methylsiloxanes (VMS) are a group of manmade silicone compounds widely used in household and industrial applications that end up on the biogas produced through the anaerobic digestion of organic matter in landfills and wastewater treatment plants. The presence of VMS during the biogas energy conversion can cause damage on the engines, reducing the efficiency of this renewable energy source. Non regenerative adsorption onto activated carbon is the most widely used technology to remove siloxanes from biogas, while new trends point out that biotechnology offers a low-cost and environmentally friendly alternative to conventional technologies. The first objective of this research was to enrich, isolate and identify bacterial species able to grow using siloxane molecules as a sole carbon source: anoxic wastewater sludge was used as initial inoculum in liquid anoxic enrichments, adding D4 (as representative siloxane compound) previously adsorbed on activated carbon. After several months of acclimatization, liquid enrichments were plated onto solid media containing D4 and thirty-four bacterial isolates were obtained. 16S rRNA gene sequencing allowed the identification of strains belonging to the following species: Ciceribacter lividus, Alicycliphilus denitrificans, Pseudomonas aeruginosa and Pseudomonas citronellolis which are described to be capable to degrade toxic volatile organic compounds. Kinetic assays with 8 representative strains revealed higher cell growth in the presence of D4 compared to the control. Our second objective was to characterize the community composition and diversity of the microbial community present in the enrichments and to elucidate whether the isolated strains were representative members of the community or not. DNA samples were extracted, the 16S rRNA gene was amplified (515F & 806R primer pair), and the microbiome analyzed from sequences obtained with a MiSeq PE250 platform. Results showed that the retrieved isolates only represented a minor fraction of the microorganisms present in the enrichment samples, which were represented by Alpha, Beta, and Gamma proteobacteria as dominant groups in the category class thus suggesting that other microbial species and/or consortia may be important for D4 biodegradation. These results highlight the need of additional protocols for the isolation of relevant D4 degraders. Currently, we are developing molecular tools targeting key genes involved in siloxane biodegradation to identify and quantify the capacity of the isolates to metabolize D4 in batch cultures supplied with a synthetic gas stream of air containing 60 mg m⁻³ of D4 together with other volatile organic compounds found in the biogas mixture (i.e. toluene, hexane and limonene). The isolates were used as inoculum in a biotrickling filter containing lava rocks and activated carbon to assess their capacity for siloxane removal. Preliminary results of biotrickling filter performance showed 35% of siloxane biodegradation in a contact time of 14 minutes, denoting that biological siloxane removal is a promising technology for biogas upgrading.Keywords: bacterial cultivation, biogas upgrading, microbiome, siloxanes
Procedia PDF Downloads 25837 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools
Authors: M. Radunovic
Abstract:
Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management
Procedia PDF Downloads 109