Search results for: shear enhanced flotation
2479 Local Buckling of Web-Core and Foam-Core Sandwich Panels
Authors: Ali N. Suri, Ahmad A. Al-Makhlufi
Abstract:
Sandwich construction is widely accepted as a method of construction especially in the aircraft industry. It is a type of stressed skin construction formed by bonding two thin faces to a thick core, the faces resist all of the applied edge loads and provide all or nearly all of the required rigidities, the core spaces the faces to increase cross section moment of inertia about common neutral axis and transmit shear between them provides a perfect bond between core and faces is made. Material for face sheets can be of metal or reinforced plastics laminates, core material can be metallic cores of thin sheets forming corrugation or honeycomb, or non-metallic core of Balsa wood, plastic foams, or honeycomb made of reinforced plastics. For in plane axial loading web core and web-foam core Sandwich panels can fail by local buckling of plates forming the cross section with buckling wave length of the order of length of spacing between webs. In this study local buckling of web core and web-foam core Sandwich panels is carried out for given materials of facing and core, and given panel overall dimension for different combinations of cross section geometries. The Finite Strip Method is used for the analysis, and Fortran based computer program is developed and used.Keywords: local buckling, finite strip, sandwich panels, web and foam core
Procedia PDF Downloads 3512478 Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes-Polyindole/Ti2O3 Nanocomposite: Electrochemical Nanomolar Detection of α-Lipoic Acid in Vegetables
Authors: Ragu Sasikumar, Palraj Ranganathan, Shen-Ming Chen, Syang-Peng Rwei
Abstract:
A highly sensitive, and selective α-Lipoic acid (ALA) sensor based on a functionalized multi-walled carbon nanotubes-polyindole/Ti2O3 (f-MWCNTs-PIN/Ti2O3) nanocomposite modified glassy carbon electrode (GCE) was developed. The fabricated f-MWCNTs-PIN/Ti2O3/GCE displayed an enhanced voltammetric response for oxidation towards ALA relative to that of a f-MWCNTs/GCE, f-MWCNTs-PIN/GCE, Ti2O3/GCE, and a bare GCE. Under optimum conditions, the f-MWCNTs-PIN/Ti2O3/GCE showed a wide linear range at ALA concentrations of 0.39-115.8 µM. The limit of detection of 12 nM and sensitivity of about 6.39 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and operational stability. Applied possibility of the sensor has been confirmed in vegetable samples.Keywords: f-MWCNT, polyindole, Ti2O3, Alzheimer’s diseases, ALA sensor
Procedia PDF Downloads 2252477 Screening of Nickel-Tolerant Genotype of Mung Bean (Vigna radiata) Based on Photosynthesis and Antioxidant System
Authors: Mohammad Yusuf, Qazi Fariduddin
Abstract:
The main aim of this study was to explore the different cultivars of Vigna radiata on basis of photosynthesis, antioxidants and proline to assess Ni-sensitive and Ni-tolerant cultivar. Seeds of five different cultivars were sown in soil amended with different levels of Ni (0, 50, 100, or 150 mg kg 1). At 30 d stage, plants were harvested to assess the various parameters. The Ni treatment diminished growth, leaf water potential, chlorophyll content and net photosynthesis along with nitrate reductase and carbonic anhydrase activities in the concentration dependent manner whereas, it enhanced proline content and various antioxidant enzymes. The varieties T-44 found least affected, whereas PDM-139 experienced maximum damage at 150 mg kg-1 of Ni. Moreover, T-44 possessed maximum activity of antioxidant enzymes and proline content at all the levels of metal whereas PDM-139 possessed minimum values. Therefore, T-44 and PDM-139 were established as the most resistant and sensitive varieties, respectively.Keywords: Vigna radiata, antioxidants, nickel, photosynthesis, proline
Procedia PDF Downloads 2232476 “BUM629” Special Hybrid Reinforcement Materials for Mega Structures
Authors: Gautam, Arjun, V. R. Sharma
Abstract:
In the civil construction steel and concrete plays a different role but the same purposes dealing with the design of structures that support or resist loads. Concrete has been used in construction since long time from now. Being brittle and weak in tension, concrete is always reinforced with steel bars for the purposes in beams and columns etc. The paper deals with idea of special designed 3D materials which we named as “BUM629” to be placed/anchored in the structural member and mixed with concrete later on, so as to resist the developments of cracks due to shear failure , buckling,tension and compressive load in concrete. It had cutting edge technology through Draft, Analysis and Design the “BUM629”. The results show that “BUM629” has the great results in Mechanical application. Its material properties are design according to the need of structure; we apply the material such as Mild Steel and Magnesium Alloy. “BUM629” are divided into two parts one is applied at the middle section of concrete member where bending movements are maximum and the second part is laying parallel to vertical bars near clear cover, so we design this material and apply in Reinforcement of Civil Structures. “BUM629” is analysis and design for use in the mega structures like skyscrapers, dams and bridges.Keywords: BUM629, magnesium alloy, cutting edge technology, mechanical application, draft, analysis and design, mega structures
Procedia PDF Downloads 3842475 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems
Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur
Abstract:
The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems
Procedia PDF Downloads 842474 MicroRNA 200c-3p Regulates Autophagy Mediated Upregulation of Endoplasmic Reticulum Stress in PC-3 Cells
Authors: Eun Jung Sohn, Hwan Tae Park
Abstract:
Autophagy is a cellular response to stress or environment on cell survival. Here, we investigated the role of ectopic expression of miR 200c-3p in autophagy. Ectopic expression of miR 200c-3p increased the expression of IRE1alpha, ATF6 and CHOP by western blot and RT-qPCR. Furthermore, the level of microRNA 200c-3p was enhanced by treatment of TG or overexpression of GRP 78. Also, ectopic expression of miR200c-3p increased the LC3 II expression by western blot and RT-qPCR. Also, we found that western blot assay showed that miR200c-3p inhibitor was blocked the starvation–induced LC3II levels. Furthermore, starvation stress increased the level of miR200c-3p in different kinetics. Ectopic expression of miR200c-3p attenuated LC3II expression in IRE1 siRNA transfected PC3 cells. Here, we first demonstrate that miR200c-3p regulates autophagy via ER stress pathway.Keywords: Autophagy, ER stress, LC3II, miR200c-3p
Procedia PDF Downloads 2872473 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 3592472 Applied Mathematical Approach on “Baut” Special High Performance Metal Aggregate by Formulation and Equations
Authors: J. R. Bhalla, Gautam, Gurcharan Singh, Sanjeev Naval
Abstract:
Mathematics is everywhere behind the every things on the earth as well as in the universe. Predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. Now a day’s we can made and apply an equation on a complex geometry through applied mathematics. Here we work and focus on to create a formula which apply in the field of civil engineering in new concrete technology. In this paper our target is to make a formula which is applied on “BAUT” Metal Aggregate. In this paper our approach is to make formulation and equation on special “BAUT” Metal Aggregate by Applied Mathematical Study Case 1. BASIC PHYSICAL FORMULATION 2. ADVANCE EQUATION which shows the mechanical performance of special metal aggregates for concrete technology. In case 1. Basic physical formulation shows the surface area and volume manually and in case 2. Advance equation shows the mechanical performance has been discussed, the metal aggregates which had outstandingly qualities to resist shear, tension and compression forces. In this paper coarse metal aggregates is 20 mm which used for making high performance concrete (H.P.C).Keywords: applied mathematical study case, special metal aggregates, concrete technology, basic physical formulation, advance equation
Procedia PDF Downloads 3742471 Static and Dynamic Analysis of Hyperboloidal Helix Having Thin Walled Open and Close Sections
Authors: Merve Ermis, Murat Yılmaz, Nihal Eratlı, Mehmet H. Omurtag
Abstract:
The static and dynamic analyses of hyperboloidal helix having the closed and the open square box sections are investigated via the mixed finite element formulation based on Timoshenko beam theory. Frenet triad is considered as local coordinate systems for helix geometry. Helix domain is discretized with a two-noded curved element and linear shape functions are used. Each node of the curved element has 12 degrees of freedom, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. Finite element matrices are derived by using exact nodal values of curvatures and arc length and it is interpolated linearly throughout the element axial length. The torsional moments of inertia for close and open square box sections are obtained by finite element solution of St. Venant torsion formulation. With the proposed method, the torsional rigidity of simply and multiply connected cross-sections can be also calculated in same manner. The influence of the close and the open square box cross-sections on the static and dynamic analyses of hyperboloidal helix is investigated. The benchmark problems are represented for the literature.Keywords: hyperboloidal helix, squared cross section, thin walled cross section, torsional rigidity
Procedia PDF Downloads 3772470 Developing Granular Sludge and Maintaining High Nitrite Accumulation for Anammox to Treat Municipal Wastewater High-efficiently in a Flexible Two-stage Process
Authors: Zhihao Peng, Qiong Zhang, Xiyao Li, Yongzhen Peng
Abstract:
Nowadays, conventional nitrogen removal process (nitrification and denitrification) was adopted in most wastewater treatment plants, but many problems have occurred, such as: high aeration energy consumption, extra carbon sources dosage and high sludge treatment costs. The emergence of anammox has bring about the great revolution to the nitrogen removal technology, and only the ammonia and nitrite were required to remove nitrogen autotrophically, no demand for aeration and sludge treatment. However, there existed many challenges in anammox applications: difficulty of biomass retention, insufficiency of nitrite substrate, damage from complex organic etc. Much effort was put into the research in overcoming the above challenges, and the payment was rewarded. It was also imperative to establish an innovative process that can settle the above problems synchronously, after all any obstacle above mentioned can cause the collapse of anammox system. Therefore, in this study, a two-stage process was established that the sequencing batch reactor (SBR) and upflow anaerobic sludge blanket (UASB) were used in the pre-stage and post-stage, respectively. The domestic wastewater entered into the SBR first and went through anaerobic/aerobic/anoxic (An/O/A) mode, and the draining at the aerobic end of SBR was mixed with domestic wastewater, the mixture then entering to the UASB. In the long term, organic and nitrogen removal performance was evaluated. All along the operation, most COD was removed in pre-stage (COD removal efficiency > 64.1%), including some macromolecular organic matter, like: tryptophan, tyrosinase and fulvic acid, which could weaken the damage of organic matter to anammox. And the An/O/A operating mode of SBR was beneficial to the achievement and maintenance of partial nitrification (PN). Hence, sufficient and steady nitrite supply was another favorable condition to anammox enhancement. Besides, the flexible mixing ratio helped to gain a substrate ratio appropriate to anammox (1.32-1.46), which further enhance the anammox. Further, the UASB was used and gas recirculation strategy was adopted in the post-stage, aiming to achieve granulation by the selection pressure. As expected, the granules formed rapidly during 38 days, which increased from 153.3 to 354.3 μm. Based on bioactivity and gene measurement, the anammox metabolism and abundance level rose evidently, by 2.35 mgN/gVss·h and 5.3 x109. The anammox bacteria mainly distributed in the large granules (>1000 μm), while the biomass in the flocs (<200 μm) and microgranules (200-500 μm) barely displayed anammox bioactivity. Enhanced anammox promoted the advanced autotrophic nitrogen removal, which increased from 71.9% to 93.4%, even when the temperature was only 12.9 ℃. Therefore, it was feasible to enhance anammox in the multiple favorable conditions created, and the strategy extended the application of anammox to the full-scale mainstream, enhanced the understanding of anammox in the aspects of culturing conditions.Keywords: anammox, granules, nitrite accumulation, nitrogen removal efficiency
Procedia PDF Downloads 472469 Impact of Population Size on Symmetric Travelling Salesman Problem Efficiency
Authors: Wafa' Alsharafat, Suhila Farhan Abu-Owida
Abstract:
Genetic algorithm (GA) is a powerful evolutionary searching technique that is used successfully to solve and optimize problems in different research areas. Genetic Algorithm (GA) considered as one of optimization methods used to solve Travel salesman Problem (TSP). The feasibility of GA in finding a TSP solution is dependent on GA operators; encoding method, population size, termination criteria, in general. In specific, crossover and its probability play a significant role in finding possible solutions for Symmetric TSP (STSP). In addition, the crossover should be determined and enhanced in term reaching optimal or at least near optimal. In this paper, we spot the light on using a modified crossover method called modified sequential constructive crossover and its impact on reaching optimal solution. To justify the relevance of a parameter value in solving the TSP, a set comparative analysis conducted on different crossover methods values.Keywords: genetic algorithm, crossover, mutation, TSP
Procedia PDF Downloads 2272468 The Synthesis of AgInS₂/SnS₂/RGO Heterojunctions with Enhanced Photocatalytic Degradation of Norfloxacin
Authors: Mingmei Zhang, Xinyong Li
Abstract:
Novel AgInS2/SnS2/RGO (AISR) heterojunctions photocatalysts were synthesized by simple hydrothermal method. The morphology and composition of the fabricated AISR nanocomposites were investigated by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared AISR photocatalysts exhibited excellent photocatalytic activities for the degradation of Norfloxacin (NOR), mainly due to its high optical absorption and separation efficiency of photogenerated electron-hole pairs, as evidenced by UV–vis diffusion reflection spectra (DRS) and Surface photovoltage (SPV) spectra. Furthermore, laser flash photolysis technique was conducted to test the lifetime of charge carriers of the fabricated nanocomposites. The interfacial charges transfer mechanism was also discussed.Keywords: AISR heterojunctions, electron-hole pairs, SPV spectra, charges transfer mechanism
Procedia PDF Downloads 1812467 Study of Wake Dynamics for a Rim-Driven Thruster Based on Numerical Method
Authors: Bao Liu, Maarten Vanierschot, Frank Buysschaert
Abstract:
The present work examines the wake dynamics of a rim-driven thruster (RDT) with Computational Fluid Dynamics (CFD). Unsteady Reynolds-averaged Navier-Stokes (URANS) equations were solved in the commercial solver ANSYS Fluent in combination with the SST k-ω turbulence model. The application of the moving reference frame (MRF) and sliding mesh (SM) approach to handling the rotational movement of the propeller were compared in the transient simulations. Validation and verification of the numerical model was performed to ensure numerical accuracy. Two representative scenarios were considered, i.e., the bollard condition (J=0) and a very light loading condition(J=0.7), respectively. From the results, it’s confirmed that compared to the SM method, the MRF method is not suitable for resolving the unsteady flow features as it only gives the general mean flow but smooths out lots of characteristic details in the flow field. By evaluating the simulation results with the SM technique, the instantaneous wake flow field under both conditions is presented and analyzed, most notably the helical vortex structure. It’s observed from the results that the tip vortices, blade shed vortices, and hub vortices are present in the wake flow field and convect downstream in a highly non-linear way. The shear layer vortices shedding from the duct displayed a strong interaction with the distorted tip vortices in an irregularmanner.Keywords: computational fluid dynamics, rim-driven thruster, sliding mesh, wake dynamics
Procedia PDF Downloads 2602466 Heat Transfer Studies on CNT Nanofluids in a Turbulent Flow Heat Exchanger
Authors: W. Rashmi, M. Khalid, O. Seiksan, R. Saidur, A. F. Ismail
Abstract:
Nanofluids have received much more attention since its discovery. They are believed to be promising coolants in heat transfer applications due to their enhanced thermal conductivity and heat transfer characteristics. In this study, the enhancement in heat transfer of CNT-nanofluids under turbulent flow conditions is investigated experimentally. Carbon nanotube (CNTs) concentration was varied between 0.051-0.085 wt%. The nanofluid suspension was stabilized by gum arabic (GA) through a process of homogenisation and sonication. The flow rates of cold fluid (water) is varied from 1.7-3 L/min and flow rates of the hot fluid is varied between 2-3.5 L/min. Thermal conductivity, density and viscosity of the nanofluids were also measured as a function of temperature and CNT concentration. The experimental results are validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer range between 9-67% as a function of temperature and CNT concentration.Keywords: nanofluids, carbon nanotubes (CNT), heat transfer enhancement, heat transfer
Procedia PDF Downloads 5002465 Benefits of an Oral Association of Glycosaminoglycans and Type II Collagene (Glycosane®) on Mobility in Senior Dogs: A Pet-Owner Survey
Authors: Navarro, Delaup, Lacreusette, Jahier, Destaing, Gard
Abstract:
Background: A complementary feed designed to support joint metabolism and contribute to cartilage integrity in dogs was evaluated through a pet-owner study involving 21 senior dogs experiencing a decrease in mobility. The study aimed to assess the product's benefits, ease of use, and impact on quality of life over a 56-day period. Methods: Privately owned dogs over six years old with reduced mobility and no change in their mobility management within the last three months were recruited. They received a chicken cartilage hydrolysate complementary feed containing a complex of glycosaminoglycans and type II collagen (Glycosane®, MP Labo, France. One capsule per dog up to 40 kg, 2 capsules beyond) once a day for 56 days. Assessments were performed at baseline (D0), and subsequent follow-ups at D7, D28, and D56: revised LOAD (Liverpool Osteoarthritis in Dogs) and CBPI (Canine Brief Pain Inventory) were used to evaluate mobility, pain intensity, and pain interference. Owners also completed a questionnaire on quality of life (QoL), comprising 7 questions on the animal’s well-being (QoL1) and 7 questions on the owner’s well-being (QoL2). Statistical analyses were performed using mixed models for repeated measures. The significance levels were set at p<0.05. Results: (1) Population: 21 dogs were included. The mean age was 10.2 years [6 – 14.5]. (2) Mobility: 71% of owners reported enhanced mobility by D56. Improvements were observed in half of the cases after 21 days of supplementation, with notable changes evident as early as 14 days in 39% of cases. LOAD scores showed significant improvement over time (p=0.0019). (3) Comfort: CBPI severity scores decreased significantly from baseline to D28 and D56 (p=0.0300 and p=0.0271, respectively). CBPI QoL score was also significantly improved at D56 compared to D7 (p=0.0440). (4) Quality of life: The QoL total score improved significantly by D56 compared to baseline (p=0.0089), with a specific improvement of the QoL1 (p=0.0015). (4) Owners' insights: Glycosane® received a high ease-of-use rating (mean score 4.4/5), with excellent compliance (95%). Oral intake was rated at 4.3/5. Willingness to walk (19%), Increased activity, Ability to run and/or jump from short heights and a Happier animal (11%) were among the most cited benefits. Owners noted enhanced comfort (78%) and happiness (79%) in their dogs, with a 60% perception of restored good mobility. Conclusion: The complementary feed demonstrates significant benefits in enhancing mobility and quality of life in senior dogs. Its high ease of administration supports owner compliance and satisfaction. These findings support Glycosane® as a valuable nutritional aid in helping to maintain canine mobility. Further studies with larger cohorts and a controlled group are recommended to validate these results.Keywords: canine mobility, complementary feed, LOAD, CBPI, quality of life, Glycosane
Procedia PDF Downloads 22464 Effectiveness of Damping Devices on Coupling Beams of 15-story Building Based on Nonlinear Analysis Procedures
Authors: Galih Permana, Yuskar Lase
Abstract:
In recent years, damping device has been experimentally studied to replace diagonally reinforced coupling beams, to mitigate rebar congestion problem. This study focuses on evaluating the effectiveness of various damping devices in a high-rise building. The type of damping devices evaluated is Viscoelastic Damper (VCD) and Rotational Friction Damper (RFD), with study case of a 15-story reinforced concrete apartment building with a dual system (column-beam and shear walls). The analysis used is a nonlinear time history analysis with 11 pairs of ground motions matched to the Indonesian response spectrum based on ASCE 41-17 and ASCE 7-16. In this analysis, each damper will be varied with a different position, namely the first model, the damper will be installed on the entire floor and in the second model, the damper will be installed on the 5th floor to the 9th floor, which is the floor with the largest drift. The results show that the model using both dampers increases the level of structural performance both globally and locally in the building, which will reduce the level of damage to the structural elements. But between the two dampers, the coupling beam that uses RFD is more effective than using VCD in improving building performance. The damper on the coupling beam has a good role in dissipating earthquakes and also in terms of ease of installation.Keywords: building, coupling beam, damper, nonlinear time history analysis
Procedia PDF Downloads 1722463 Inhibition of Influenza Replication through the Restrictive Factors Modulation by CCR5 and CXCR4 Receptor Ligands
Authors: Thauane Silva, Gabrielle do Vale, Andre Ferreira, Marilda Siqueira, Thiago Moreno L. Souza, Milene D. Miranda
Abstract:
The exposure of A(H1N1)pdm09-infected epithelial cells (HeLa) to HIV-1 viral particles, or its gp120, enhanced interferon-induced transmembrane protein (IFITM3) content, a viral restriction factor (RF), resulting in a decrease in influenza replication. The gp120 binds to CCR5 (R5) or CXCR4 (X4) cell receptors during HIV-1 infection. Then, it is possible that the endogenous ligands of these receptors also modulate the expression of IFITM3 and other cellular factors that restrict influenza virus replication. Thus, the aim of this study is to analyze the role of cellular receptors R5 and X4 in modulating RFs in order to inhibit the replication of the influenza virus. A549 cells were treated with 2x effective dose (ED50) of endogenous R5 or X4 receptor agonists, CCL3 (20 ng/ml), CCL4 (10 ng/ml), CCL5 (10 ng/ml) and CXCL12 (100 ng/mL) or exogenous agonists, gp120 Bal-R5, gp120 IIIB-X4 and its mutants (5 µg/mL). The interferon α (10 ng/mL) and oseltamivir (60 nM) were used as a control. After 24 h post agonists exposure, the cells were infected with virus influenza A(H3N2) at 2 MOI (multiplicity of infection) for 1 h. Then, 24 h post infection, the supernatant was harvested and, the viral titre was evaluated by qRT-PCR. To evaluate IFITM3 and SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) protein levels, A549 were exposed to agonists for 24 h, and the monolayer was lysed with Laemmli buffer for western blot (WB) assay or fixed for indirect immunofluorescence (IFI) assay. In addition to this, we analyzed other RFs modulation in A549, after 24 h post agonists exposure by customized RT² Profiler Polymerase Chain Reaction Array. We also performed a functional assay in which SAMHD1-knocked-down, by single-stranded RNA (siRNA), A549 cells were infected with A(H3N2). In addition, the cells were treated with guanosine to assess the regulatory role of dNTPs by SAMHD1. We found that R5 and X4 agonists inhibited influenza replication in 54 ± 9%. We observed a four-fold increase in SAMHD1 transcripts by RFs mRNA quantification panel. After 24 h post agonists exposure, we did not observe an increase in IFITM3 protein levels through WB or IFI assays, but we observed an upregulation up to three-fold in the protein content of SAMHD1, in A549 exposed to agonists. Besides this, influenza replication enhanced in 20% in cell cultures that SAMDH1 was knockdown. Guanosine treatment in cells exposed to R5 ligands further inhibited influenza virus replication, suggesting that the inhibitory mechanism may involve the activation of the SAMHD1 deoxynucleotide triphosphohydrolase activity. Thus, our data show for the first time a direct relationship of SAMHD1 and inhibition of influenza replication, and provides perspectives for new studies on the signaling modulation, through cellular receptors, to induce proteins of great importance in the control of relevant infections for public health.Keywords: chemokine receptors, gp120, influenza, virus restriction factors
Procedia PDF Downloads 1412462 Chemical Bath Deposition Technique of CdS Used in Closed Space Sublimation of CdTe Solar Cell
Authors: Z. Mahmood, F. U. Babar, S. Naz, H. U. Rehman
Abstract:
Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Ellipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here). The efficiency came out to be approximately 16.5 % and the CIGS (copper-indium–gallium-selenide) maximum efficiency is 20 %. The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).Keywords: Chemical Bath Deposition Technique (CBD), cadmium sulphide (CdS), CdTe, CSS (Closed Space Sublimation)
Procedia PDF Downloads 3642461 Use of Technology to Improve Students’ Attitude in Learning Mathematics of Non- Mathematics Undergraduate Students
Authors: Asia Majeed
Abstract:
The learning of mathematics in science, engineering and social science programs can be enhanced through practical problem-solving techniques. The instructors can design their lessons with some strategies to improve students’ educational needs and accomplishments in mathematics classrooms. The use of technology in class problem solving and application sessions can enhance deep understanding of mathematics among students. As mathematician, we believe in subject specific and content-driven teaching methods. Through technology the relationship between the physical problems and the mathematical models can be analyzed. This paper is about selective use of technology in mathematics classrooms and helpful to others mathematics instructors who wishes to improve their traditional teaching techniques to improve students’ attitude in learning mathematics. These techniques corpus can be used in teaching large mathematics classes in science, technology, engineering, and social science.Keywords: attitude in learning mathematics, mathematics, non-mathematics undergraduate students, technology
Procedia PDF Downloads 2222460 Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency
Authors: Shun-Chang Yen, You-Lun Peng, Kuo-Ching San
Abstract:
A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc.Keywords: bluff body with multiple holes, computational fluid dynamics, swirl-jet flow, mixing efficiency
Procedia PDF Downloads 3572459 Evaluation of Coal Quality and Geomechanical Moduli Using Core and Geophysical Logs: Study from Middle Permian Barakar Formation of Gondwana Coalfield
Authors: Joyjit Dey, Souvik Sen
Abstract:
Middle Permian Barakar formation is the major economic coal bearing unit of vast east-west trending Damodar Valley basin of Gondwana coalfield. Primary sedimentary structures were studied from the core holes, which represent majorly four facies groups: sandstone dominated facies, sandstone-shale heterolith facies, shale facies and coal facies. Total eight major coal seams have been identified with the bottom most seam being the thickest. Laterally, continuous coal seams were deposited in the calm and quiet environment of extensive floodplain swamps. Channel sinuosity and lateral channel migration/avulsion results in lateral facies heterogeneity and coal splitting. Geophysical well logs (Gamma-Resistivity-Density logs) have been used to establish the vertical and lateral correlation of various litho units field-wide, which reveals the predominance of repetitive fining upwards cycles. Well log data being a permanent record, offers a strong foundation for generating log based property evaluation and helps in characterization of depositional units in terms of lateral and vertical heterogeneity. Low gamma, high resistivity, low density is the typical coal seam signatures in geophysical logs. Here, we have used a density cutoff of 1.6 g/cc as a primary discriminator of coal and the same has been employed to compute various coal assay parameters, which are ash, fixed carbon, moisture, volatile content, cleat porosity, vitrinite reflectance (VRo%), which were calibrated with the laboratory based measurements. The study shows ash content and VRo% increase from west to east (towards basin margin), while fixed carbon, moisture and volatile content increase towards west, depicting increased coal quality westwards. Seam wise cleat porosity decreases from east to west, this would be an effect of overburden, as overburden pressure increases westward with the deepening of basin causing more sediment packet deposited on the western side of the study area. Coal is a porous, viscoelastic material in which velocity and strain both change nonlinearly with stress, especially for stress applied perpendicular to the bedding plane. Usually, the coal seam has a high velocity contrast relative to its neighboring layers. Despite extensive discussion of the maceral and chemical properties of coal, its elastic characteristics have received comparatively little attention. The measurement of the elastic constants of coal presents many difficulties: sample-to-sample inhomogeneity and fragility and velocity dependence on stress, orientation, humidity, and chemical content. In this study, a conclusive empirical equation VS= 0.80VP-0.86 has been used to model shear velocity from compression velocity. Also the same has been used to compute various geomechanical moduli. Geomech analyses yield a Poisson ratio of 0.348 against coals. Average bulk modulus value is 3.97 GPA, while average shear modulus and Young’s modulus values are coming out as 1.34 and 3.59 GPA respectively. These middle Permian Barakar coals show an average 23.84 MPA uniaxial compressive strength (UCS) with 4.97 MPA cohesive strength and 0.46 as friction coefficient. The output values of log based proximate parameters and geomechanical moduli suggest a medium volatile Bituminous grade for the studied coal seams, which is found in the laboratory based core study as well.Keywords: core analysis, coal characterization, geophysical log, geo-mechanical moduli
Procedia PDF Downloads 2262458 Conceptual Design of Panel Based Reinforced Concrete Floating Substructure for 10 MW Offshore Wind Turbine
Authors: M. Sohail Hasan, Wichuda Munbua, Chikako Fujiyama, Koichi Maekawa
Abstract:
During the past few years, offshore wind energy has become the key parameter to reduce carbon emissions. In most of the previous studies, floaters in floating offshore wind turbines (FOWT) are made up of steel. However, fatigue and corrosion are always major concerns of steel marine structures. Recently, researchers are working on concrete floating substructures. In this paper, the conceptual design of pre-cast panel-based economical and durable reinforced concrete floating substructure for a 10 MW offshore wind turbine is proposed. The new geometrical shape, i.e., hexagon with inside hollow boxes, is proposed under static conditions. To design the outer panel/side walls to resist hydrostatic forces, special consideration for durability is given to limit the crack width within permissible range under service limit state. A comprehensive system is proposed for transferring the ultimate moment and shear due to strong wind at the connection between steel tower and concrete floating substructure. Moreover, a stable connection is also designed considering the fatigue of concrete and steel due to the fluctuation of stress from the mooring line. This conceptual design will be verified by subsequent dynamic analysis soon.Keywords: cracks width control, mooring line, reinforced concrete floater, steel tower
Procedia PDF Downloads 2232457 Effects of Alkaline Pretreatment Parameters on the Corrosion Resistance and Wettability of Magnesium Implant
Authors: Mahtab Assadian, Mohd Hasbullah Idris, Mostafa Rezazadeh Shirdar, Mohammad Mahdi Taheri, S. Izman
Abstract:
Corrosion behaviour and surface roughness of magnesium substrate were investigated after NaOH pretreatment in different concentrations (1, 5, and 10 molar) and duration of (10 min, 30 min, 1 h, 3 h, 6 h and 24 h). Creation of Mg(OH)2 barrier layer after pretreatment enhanced corrostion resistance as well as wettability of substrate surface. Characterization including Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) was conducted to detect the existence of this barrier layer. Surface roughness and wettability of substrate was evaluated using atomic force microscopy (AFM) and contact angle measurement respectively. It is found that magnesium treated by 1M NaOH for 30 min reveals higher corrosion resistance and lower water contact angle of substrate surface. In addition, this investigation indicates that pH value of SBF solution is strongly influenced by different time and concentration of alkaline pretreatment.Keywords: magnesium, NaOH pretreatment, corrosion resistance, wettability
Procedia PDF Downloads 9612456 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai
Abstract:
Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities
Procedia PDF Downloads 3172455 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils
Authors: J. Joy, T. H. New, I. H. Ibrahim
Abstract:
A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.Keywords: computational fluid dynamics, flow separation control, hydrofoils, leading-edge protuberances
Procedia PDF Downloads 3282454 Thermodynamics of the Local Hadley Circulation Over Central Africa
Authors: Landry Tchambou Tchouongsi, Appolinaire Derbetini Vondou
Abstract:
This study describes the local Hadley circulation (HC) during the December-February (DJF) and June-August (JJA) seasons, respectively, in Central Africa (CA) from the divergent component of the mean meridional wind and also from a new method called the variation of the ψ vector. Historical data from the ERA5 reanalysis for the period 1983 to 2013 were used. The results show that the maximum of the upward branch of the local Hadley circulation in the DJF and JJA seasons is located under the Congo Basin (CB). However, seasonal and horizontal variations in the mean temperature gradient and thermodynamic properties are largely associated with the distribution of convection and large-scale upward motion. Thus, temperatures beneath the CB show a slight variation between the DJF and JJA seasons. Moreover, energy transport of the moist static energy (MSE) adequately captures the mean flow component of the HC over the tropics. By the way, the divergence under the CB is enhanced by the presence of the low pressure of western Cameroon and the contribution of the warm and dry air currents coming from the Sahara.Keywords: Circulation, reanalysis, thermodynamic, local Hadley.
Procedia PDF Downloads 892453 Public Health Informatics: Potential and Challenges for Better Life in Rural Communities
Authors: Shishir Kumar, Chhaya Gangwal, Seema Raj
Abstract:
Public health informatics (PHI) which has seen successful implementation in the developed world, become the buzzword in the developing countries in providing improved healthcare with enhanced access. In rural areas especially, where a huge gap exists between demand and supply of healthcare facilities, PHI is being seen as a major solution. There are factors such as growing network infrastructure and the technological adoption by the health fraternity which provide support to these claims. Public health informatics has opportunities in healthcare by providing opportunities to diagnose patients, provide intra-operative assistance and consultation from a remote site. It also has certain barriers in the awareness, adaptation, network infrastructure, funding and policy related areas. There are certain medico-legal aspects involving all the stakeholders which need to be standardized to enable a working system. This paper aims to analyze the potential and challenges of public health informatics services in rural communities.Keywords: PHI, e-health, public health, health informatics
Procedia PDF Downloads 3762452 Viable Use of Natural Extract Solutions from Tuberous and Cereals to Enhance the Synthesis of Activated Carbon-Graphene Composite
Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang
Abstract:
Enhancing the properties of activated carbon is very imperative for various applications. Indeed, the activated carbon has promising physicochemical properties desired for a considerable number of applications. In this regard, we are proposing an enhanced and green technology for increasing the efficiency and performance of the activated carbon to various applications. The technique poses on the use of natural extracts from tuberous and cereals based-solutions. These solutions showed high potentiality to be used in the synthesis of activated carbon-graphene composite with only 3 mL. The extracted liquid from tuberous sourcing was enough to induce precipitation within a fraction of a minute in contrast to that from cereal sourced. Using these extracts, a synthesis of activated carbon-graphene composite was successful. Different characterization techniques such as XRD, SEM, FTIR, BET, and Raman spectroscopy were performed to investigate the composite materials. The results confirmed a conjugation between activated carbon and graphene material.Keywords: activated carbon, cereals, extract solution, graphene, tuberous
Procedia PDF Downloads 1462451 Laryngeal Tuberculosis in a 7-Year-Old Child: A Case Report and Literature Review
Authors: Mohd Jaish Siddiqui
Abstract:
Laryngeal TB is extremely rare in the pediatric population, accounting for 1% of all cases. Here, we present a case of laryngeal TB with miliary tuberculosis and tuberculous encephalitis, presented with sore throat, hoarseness, severe cough and, acute obstruction the larynx, sputum for AFB was negative, T-SPOT was positive and X-pert was positive, bronchoscopy revealed multiple nodules and edema around the larynx, epiglottis, bilateral arytenopharyngeal folds and vocal cord. Enhanced MRI revealed multiple small nodules in bilateral cerebral hemispheres and right thalamus, however CSF was negative. We reviewed the LTB cases that were published up to 2021. A total of twenty fine cases were identified in English literature. The most common manifestation was hoarseness of voice with 80% followed by stridor 40% of cases. Pulmonary involvement was found in 36% of cases, whereas, 45% of cases had no underlying TB. We did not find any case who developed tuberculous encephalitis in the literature.Keywords: laryngeal tb, treatment, tuberculous encephalitis, children
Procedia PDF Downloads 472450 Comparison of Cu Nanoparticle Formation and Properties with and without Surrounding Dielectric
Authors: P. Dubcek, B. Pivac, J. Dasovic, V. Janicki, S. Bernstorff
Abstract:
When grown only to nanometric sizes, metallic particles (e.g. Ag, Au and Cu) exhibit specific optical properties caused by the presence of plasmon band. The plasmon band represents collective oscillation of the conduction electrons, and causes a narrow band absorption of light in the visible range. When the nanoparticles are embedded in a dielectric, they also cause modifications of dielectrics optical properties. This can be fine-tuned by tuning the particle size. We investigated Cu nanoparticle growth with and without surrounding dielectric (SiO2 capping layer). The morphology and crystallinity were investigated by GISAXS and GIWAXS, respectively. Samples were produced by high vacuum thermal evaporation of Cu onto monocrystalline silicon substrate held at room temperature, 100°C or 180°C. One series was in situ capped by 10nm SiO2 layer. Additionally, samples were annealed at different temperatures up to 550°C, also in high vacuum. The room temperature deposited samples annealed at lower temperatures exhibit continuous film structure: strong oscillations in the GISAXS intensity are present especially in the capped samples. At higher temperatures enhanced surface dewetting and Cu nanoparticles (nanoislands) formation partially destroy the flatness of the interface. Therefore the particle type of scattering is enhanced, while the film fringes are depleted. However, capping layer hinders particle formation, and continuous film structure is preserved up to higher annealing temperatures (visible as strong and persistent fringes in GISAXS), compared to the non- capped samples. According to GISAXS, lateral particle sizes are reduced at higher temperatures, while particle height is increasing. This is ascribed to close packing of the formed particles at lower temperatures, and GISAXS deduced sizes are partially the result of the particle agglomerate dimensions. Lateral maxima in GISAXS are an indication of good positional correlation, and the particle to particle distance is increased as the particles grow with temperature elevation. This coordination is much stronger in the capped and lower temperature deposited samples. The dewetting is much more vigorous in the non-capped sample, and since nanoparticles are formed in a range of sizes, correlation is receding both with deposition and annealing temperature. Surface topology was checked by atomic force microscopy (AFM). Capped sample's surfaces were smoother and lateral size of the surface features were larger compared to the non-capped samples. Altogether, AFM results suggest somewhat larger particles and wider size distribution, and this can be attributed to the difference in probe size. Finally, the plasmonic effect was monitored by UV-Vis reflectance spectroscopy, and relative weak plasmonic effect could be explained by uncomplete dewetting or partial interconnection of the formed particles.Keywords: coper, GISAXS, nanoparticles, plasmonics
Procedia PDF Downloads 123