Search results for: AI-driven vehicle recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3084

Search results for: AI-driven vehicle recognition

1404 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 324
1403 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 372
1402 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing

Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen

Abstract:

Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.

Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management

Procedia PDF Downloads 149
1401 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 464
1400 Attitude of Tertiary Students on Multiculturalism in Indonesia

Authors: Budi Annisa Sidi

Abstract:

Present-day Indonesia maintains a narrative of a culturally plural but unified nation. At the same time, multicultural policies extend different degrees of recognition, accommodation, toleration and even discrimination towards different socio-cultural groups. In conjunction with different ethnographic landscapes across regions in Indonesia, this approach leads to a varied experience and understanding of national identity and multiculturalism among people. As a result, governments seeking to maintain national unity while practicing multiculturalism have to juggle different expectations. This situation is examined through the microcosms of university students using questionnaires followed up by focus group discussions and personal interviews. A comparison between university students across four different provinces in Indonesia (Aceh, Jakarta, West Java and the Moluccas) highlights the influence of one’s surroundings on their perception of multiculturalism. Students in the more heterogeneous areas generally show more acceptance towards diversity compared to students in primarily homogenous areas who have little actual experience in dealing with diversity. Regardless of their environment, students claim to have positive feelings and a strong sense of attachment to Indonesia but hold different ideas of what constitutes an ideal Indonesian national identity.

Keywords: Indonesia, multiculturalism, national identity, nationalism

Procedia PDF Downloads 236
1399 Optimization of Organic Rankine Cycle System for Waste Heat Recovery from Excavator

Authors: Young Min Kim, Dong Gil Shin, Assmelash Assefa Negash

Abstract:

This study describes the application of a single loop organic Rankine cycle (ORC) for recovering waste heat from an excavator. In the case of waste heat recovery of the excavator, the heat of hydraulic oil can be used in the ORC system together with the other waste heat sources including the exhaust gas and engine coolant. The performances of four different cases of single loop ORC systems were studied at the main operating condition, and critical design factors are studied to get the maximum power output from the given waste heat sources. The energy and exergy analysis of the cycles are performed concerning the available heat source to determine the best fluid and system configuration. The analysis demonstrates that the ORC in the excavator increases 14% of the net power output at the main operating condition with a simpler system configuration at a lower expander inlet temperature than in a conventional vehicle engine without the heat of the hydraulic oil.

Keywords: engine, excavator, hydraulic oil, organic Rankine cycle (ORC), waste heat recovery

Procedia PDF Downloads 307
1398 Design of Semi-Automatic Vent and Flash Remover

Authors: Inba Blesso P., Senthil Kumar P.

Abstract:

The main consideration of any tire manufacturing process is wear resistance. One of the factors that cause tire wear is improper removal of vent and flash from the tire surface. The contact point between tyre surface and vent is highly supposed to wear. When the vehicle running at higher speed with heavy load, the tire vent and flash is wearing initially and it makes few of the tire surface material to wear along with it. Hence, provision must be given to efficient removal vent and flash thereby tire wear. Human efforts in trimming of tire vent results in time consuming and inaccurate output. Hence, this lead to the reduction in production rate and profit. Thus, the development of automated system can helps to attain minimum time consumption and provide a possible way to get the profitable production. Semi-automated system that employs Pneumatic actuators and sequencing circuits are focused in this study. By implementing this, one can achieve the accurate results with reduction in time and profitable output.

Keywords: tire manufacturing, pneumatic system, vent and flash removal, engineering and technology

Procedia PDF Downloads 383
1397 Ethical Decision-Making in AI and Robotics Research: A Proposed Model

Authors: Sylvie Michel, Emmanuelle Gagnou, Joanne Hamet

Abstract:

Researchers in the fields of AI and Robotics frequently encounter ethical dilemmas throughout their research endeavors. Various ethical challenges have been pinpointed in the existing literature, including biases and discriminatory outcomes, diffusion of responsibility, and a deficit in transparency within AI operations. This research aims to pinpoint these ethical quandaries faced by researchers and shed light on the mechanisms behind ethical decision-making in the research process. By synthesizing insights from existing literature and acknowledging prevalent shortcomings, such as overlooking the heterogeneous nature of decision-making, non-accumulative results, and a lack of consensus on numerous factors due to limited empirical research, the objective is to conceptualize and validate a model. This model will incorporate influences from individual perspectives and situational contexts, considering potential moderating factors in the ethical decision-making process. Qualitative analyses were conducted based on direct observation of an AI/Robotics research team focusing on collaborative robotics for several months. Subsequently, semi-structured interviews with 16 team members were conducted. The entire process took place during the first semester of 2023. Observations were analyzed using an analysis grid, and the interviews underwent thematic analysis using Nvivo software. An initial finding involves identifying the ethical challenges that AI/robotics researchers confront, underlining a disparity between practical applications and theoretical considerations regarding ethical dilemmas in the realm of AI. Notably, researchers in AI prioritize the publication and recognition of their work, sparking the genesis of these ethical inquiries. Furthermore, this article illustrated that researchers tend to embrace a consequentialist ethical framework concerning safety (for humans engaging with robots/AI), worker autonomy in relation to robots, and the societal implications of labor (can robots displace jobs?). A second significant contribution entails proposing a model for ethical decision-making within the AI/Robotics research sphere. The model proposed adopts a process-oriented approach, delineating various research stages (topic proposal, hypothesis formulation, experimentation, conclusion, and valorization). Across these stages and the ethical queries, they entail, a comprehensive four-point comprehension of ethical decision-making is presented: recognition of the moral quandary; moral judgment, signifying the decision-maker's aptitude to discern the morally righteous course of action; moral intention, reflecting the ability to prioritize moral values above others; and moral behavior, denoting the application of moral intention to the situation. Variables such as political inclinations ((anti)-capitalism, environmentalism, veganism) seem to wield significant influence. Moreover, age emerges as a noteworthy moderating factor. AI and robotics researchers are continually confronted with ethical dilemmas during their research endeavors, necessitating thoughtful decision-making. The contribution involves introducing a contextually tailored model, derived from meticulous observations and insightful interviews, enabling the identification of factors that shape ethical decision-making at different stages of the research process.

Keywords: ethical decision making, artificial intelligence, robotics, research

Procedia PDF Downloads 80
1396 An Analytical View to the Habitat Strategies of the Butterfly-Like Insects (Neuroptera: Ascalaphidae)

Authors: Hakan Bozdoğan

Abstract:

The goal of this paper is to evaluate the species richness, diversity and structure of in different habitats in the Kahramanmaraş Province in Turkey by using a mathematical program called as Geo-Gebra Software. The Ascalaphidae family comprises the most visually remarkable members of the order Neuroptera due to large dimensions, aerial predatory behaviour and dragonfly-like (or even butterfly-like) habits, allowing an immediate recognition also for occasional observers. Otherwise, they are one of the more poorly known families of the order in respect to biology, ecology and especially larval morphology. This discrepancy appears particularly noteworthy considering that it is a fairly large family (ca. 430 species) widely distributed in tropical and temperate areas of the World. The use of Dynamic Geometry, Analytical Softwares provides researchers a great way of visualising mathematical objects and encourage them to carry out tasks to interact with such objects and add to support of their researching. In this study we implemented; Circle with Center Through Point, Perpendicular Line, Vectors and Rays, Segments and Locus to elucidate the ecological and habitat behaviours of Butterfly-like lacewings in an analytical plane by using Geo-Gebra.

Keywords: neuroptera, Ascalaphidae, geo-gebra software, habitat selectivity

Procedia PDF Downloads 282
1395 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 172
1394 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System

Authors: Getaneh Berie Tarekegn

Abstract:

Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.

Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles

Procedia PDF Downloads 61
1393 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer

Authors: Yujie Yuan, Yiyang Fan, Hong Fan

Abstract:

Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.

Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1

Procedia PDF Downloads 72
1392 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt

Authors: A. Anis, W. Bekheet, A. El Hakim

Abstract:

Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.

Keywords: road safety management system, road crash, road fatality, road injury

Procedia PDF Downloads 153
1391 Exploring Safety Culture in Interventional Radiology: A Cross-Sectional Survey on Team Members' Attitudes

Authors: Anna Bjällmark, Victoria Persson, Bodil Karlsson, May Bazzi

Abstract:

Introduction: Interventional radiology (IR) is a continuously growing discipline that allows minimally invasive treatments of various medical conditions. The IR environment is, in several ways, comparable to the complex and accident-prone operation room (OR) environment. This implies that the IR environment may also be associated with various types of risks related to the work process and communication in the team. Patient safety is a central aspect of healthcare and involves the prevention and reduction of adverse events related to patient care. To maintain patient safety, it is crucial to build a safety culture where the staff are encouraged to report events and incidents that may have affected patient safety. It is also important to continuously evaluate the staff´s attitudes to patient safety. Despite the increasing number of IR procedures, research on the staff´s view regarding patients is lacking. Therefore, the main aim of the study was to describe and compare the IR team members' attitudes to patient safety. The secondary aim was to evaluate whether the WHO safety checklist was routinely used for IR procedures. Methods: An electronic survey was distributed to 25 interventional units in Sweden. The target population was the staff working in the IR team, i.e., physicians, radiographers, nurses, and assistant nurses. A modified version of the Safety Attitudes Questionnaire (SAQ) was used. Responses from 19 of 25 IR units (44 radiographers, 18 physicians, 5 assistant nurses, and 1 nurse) were received. The respondents rated their level of agreement for 27 items related to safety culture on a five-point Likert scale ranging from “Disagree strongly” to “Agree strongly.” Data were analyzed statistically using SPSS. The percentage of positive responses (PPR) was calculated by taking the percentage of respondents who got a scale score of 75 or higher. The respondents rated which corresponded to response options “Agree slightly” or “Agree strongly”. Thus, average scores ≥ 75% were classified as “positive” and average scores < 75% were classified as “non-positive”. Findings: The results indicated that the IR team had the highest factor scores and the highest percentages of positive responses in relation to job satisfaction (90/94%), followed by teamwork climate (85/92%). In contrast, stress recognition received the lowest ratings (54/25%). Attitudes related to these factors were relatively consistent between different professions, with only a few significant differences noted (Factor score: p=0.039 for job satisfaction, p=0.050 for working conditions. Percentage of positive responses: p=0.027 for perception of management). Radiographers tended to report slightly lower values compared to other professions for these factors (p<0.05). The respondents reported that the WHO safety checklist was not routinely used at their IR unit but acknowledged its importance for patient safety. Conclusion: This study reported high scores concerning job satisfaction and teamwork climate but lower scores concerning perception of management and stress recognition indicating that the latter are areas of improvement. Attitudes remained relatively consistent among the professions, but the radiographers reported slightly lower values in terms of job satisfaction and perception of the management. The WHO safety checklist was considered important for patient safety.

Keywords: interventional radiology, patient safety, safety attitudes questionnaire, WHO safety checklist

Procedia PDF Downloads 66
1390 European Environmental Policy for Road Transport: Analysis of the Perverse Effects Generated and Proposals for a Good Practice Guide

Authors: Pedro Pablo Ramírez Sánchez, Alassane Ballé Ndiaye, Roberto Rendeiro Martín-Cejas

Abstract:

The aim of this paper is to analyse the different environmental policies adopted in Europe for car emissions, to comment on some of the possible perverse effects generated and point out these policies which are considered more efficient under the environmental perspective. This paper is focused on passenger cars as this category is the most significant in road transport. The utility of this research lies in this being the first step or basis to improve and optimise actual policies. The methodology applied in this paper refers to a comparative analysis from a practical and theoretical point of view of European environmental policies in road transport. This work describes an overview of the road transport industry in Europe pointing out some relevant aspects such as the contribution of road transport to total emissions and the vehicle fleet in Europe. Additionally, we propose a brief practice guide with the combined policies in order to optimise their aim.

Keywords: air quality, climate change, emission, environment, perverse effect, road transport, tax policy

Procedia PDF Downloads 163
1389 Power Generating Embedment beneath Vehicle Traffic Asphalt Roads

Authors: Ahmed Khalil

Abstract:

The discoveries in material sciences create an impulse in renewable energy transmission. Application techniques become more accessible by applied sciences. Variety of materials, application methods, and performance analyzing techniques can convert daily life functions to energy sources. These functions not only include natural sources like sun, wind, or water but also comprise the motion of tools used by human beings. In line with this, vehicles' motion, speed and weights come to the scene as energy sources together with piezoelectric nano-generators beneath the roads. Numerous application examples are put forward with repeated average performance, versus the differentiating challenges depending on geography and project conditions. Such holistic approach provides way for feed backs on research and improvement process of nano-generators beneath asphalt roads. This paper introduces the specific application methods of piezoelectric nano-generator beneath asphalt roads of Ahmadi Township in Kuwait.

Keywords: nano-generator pavements, piezoelectric, renewable energy, transducer

Procedia PDF Downloads 117
1388 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel

Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis

Abstract:

Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Experience from previous generations has shown that establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links. This paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.

Keywords: C-V2X, channel estimation, link-level simulator, sidelink, 3GPP

Procedia PDF Downloads 136
1387 Probability of Passing the Brake Test at Ministry of Transport Facilities of Each City at Alicante Region from Spain

Authors: Carolina Senabre Blanes, Sergio Valero Verdú, Emilio Velasco SáNchez

Abstract:

This research objective is to obtain a percentage of success for each Ministry of Transport (MOT) facilities of each city of the Alicante region from Comunidad Valenciana from Spain by comparing results obtained by using different brake testers. It has been studied which types of brake tester are being used at each city nowadays. Different types of brake testers are used at each city, and the mechanical engineering staffs from the Miguel Hernández University have studied differences between all of them, and have obtained measures from each type. A percentage of probability of success will be given to each MOT station when you try to pass the exam with the same car with same characteristics and the same wheels. In other words, parameters of the vehicle have been controlled to be the same at all tests; therefore, brake measurements variability will be due to the type of testers could be used at the MOT station. A percentage of probability to pass the brake exam at each city will be given by comparing results of tests.

Keywords: brake tester, Mot station, probability to pass the exam, brake tester characteristics

Procedia PDF Downloads 295
1386 Design of Quality Assessment System for On-Orbit 3D Printing Based on 3D Reconstruction Technology

Authors: Jianning Tang, Trevor Hocksun Kwan, Xiaofeng Wu

Abstract:

With the increasing demand for space use in multiple sectors (navigation, telecommunication, imagery, etc.), the deployment and maintenance demand of satellites are growing. Considering the high launching cost and the restrictions on weight and size of the payload when using launch vehicle, the technique of on-orbit manufacturing has obtained more attention because of its significant potential to support future space missions. 3D printing is the most promising manufacturing technology that could be applied in space. However, due to the lack of autonomous quality assessment, the operation of conventional 3D printers still relies on human presence to supervise the printing process. This paper is proposed to develop an automatic 3D reconstruction system aiming at detecting failures on the 3D printed objects through application of point cloud technology. Based on the data obtained from the point cloud, the 3D printer could locate the failure and repair the failure. The system will increase automation and provide 3D printing with more feasibilities for space use without human interference.

Keywords: 3D printing, quality assessment, point cloud, on-orbit manufacturing

Procedia PDF Downloads 123
1385 A Numerical Study on the Flow in a Pipe with Perforated Plates

Authors: Myeong Hee Jeong, Man Young Kim

Abstract:

The use of perforated plate and tubes is common in applications such as vehicle exhaust silencers, attenuators in air moving ducts and duct linings in jet engines. Also, perforated plate flow conditioners designed to improve flow distribution upstream of an orifice plate flow meter typically have 50–60% free area but these generally employ a non-uniform distribution of holes of several sizes to encourage the formation of a fully developed pipe flow velocity distribution. In this study, therefore, numerical investigations on the flow characteristics with the various perforated plates have been performed and then compared to the case without a perforated plate. Three different models are adopted such as a flat perforated plate, a convex perforated plate in the direction of the inlet, and a convex perforated plate in the direction of the outlet. Simulation results show that the pressure drop with and without perforated plates are similar each other. However, it can be found that that the different shaped perforated plates influence the velocity contour, flow uniformity index, and location of the fully developed fluid flow. These results can be used as a practical guide to the best design of pipe with the perforated plate.

Keywords: perforated plate, flow uniformity, pipe turbulent flow, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 693
1384 Curriculum-Based Multi-Agent Reinforcement Learning for Robotic Navigation

Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su

Abstract:

Deep reinforcement learning has been applied to address various problems in robotics, such as autonomous driving and unmanned aerial vehicle. However, because of the sparse reward penalty for a collision with obstacles during the navigation mission, the agent fails to learn the optimal policy or requires a long time for convergence. Therefore, using obstacles and enemy agents, in this paper, we present a curriculum-based boost learning method to effectively train compound skills during multi-agent reinforcement learning. First, to enable the agents to solve challenging tasks, we gradually increased learning difficulties by adjusting reward shaping instead of constructing different learning environments. Then, in a benchmark environment with static obstacles and moving enemy agents, the experimental results showed that the proposed curriculum learning strategy enhanced cooperative navigation and compound collision avoidance skills in uncertain environments while improving learning efficiency.

Keywords: curriculum learning, hard exploration, multi-agent reinforcement learning, robotic navigation, sparse reward

Procedia PDF Downloads 95
1383 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: ANSYS, differential, spider gear, structural steel

Procedia PDF Downloads 191
1382 Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia

Authors: Tathiana Yesenia Coy Mondragón, Jossitt William Vargas Cruz, Cristian Leonardo Gutiérrez Gómez

Abstract:

The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models.

Keywords: CORSIKA, cosmic rays, eas, Colombia

Procedia PDF Downloads 83
1381 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 126
1380 A Survey on Speech Emotion-Based Music Recommendation System

Authors: Chirag Kothawade, Gourie Jagtap, PreetKaur Relusinghani, Vedang Chavan, Smitha S. Bhosale

Abstract:

Psychological research has proven that music relieves stress, elevates mood, and is responsible for the release of “feel-good” chemicals like oxytocin, serotonin, and dopamine. It comes as no surprise that music has been a popular tool in rehabilitation centers and therapy for various disorders, thus with the interminably rising numbers of people facing mental health-related issues across the globe, addressing mental health concerns is more crucial than ever. Despite the existing music recommendation systems, there is a dearth of holistically curated algorithms that take care of the needs of users. Given that, an undeniable majority of people turn to music on a regular basis and that music has been proven to increase cognition, memory, and sleep quality while reducing anxiety, pain, and blood pressure, it is the need of the hour to fashion a product that extracts all the benefits of music in the most extensive and deployable method possible. Our project aims to ameliorate our users’ mental state by building a comprehensive mood-based music recommendation system called “Viby”.

Keywords: language, communication, speech recognition, interaction

Procedia PDF Downloads 64
1379 The Different Types of French Language in the Processes of Acquisition: Specifically about The Humor

Authors: Akbarnejad Neda

Abstract:

A foreign language acquisition occurs when we can tell a joke and understand it. Most jokes are told in slang and common language. In the process of foreign language acquisition, an autonomous learner try to learn the standard language. But there is a colossal divergence between the usage of the different types of language in society. Here, we investigate the french slang and common language and examine the accurate perception of their usage. We illuminate the slang language in the french literature that provide considerably different types of language for an autonomous learner. We provide furthermore evidence from the french novels that demonstrate properly the different types of language and give in one sentence its social meanings. For example, the famous Queneau expression « Doukipudonktant » present the impact of slang language in society. The characters in the novel transfer the slang and the common language and their accurate usages. We present that the language of the autonomous learner depends on the language of the text that is read. Because literature is a vehicle of the culture and the expression demonstrate their real significations and usage in the culture, slang and common language have a crucial role in the culture and all of them are manifested in the oral language.

Keywords: common language, french, humor, slang language

Procedia PDF Downloads 240
1378 A Simple Device for in-Situ Direct Shear and Sinkage Tests

Authors: A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Couste, A. Agarwal, R. Hurley, J. Andrade

Abstract:

This work introduces a simple device designed to perform in-situ direct shear and sinkage tests on granular materials as sand, clays, or regolith. It consists of a box nested within a larger box. Both have open bottoms, allowing them to be lowered into the material. Afterwards, two rotating plates on opposite sides of the outer box will rotate outwards in order to clear regolith on either side, providing room for the inner box to move relative to the plates and perform a shear test without the resistance of the surrounding soil. From this test, Coulomb parameters, including cohesion and internal friction angle, as well as, Bekker parameters can be in erred. This device has been designed for a laboratory setting, but with few modi cations, could be put on the underside of a rover for use in a remote location. The goal behind this work is to ultimately create a compact, but accurate measuring tool to put onto a rover or any kind of exploratory vehicle to test for regolith properties of celestial bodies.

Keywords: simple shear, friction angle, Bekker parameters, device, regolith

Procedia PDF Downloads 511
1377 Clustering Performance Analysis using New Correlation-Based Cluster Validity Indices

Authors: Nathakhun Wiroonsri

Abstract:

There are various cluster validity measures used for evaluating clustering results. One of the main objectives of using these measures is to seek the optimal unknown number of clusters. Some measures work well for clusters with different densities, sizes and shapes. Yet, one of the weaknesses that those validity measures share is that they sometimes provide only one clear optimal number of clusters. That number is actually unknown and there might be more than one potential sub-optimal option that a user may wish to choose based on different applications. We develop two new cluster validity indices based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points are located in. Our proposed indices constantly yield several peaks at different numbers of clusters which overcome the weakness previously stated. Furthermore, the introduced correlation can also be used for evaluating the quality of a selected clustering result. Several experiments in different scenarios, including the well-known iris data set and a real-world marketing application, have been conducted to compare the proposed validity indices with several well-known ones.

Keywords: clustering algorithm, cluster validity measure, correlation, data partitions, iris data set, marketing, pattern recognition

Procedia PDF Downloads 104
1376 Awareness and Recognition: A Legitimate-Geographic Model for Analyzing the Determinants of Corporate Perceptions of Climate Change Risk

Authors: Seyedmohammad Mousavian, Hanlu Fan, Quingliang Tang

Abstract:

Climate change is emerging as a severe threat to our society, so businesses are expected to take actions to mitigate carbon emissions. However, the actions to be taken depend on managers’ perceptions of climate change risks. Yet, there is scant research on this issue, and understanding of the determinants of corporate perceptions of climate change is extremely limited. The purpose of this study is to close this gap by examining the relationship between perceptions of climate risk and firm-level and country-level factors. In this study, climate change risk captures physical, regulatory, and other risks, and we use data from European companies that participated in CDP from 2010 to 2017. This study reveals those perceptions of climate change risk are significantly positively associated with the environmental, social, and governance score, firm size, and membership in a carbon-intensive sector. In addition, we find that managers in firms operating in a geographic area that is sensitive to the consequences of global warming are more likely to perceive and formally recognize carbon-related risks in their CDP reports.

Keywords: carbon actions, CDP, climate change risk, risk perception

Procedia PDF Downloads 294
1375 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images

Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane

Abstract:

In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].

Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer

Procedia PDF Downloads 15