Search results for: spectral domain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2467

Search results for: spectral domain

787 Statistical Analysis of Extreme Flow (Regions of Chlef)

Authors: Bouthiba Amina

Abstract:

The estimation of the statistics bound to the precipitation represents a vast domain, which puts numerous challenges to meteorologists and hydrologists. Sometimes, it is necessary, to approach in value the extreme events for sites where there is little, or no datum, as well as their periods of return. The search for a model of the frequency of the heights of daily rains dresses a big importance in operational hydrology: It establishes a basis for predicting the frequency and intensity of floods by estimating the amount of precipitation in past years. The most known and the most common approach is the statistical approach, It consists in looking for a law of probability that fits best the values observed by the random variable " daily maximal rain " after a comparison of various laws of probability and methods of estimation by means of tests of adequacy. Therefore, a frequent analysis of the annual series of daily maximal rains was realized on the data of 54 pluviometric stations of the pond of high and average. This choice was concerned with five laws usually applied to the study and the analysis of frequent maximal daily rains. The chosen period is from 1970 to 2013. It was of use to the forecast of quantiles. The used laws are the law generalized by extremes to three components, those of the extreme values to two components (Gumbel and log-normal) in two parameters, the law Pearson typifies III and Log-Pearson III in three parameters. In Algeria, Gumbel's law has been used for a long time to estimate the quantiles of maximum flows. However, and we will check and choose the most reliable law.

Keywords: return period, extreme flow, statistics laws, Gumbel, estimation

Procedia PDF Downloads 78
786 Nonlinear Evolution of the Pulses of Elastic Waves in Geological Materials

Authors: Elena B. Cherepetskaya, Alexander A. Karabutov, Natalia B. Podymova, Ivan Sas

Abstract:

Nonlinear evolution of broadband ultrasonic pulses passed through the rock specimens is studied using the apparatus ‘GEOSCAN-02M’. Ultrasonic pulses are excited by the pulses of Q-switched Nd:YAG laser with the time duration of 10 ns and with the energy of 260 mJ. This energy can be reduced to 20 mJ by some light filters. The laser beam radius did not exceed 5 mm. As a result of the absorption of the laser pulse in the special material – the optoacoustic generator–the pulses of longitudinal ultrasonic waves are excited with the time duration of 100 ns and with the maximum pressure amplitude of 10 MPa. The immersion technique is used to measure the parameters of these ultrasonic pulses passed through a specimen, the immersion liquid is distilled water. The reference pulse passed through the cell with water has the compression and the rarefaction phases. The amplitude of the rarefaction phase is five times lower than that of the compression phase. The spectral range of the reference pulse reaches 10 MHz. The cubic-shaped specimens of the Karelian gabbro are studied with the rib length 3 cm. The ultimate strength of the specimens by the uniaxial compression is (300±10) MPa. As the reference pulse passes through the area of the specimen without cracks the compression phase decreases and the rarefaction one increases due to diffraction and scattering of ultrasound, so the ratio of these phases becomes 2.3:1. After preloading some horizontal cracks appear in the specimens. Their location is found by one-sided scanning of the specimen using the backward mode detection of the ultrasonic pulses reflected from the structure defects. Using the computer processing of these signals the images are obtained of the cross-sections of the specimens with cracks. By the increase of the reference pulse amplitude from 0.1 MPa to 5 MPa the nonlinear transformation of the ultrasonic pulse passed through the specimen with horizontal cracks results in the decrease by 2.5 times of the amplitude of the rarefaction phase and in the increase of its duration by 2.1 times. By the increase of the reference pulse amplitude from 5 MPa to 10 MPa the time splitting of the phases is observed for the bipolar pulse passed through the specimen. The compression and rarefaction phases propagate with different velocities. These features of the powerful broadband ultrasonic pulses passed through the rock specimens can be described by the hysteresis model of Preisach-Mayergoyz and can be used for the location of cracks in the optically opaque materials.

Keywords: cracks, geological materials, nonlinear evolution of ultrasonic pulses, rock

Procedia PDF Downloads 350
785 The Virtues and Vices of Leader Empathy: A Review of a Misunderstood Construct

Authors: John G. Vongas, Raghid Al Hajj

Abstract:

In recent years, there has been a surge in research on empathy across disciplines ranging from management and psychology to philosophy and neuroscience. In organizational behavior, in particular, scholars have become interested in leader empathy given the rise of workplace diversity and the growing perception of leaders as managers of group emotions. It would appear that the current zeitgeist in behavioral and philosophical science is that empathy is a cornerstone of morality and that our world would be better off if only more people – and by extension, more leaders – were empathic. In spite of these claims, however, researchers have used different terminologies to explore empathy, confusing it at times with other related constructs such as emotional intelligence and compassion. Second, extant research that specifies what empathic leaders do and how their behavior affects organizational stakeholders, including themselves, does not devolve from a unifying theoretical framework. These problems plague knowledge development in this important research domain. Therefore, to the authors' best knowledge, this paper provides the first comprehensive review and synthesis of the literature on leader empathy by drawing on disparate yet complementary fields of inquiry. It clarifies empathy from other constructs and presents a theoretical model that elucidates the mechanisms by which a leader’s empathy translates into behaviors that could be either beneficial or harmful to the leaders themselves, as well as to their followers and groups. And third, it specifies the boundary conditions under which a leader’s empathy will become manifest. Finally, it suggests ways in which training could be implemented to improve empathy in practice while also remaining skeptical of its conceptualization as a moral or even effective guide in human affairs.

Keywords: compassion, empathy, leadership, group outcomes

Procedia PDF Downloads 135
784 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys

Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune

Abstract:

In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.

Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis

Procedia PDF Downloads 331
783 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values

Authors: Burçin Saltık, Levent Genç

Abstract:

In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.

Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice

Procedia PDF Downloads 228
782 Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration

Authors: Sakina Fatima, Joseph-Patrick W. E. Clarke, Patricia A. Thibault, Subha Kalyaanamoorthy, Michael Levin, Aravindhan Ganesan

Abstract:

Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs.

Keywords: hnRNPA1, molecular docking, molecular dynamics, RNA-binding proteins

Procedia PDF Downloads 119
781 The Impact of COVID-19 Waste on Aquatic Organisms: Nano/microplastics and Molnupiravir in Salmo trutta Embryos and Lervae

Authors: Živilė Jurgelėnė, Vitalijus Karabanovas, Augustas Morkvėnas, Reda Dzingelevičienė, Nerijus Dzingelevičius, Saulius Raugelė, Boguslaw Buszewski

Abstract:

The short- and long-term effects of COVID-19 antiviral drug molnupiravir and micro/nanoplastics on the early development of Salmo trutta were investigated using accumulation and exposure studies. Salmo trutta were used as standardized test organisms in toxicity studies of COVID-19 waste contaminants. The 2D/3D imaging was performed using confocal fluorescence spectral imaging microscopy to assess the uptake, bioaccumulation, and distribution of molnupiravir and micro/nanoplastics complex in live fish. Our study results demonstrated that molnupiravir may interact with a micro/nanoplastics and modify their spectroscopic parameters and toxicity to S. trutta embryos and larvae. The 0.2 µm size microplastics at a concentration of 10 mg/L were found to be stable in aqueous media than 0.02 µm, and 2 µm sizes polymeric particles. This study demonstrated that polymeric particles can adsorb molnupiravir that are present in mixtures and modify the accumulation of molnupiravir in Salmo trutta embryos and larvae. In addition, 2D/3D confocal fluorescence imaging showed that the single polymeric particle hardly accumulates and couldn't penetrate outer tissues of the tested organism. However, co-exposure micro/nanoplastics and molnupiravir could significantly enhance the polymeric particles capability of accumulating on surface tissues and penetrating surface tissue of fish in early development. Exposure to molnupiravir at 2 g/L concentration and co-exposure to micro/nanoplastics and molnupiravir did not bring about survival changes in in the early stages of Salmo trutta development, but we observed the reduction in heart rate and decrease in gill ventilation. The statistical analysis confirmed that micro/nanoplastics used in combination with molnupiravir enhance the toxicity of the latter micro/nanoplastics to embryos and larvae. This research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: fish, micro/nanoplastics, molnupiravir, toxicity

Procedia PDF Downloads 95
780 The Effect of Different Parameters on a Single Invariant Lateral Displacement Distribution to Consider the Higher Modes Effect in a Displacement-Based Pushover Procedure

Authors: Mohamad Amin Amini, Mehdi Poursha

Abstract:

Nonlinear response history analysis (NL-RHA) is a robust analytical tool for estimating the seismic demands of structures responding in the inelastic range. However, because of its conceptual and numerical complications, the nonlinear static procedure (NSP) is being increasingly used as a suitable tool for seismic performance evaluation of structures. The conventional pushover analysis methods presented in various codes (FEMA 356; Eurocode-8; ATC-40), are limited to the first-mode-dominated structures, and cannot take higher modes effect into consideration. Therefore, since more than a decade ago, researchers developed enhanced pushover analysis procedures to take higher modes effect into account. The main objective of this study is to propose an enhanced invariant lateral displacement distribution to take higher modes effect into consideration in performing a displacement-based pushover analysis, whereby a set of laterally applied displacements, rather than forces, is monotonically applied to the structure. For this purpose, the effect of different parameters such as the spectral displacement of ground motion, the modal participation factor, and the effective modal participating mass ratio on the lateral displacement distribution is investigated to find the best distribution. The major simplification of this procedure is that the effect of higher modes is concentrated into a single invariant lateral load distribution. Therefore, only one pushover analysis is sufficient without any need to utilize a modal combination rule for combining the responses. The invariant lateral displacement distribution for pushover analysis is then calculated by combining the modal story displacements using the modal combination rules. The seismic demands resulting from the different procedures are compared to those from the more accurate nonlinear response history analysis (NL-RHA) as a benchmark solution. Two structures of different heights including 10 and 20-story special steel moment resisting frames (MRFs) were selected and evaluated. Twenty ground motion records were used to conduct the NL-RHA. The results show that more accurate responses can be obtained in comparison with the conventional lateral loads when the enhanced modal lateral displacement distributions are used.

Keywords: displacement-based pushover, enhanced lateral load distribution, higher modes effect, nonlinear response history analysis (NL-RHA)

Procedia PDF Downloads 278
779 The Influence of a Vertical Rotation on the Fluid Dynamics of Compositional Plumes

Authors: Khaled Suleiman Mohammed Al-Mashrafi

Abstract:

A compositional plume is a fluid flow in a directional channel of finite width in another fluid of different material composition. The study of the dynamics of compositional plumes plays an essential role in many real-life applications like industrial applications (e.g., iron casting), environmental applications (e.g., salt fingers and sea ice), and geophysical applications (e.g., solidification at the inner core boundary (ICB) of the Earth, and mantle plumes). The dynamics of compositional plumes have been investigated experimentally and theoretically. The experimental works observed that the plume flow seems to be stable, although some experiments showed that it can be unstable. At the same time, the theoretical investigations showed that the plume flow is unstable. This is found to be true even if the plume is subject to rotation or/and in the presence of a magnetic field and even if another plume of different composition is also present. It is noticeable that all the theoretical studies on the dynamics of compositional plumes are conducted in unbounded domains. The present work is to investigate theoretically the influence of vertical walls (boundaries) on the dynamics of compositional plumes in the absence/presence of a rotation field. The mathematical model of the dynamics of compositional plumes used the equations of continuity, motion, heat, concentration of light material, and state. It is found that the presence of boundaries has a strong influence on the basic state solution as well as the stability of the plume, particularly when the plume is close to the boundary, but the compositional plume remains unstable.

Keywords: compositional plumes, stability, bounded domain, vertical boundaries

Procedia PDF Downloads 31
778 Estrogen Controls Hepatitis C Virus Entry and Spread through the GPR30 Pathway

Authors: Laura Ulitzky, Dougbeh-Chris Nyan, Manuel M. Lafer, Erica Silberstein, Nicoleta Cehan, Deborah R. Taylor

Abstract:

Hepatitis C virus (HCV)-associated hepatocellular carcinoma, fibrosis and cirrhosis are more frequent in men and postmenopausal women than in premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol (estrogen) plays an innate role in preventing viral infection and liver disease. Estrogen classically acts through nuclear estrogen receptors or, alternatively, through the membrane-bound G-protein-coupled estrogen receptor (GPR30 or GPER). We observed a marked decrease in detectable virus when HCV-infected human hepatoma cells were treated with estrogen. The effect was mimicked by both Tamoxifen (Tam) and G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. Through GPR30, estrogen-mediated the down-regulation of occludin; a tight junction protein and HCV receptor, by promoting activation of matrix metalloproteinases (MMPs). Activated MMP-9 was secreted in response to estrogen, cleaving occludin in the extracellular Domain D, the motif required for HCV entry and spread. This pathway gives new insight into a novel innate immune pathway and the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral properties for HCV-infected postmenopausal women and show promise for new antiviral treatments for both men and women.

Keywords: HCV, estrogen, occludin, MMPs

Procedia PDF Downloads 437
777 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection

Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol

Abstract:

The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.

Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress

Procedia PDF Downloads 225
776 Football Smart Coach: Analyzing Corner Kicks Using Computer Vision

Authors: Arth Bohra, Marwa Mahmoud

Abstract:

In this paper, we utilize computer vision to develop a tool for youth coaches to formulate set-piece tactics for their players. We used the Soccernet database to extract the ResNet features and camera calibration data for over 3000 corner kick across 500 professional matches in the top 6 European leagues (English Premier League, UEFA Champions League, Ligue 1, La Liga, Serie A, Bundesliga). Leveraging the provided homography matrix, we construct a feature vector representing the formation of players on these corner kicks. Additionally, labeling the videos manually, we obtained the pass-trajectory of each of the 3000+ corner kicks by segmenting the field into four zones. Next, after determining the localization of the players and ball, we used event data to give the corner kicks a rating on a 1-4 scale. By employing a Convolutional Neural Network, our model managed to predict the success of a corner kick given the formations of players. This suggests that with the right formations, teams can optimize the way they approach corner kicks. By understanding this, we can help coaches formulate set-piece tactics for their own teams in order to maximize the success of their play. The proposed model can be easily extended; our method could be applied to even more game situations, from free kicks to counterattacks. This research project also gives insight into the myriad of possibilities that artificial intelligence possesses in transforming the domain of sports.

Keywords: soccer, corner kicks, AI, computer vision

Procedia PDF Downloads 173
775 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications

Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski

Abstract:

Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.

Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods

Procedia PDF Downloads 432
774 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: elastic foundation, impact, moving load, thick plate

Procedia PDF Downloads 313
773 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles

Authors: M. Vadivel, R. Ramesh Babu

Abstract:

Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.

Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization

Procedia PDF Downloads 317
772 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 56
771 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 106
770 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 446
769 Executive Function in Youth With ADHD and ASD: A Systematic Review and Meta-analysis

Authors: Parker Townes, Prabdeep Panesar, Chunlin Liu, Soo Youn Lee, Dan Devoe, Paul D. Arnold, Jennifer Crosbie, Russell Schachar

Abstract:

Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are impairing childhood neurodevelopmental disorders with problems in executive functions. Executive functions are higher-level mental processes essential for daily functioning and goal attainment. There is genetic and neural overlap between ADHD and ASD. The aim of this meta-analysis was to evaluate if pediatric ASD and ADHD have distinct executive function profiles. This review was completed following Cochrane guidelines. Fifty-eight articles were identified through database searching, followed by a blinded screening in duplicate. A meta-analysis was performed for all task performance metrics evaluated by at least two articles. Forty-five metrics from 24 individual tasks underwent analysis. No differences were found between youth with ASD and ADHD in any domain under direct comparison. However, individuals with ASD and ADHD exhibited deficient attention, flexibility, visuospatial abilities, working memory, processing speed, and response inhibition compared to controls. No deficits in planning were noted in either disorder. Only 11 studies included a group with comorbid ASD+ADHD, making it difficult to determine whether common executive function deficits are a function of comorbidity. Further research is needed to determine if comorbidity accounts for the apparent commonality in executive function between ASD and ADHD.

Keywords: autism spectrum disorder, ADHD, neurocognition, executive function, youth

Procedia PDF Downloads 76
768 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
767 Gender Differences in Walking Capacity and Cardiovascular Regulation in Patients with Peripheral Arterial Disease

Authors: Gabriel Cucato, Marilia Correia, Wagner Domingues, Aline Palmeira, Paulo Longano, Nelson Wolosker, Raphael Ritti-Dias

Abstract:

Women with peripheral arterial disease (PAD) present lower walking capacity in comparison with men. However, whether cardiovascular regulation is also different between genders is unknown. Thus, the aim of this study was to compare walking capacity and cardiovascular regulation between men and women with PAD. A total of 23 women (66±7 yrs) and 31 men (64±9 yrs) were recruited. Patients performed a 6-minute test and the onset claudication distance and total walking distance were measured. Additionally, cardiovascular regulation was assessed by arterial stiffness (pulse wave velocity and augmentation index) and heart rate variability (frequency domain). Independent T test or Mann-Whitney U test were performed. In comparison with men, women present lower onset claudication distance (108±66m vs. 143±50m; P=0.032) and total walking distance (286±83m vs. 361±91 m, P=0.007). Regarding cardiovascular regulation, there were no differences in heart rate variability SDNN (72±160ms vs. 32±22ms, P=0.587); RMSSD (75±209 vs. 25±22ms, P=0.726); pNN50 (11±17ms vs. 8±14ms, P=0.836) in women and men, respectively. Moreover, there were no difference in augmentation index (39±10% vs. 34±11%, P=0.103); pulse pressure (59±17mmHg vs. 56±19mmHg, P=0.593) and pulse wave velocity (8.6±2.6m\s vs. 9.0±2.7m/s, P=0.580). In conclusion, women have impaired walking capacity compared to men. However, sex differences were not observed on cardiovascular regulation in patients with PAD.

Keywords: exercise, intermittent claudication, cardiovascular load, arterial stiffness

Procedia PDF Downloads 393
766 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems

Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu

Abstract:

In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.

Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP

Procedia PDF Downloads 39
765 Generalized Limit Equilibrium Solution for the Lateral Pile Capacity Problem

Authors: Tomer Gans-Or, Shmulik Pinkert

Abstract:

The determination of lateral pile capacity per unit length is a key aspect in geotechnical engineering. Traditional approaches for assessing piles lateral capacity in cohesive soils involve the application of upper-bound and lower-bound plasticity theorems. However, a comprehensive solution encompassing the entire spectrum of soil strength parameters, particularly in frictional soils with or without cohesion, is still lacking. This research introduces an innovative implementation of the slice method limit equilibrium solution for lateral capacity assessment. For any given numerical discretization of the soil's domain around the pile, the lateral capacity evaluation is based on mobilized strength concept. The critical failure geometry is then found by a unique optimization procedure which includes both factor of safety minimization and geometrical optimization. The robustness of this suggested methodology is that the solution is independent of any predefined assumptions. Validation of the solution is accomplished through a comparison with established plasticity solutions for cohesive soils. Furthermore, the study demonstrates the applicability of the limit equilibrium method to address unresolved cases related to frictional and cohesive-frictional soils. Beyond providing capacity values, the method enables the utilization of the mobilized strength concept to generate safety-factor distributions for scenarios representing pre-failure states.

Keywords: lateral pile capacity, slice method, limit equilibrium, mobilized strength

Procedia PDF Downloads 61
764 Digital Phase Shifting Holography in a Non-Linear Interferometer using Undetected Photons

Authors: Sebastian Töpfer, Marta Gilaberte Basset, Jorge Fuenzalida, Fabian Steinlechner, Juan P. Torres, Markus Gräfe

Abstract:

This work introduces a combination of digital phase-shifting holography with a non-linear interferometer using undetected photons. Non-linear interferometers can be used in combination with a measurement scheme called quantum imaging with undetected photons, which allows for the separation of the wavelengths used for sampling an object and detecting it in the imaging sensor. This method recently faced increasing attention, as it allows to use of exotic wavelengths (e.g., mid-infrared, ultraviolet) for object interaction while at the same time keeping the detection in spectral areas with highly developed, comparable low-cost imaging sensors. The object information, including its transmission and phase influence, is recorded in the form of an interferometric pattern. To collect these, this work combines the method of quantum imaging with undetected photons with digital phase-shifting holography with a minimal sampling of the interference. With this, the quantum imaging scheme gets extended in its measurement capabilities and brings it one step closer to application. Quantum imaging with undetected photons uses correlated photons generated by spontaneous parametric down-conversion in a non-linear interferometer to create indistinguishable photon pairs, which leads to an effect called induced coherence without induced emission. Placing an object inside changes the interferometric pattern depending on the object’s properties. Digital phase-shifting holography records multiple images of the interference with determined phase shifts to reconstruct the complete interference shape, which can afterward be used to analyze the changes introduced by the object and conclude its properties. An extensive characterization of this method was done using a proof-of-principle setup. The measured spatial resolution, phase accuracy, and transmission accuracy are compared for different combinations of camera exposure times and the number of interference sampling steps. The current limits of this method are shown to allow further improvements. To summarize, this work presents an alternative holographic measurement method using non-linear interferometers in combination with quantum imaging to enable new ways of measuring and motivating continuing research.

Keywords: digital holography, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 92
763 Academic, Socio-Cultural and Psychological Satisfaction of International Higher Degree Research Students (IRHD) in Australia

Authors: Baohua Yu

Abstract:

In line with wider tends in the expansion of international student mobility, the number of international higher degree research students has grown at a significant rate in recent years. In particular, Australia has become a hub for attracting international higher degree research students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in adapting to their new environment. Moreover, this can have a significant bearing on their levels of satisfaction with their studies. This paper outlines the findings of a mixed method study exploring the experiences and perceptions of international higher degree research students in Australia. Findings revealed that IRHD students’ overall and academic satisfaction in Australia were highly related to each other, and they were strongly influenced by their learning and research, moderately influenced by co-national support and intercultural contact ability. Socio-cultural satisfaction seemed to belong to a different domain from academic satisfaction because it was explained by a different set of variables such as living and adaptation and intercultural contact ability. In addition, the most important issues in terms of satisfaction were not directly related to academic studies. Instead, factors such as integration into the community, interacting with other students, relationships with supervisors, and the provision of adequate desk space were often given the greatest weight. Implications for how university policy can better support international doctoral students are discussed.

Keywords: international higher degree research students, academic adaptation, socio-cultural adaptation, student satisfaction

Procedia PDF Downloads 305
762 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 127
761 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 375
760 Towards a Smart Irrigation System Based on Wireless Sensor Networks

Authors: Loubna Hamami, Bouchaib Nassereddine

Abstract:

Due to the evolution of technologies, the need to observe and manage hostile environments, and reduction in size, wireless sensor networks (WSNs) are becoming essential and implicated in the most fields of life. WSNs enable us to change the style of living, working and interacting with the physical environment. The agricultural sector is one of such sectors where WSNs are successfully used to get various benefits. For successful agricultural production, the irrigation system is one of the most important factors, and it plays a tactical role in the process of agriculture domain. However, it is considered as the largest consumer of freshwater. Besides, the scarcity of water, the drought, the waste of the limited available water resources are among the critical issues that touch the almost sectors, notably agricultural services. These facts are leading all governments around the world to rethink about saving water and reducing the volume of water used; this requires the development of irrigation practices in order to have a complete and independent system that is more efficient in the management of irrigation. Consequently, the selection of WSNs in irrigation system has been a benefit for developing the agriculture sector. In this work, we propose a prototype for a complete and intelligent irrigation system based on wireless sensor networks and we present and discuss the design of this prototype. This latter aims at saving water, energy and time. The proposed prototype controls water system for irrigation by monitoring the soil temperature, soil moisture and weather conditions for estimation of water requirements of each plant.

Keywords: precision irrigation, sensor, wireless sensor networks, water resources

Procedia PDF Downloads 153
759 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis

Authors: Toktam Khatibi

Abstract:

Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.

Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers

Procedia PDF Downloads 80
758 Institutional Effectiveness in Fostering Student Retention and Success in First Year

Authors: Naziema B. Jappie

Abstract:

The objective of this study is to examine the relationship between college readiness characteristics and learning outcome assessment scores. About this, it is important to examine the first-year retention and success rate. In order to undertake this study, it will be necessary to look at proficiency levels on general and domain-specific knowledge and skills reflected on national benchmark test scores (NBT), in-college interventions and course-taking patterns. Preliminary results based on data from more than 1000 students suggest that there is a positive association between NBT scores and students’ 1st-year college GPA and their retention status. For example, 63% of students with a proficient level of math skills in the NBT had the highest level of GPA at the end of 1st-year of college in comparison to 56% of those who started with a primary or intermediate level, respectively. The retention rates among those with proficiency levels were also higher than those with basic or intermediate levels (98% vs. 93% and 88%, respectively). By the end of 3rd year in college, students with intermediate or proficient entering NBT math skills had 7% and 8% of dropout rate, compared to 14% for those started at primary level; a greater percentage of students qualified by the end of 3rd-year qualified among proficient students than that among intermediate or basic level students (50% vs. 44% and 27% respectively). The findings of this study added knowledge to the field in South Africa and are expected to help stakeholders and policymakers to better understand college learning and challenges for students with disadvantaged backgrounds and provide empirical evidence in support of related practices and policies.

Keywords: assessment, data analysis, performance, proficiency, policy, student success

Procedia PDF Downloads 132